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UNE LEÇON DE GEOMETRIE ANALYTIQUE
SUR LES AXES OBLIQUES DANS L'ESPACE

Il n'est pas, je crois, de professeur de Géométrie analytique
qui n'ait eu l'occasion de remarquer l'embarras de ses élèves

lorsqu'ils ont à se servir d'un système d'axes obliques dans la
résolution d'un problème.

Cette maladresse est surtout apparente en Géométrie à trois
dimensions, où la complication des formules est plus grande ;

elle est due au manque d'habitude, mais provient aussi, pour
une part, du fait que beaucoup de traités usuels ne présentent pas
la question des axes obliques avec toute la clarté et l'ampleur
qu'elle comporte, et emploient uniquement le système trirec-
tangle dans les applications, même les plus simples.

Il n'est pas jusqu'aux plus grands géomètres qui n'aient
commis parfois des inadvertances dans l'emploi des systèmes
obliques. Tous les mathématiciens connaissent le passage fautif
4e la Mécanique analytique (ire partie, section II, § 15) et le
Mémoire dans lequel Poinsot a le premier signalé et rectifié
l'erreur de Lagrange.

Cependant le cas général des axes obliques a, au point de

vue pratique, une grande importance ; je n'ai besoin que de

rappeler l'usage si fréquent qui en est fait en-Cristallographie,
dans la Théorie des surfaces, celle des coordonnées curvilignes,

etc. En outre, ce chapitre de Géométrie offre une excellente

occasion pour revoir, à un point de vue plus élevé que
dans les éléments, la Trigonométrie sphérique en la rattachant
à la théorie algébrique des formes adjointes qui reçoit de ce fait
une interprétation très claire. Enfin, la complication des formules

peut être facilement levée par l'emploi de notations convenables
rendant les formules presque aussi simples dans ce cas que dans

celui des axes rectangulaires.
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J'ai pensé que, précisément a cause du caractère élémentaire

du sujet, l'étude qu'on va lire était de nature à intéresser quelques

professeurs; elle n'a, cela va sans dire, aucune prétention
à l'originalité et n'est, à peu de chose près, que la reproduction
de la leçon sur les axes obliques dans le cours de Géométrie

analytique professé par moi deux années de suite à l'Université
de Genève. Tout au plus me permettrai-je d'attirer l'attention
du lecteur sur l'interprétation géométrique remarquable de

l'équation (izf) ; on connaît le rôle fondamental joué par cette
identité dans diverses théories, la théorie arithmétique des

formes ternaires, par exemple.
On voudra bien me pardonner d'avoir modifié quelque peu le

sens de termes aussi employés que ceux de coordonnées et de

forme adjointe.
Je ne crois pas devoir présenter ici d'applications ; le lecteur

en trouvera sans peine d'intéressantes, telles le changement
d'axes sous la forme la plus générale, la rotation d'un vecteur
autour d'une droite donnée et les formules de O. Rodrigues, la
réduction en coordonnées obliques de forces appliquées à un
solide, etc.

§ 1. Considérons trois axes OX4, OX2, OX3 non situés dans le
même plan. Ils prendront le nom d'axes coordonnés et les plans
qu'ils déterminent deux à deux celui de plans coordonnés.
Nous représenterons symétriquement par £2, £3, les angles des

axes deux à deux, tandis que les angles dièdres seront désignés

par 180°-^, iSo0-^, iSo0-^. En prenant, du point O, la
perspective du trièdre sur la surface d'une sphère ayant ce point pour
centre, on obtient un triangle sphérique dans lequel £2, £3

sont les côtés, et 180°-^, i8o°-^2, iSo0-^ les angles. Ces six
éléments du trièdre sont donc liés par les formules de la
Trigonométrie sphérique qui en laissent trois arbitraires. Toutefois,
nous ne supposerons pas connues ces formules qui vont résulter
d'elles-mêmes des développements dans lesquels nous allons
entrer.

Au trièdre coordonné, nous associerons toujours le trièdre
supplémentaire défini comme suit. Sur la face X2OX3, du même
côté de cette face que la troisième arête OX1? élevons la perpen-
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diculaire ÔX^ ; tirons de même les deux autres normales 0X/2,
OX^. Les trois axes OX;17 OX'2, OX;3 forment le trièdre
supplémentaire; réciproquement, comme on le démontre immédiatement

le trièdre primitif est le supplémentaire du trièdre OX^,
OX'2, OX'3. Les éléments de ce dernier sont $'2, £'3 pour les
faces, 180°-!^, i8o°-£2, i8o°-!*3 pour les-dièdres.

Nous dirons quelquefois que les deux trièdres définis comme
il vient d'être dit sont adjoints l'un de l'autre.

Ajoutons encore aux notations précédentes une remarque
évidente. L'angle XjOX^, nécessairement aigu, est le complément
de l'inclinaison de la droite OX1 sur la face X2OX3 ; c'est aussi,

pour la même raison, le complément de l'inclinaison de OX^ sur
la face X^OX^. Les angles X2OX72 et X3OX/3 ont une signification
analogue ; nous représenterons ces trois angles par go0-^, go°-i2,
9°0~h' :

§ 2. Soit maintenant un vecteur OP unissant l'origine O à un
point donné P de l'espace : ce vecteur peut être déterminé
algébriquement à l'aide du trièdre coordonné de plusieurs manières.

i° Par le point P menons trois plans parallèles aux faces du
trièdre OX1? OX2, OX3 ; les segments que ces plans détachent
sur ces axes, affectés des signes + ou — selon qu'ils sont-portés
sur les axes eux-mêmes ou sur leurs prolongements, se nomment
les composantes du vecteur OP et nous les représenterons par les
lettres xv x2, x^. Tout vecteur a ses trois composantes et

réciproquement à trois nombres x^ x'2, x3, choisis arbitrairement,
correspond toujours un vecteur et un seul, car trois plans parallèles

aux faces d'un trièdre se coupent toujours en un point
unique.

Remarquons que les trois plans parallèles aux, plans coordonnés

et ces plans eux-mêmes forment un parallélipipède dont GP

est une diagonale. Si, partant de O, on trace successivement
trois arêtes de ce parallélipipède non situées dans un même

plan, on aboutirâ àP, et les trois arêtes ainsi décrites seront en
grandeur les composantes du vecteur OP. Il existe six tracés
semblables conduisant de O à P ; nous les nommerons les
contours des composantes, < -

20 Abaissons de P trois plans perpendiculaires sur les axes
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0XA, OX25 0X3 ; les segments déterminés sur ces axés, évalués

avec la même règle des signes que plus haut, se nommeront les

projections du vecteur ÖP et nous les représenterons par />1?/?2>

p3, Il est clair que tout vecteur a trois projections déterminées;

réciproquement à trois nombres, arbitrairement choisis comme

projections, correspond toujours un vecteur et un seul.

3° En utilisant le trièdre adjoint OX^, 0X'2, 0X'3, de la même

manière que le trièdre 0X1? OX2, OX35 on voit que le vecteur OP

pourra encore être représenté par les composantes adjointes
x'^x'2,-2/3 ou les projections adjointes p!v p\, pV

En résumé le même vecteur peut être représenté par l'une

quelconque des quatre lignes du tableau suivant :

xL, x.2i xz ;

p±> p-2> p* ;

x'.L, x'2, x'z ;

P'v pl%9 P's-

Ce tableau est celui des coordonnées du vecteur ; le même

terme est souvent appliqué au point P, extrémité du vecteur qui
suffit a le définir.

§ 3. Relations entre les coordonnées. — Les explications
précédentes montrent qu'une des lignes du tableau précédent est

arbitraire; les autres en sont des fonctions déterminées/Nous
nous proposons de trouver les neuf relations qui unissent nos
douze coordonnées : ce problème n'existe pas pour le cas d'un
trièdre trirectangle, les quatre lignes étant alors identiques.

a) Relations entre les x et les pf. — Considérons le plan parallèle

à X2OX3 et passant par P. Il détache le segment xi sur la
droite OX4 ; en outre, comme il est perpendiculaire sur OX^, il
détache le segment p\ sur cette droite. L'angle X1OX/1 étant
égal à 90 — i±, et les signes des deux segments x1 et px étant les
mêmes, nous aurons p\ x± sin i „ Ainsi

p\ x% sin^, \

p'%= sin 4, S (I)

jP 3 ^3 Sini3*

b) Relations entre les x' et les p, — On les trouvera en raison-
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nant sur le trièdre adjoint comme nous venons de le faire sur le
trièdre primitif. Ainsi

p± ==: x\ sini^ \

p2 x\ sin i2, \ (II)
ps sin ig. }

Les relations (I) et-(II) nous montrent que les projections
d'un vecteur sont, à des facteurs constants près, égales aux
composantes relatives au trièdre adjoint et réciproquement.

c) Relations entre les p et les x. — Remarquons que pv qui
est la projection orthogonale de OP sur OX1? est aussi la projection

orthogonale sur cet axe d'un contour de composantes. En
transcrivant cette équivalence, nous trouvons

Pl Xt + X2 COS?3 + ^3 COSÊ2>

p2 =Z x± cos + x2 + x3 cos I (III)

pz — Xt COSÇ2 + #2 C0S?1 + X3' y

d) Relations entre lesp' et les xf. —Les trois tableaux nous donnent
les neuf relations indépendantes cherchées. Toutefois la symétrie
des trièdres adjoints permet évidemment d'écrire le tableau

p\ — x\ + x'2 cos £3 + x'3 cos£'2, \

P'2 — x\ COS £3 -f- + x's COS £'1? > (IV)

p'3 — x\ COs|'2 + X\ Cüs?'l + «3? '

système qui ne peut être qu'une conséquence des précédents.

§ 4* Trigonométrie sphêrique. —- Nous trouverons des relations
entre les coefficients en éliminant les x, xf, p, p' entre les quatre
tableaux de formules (I), (II), (HI), (IV). Pour les former d'une
manière régulière, remplaçons dans la première équation (IV)
les p' et x'- par leurs valeurs en x et p tirées de (I) et (II), il
vient

x1 sini,— — p •—~t- cos?'3 -] cos£'2 ;

sm sm i2
0 sm i3

mais en résolvant directement les équations (III), par rapport à

xt nous trouvons

&x± pt sin2Çt + p2 (cos^ cos£2 — cos£3) + p3 (cos^ cos£3 — cos£2),
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où D désigné le déterminant

D :

I COSÇ3 cos

cosÇ3 I cos^
cos£2 COS^ I

Les valeurs de ^ tirées des deux formules précédentes sont
forcément identiques et leur comparaison nous donne les
formules

sin2 h sin2£L m sin2 f2"sin2 — sin2 i3 sin2£3 D,

cosÇ3 r-cosÇj cos— sin^ sin£2 cos£'3,

et les analogues de cette dernière obtenues par la permutation
circulaire des indices. De la première ligne il résulte que le
déterminant D est constamment différent de zéro, positif, plus
petit que l'unité sauf pour le cas d'un trièdre trirectangle où il
devient égal à un. On peut donc écrire plus simplement

sinq sin^ z= sinf2 sin£2 — sini3 sin£3 ^/D, (i)
cos£3 — cos^ cos^2 — sin^ sin£2 cos£'3. (2)

On doit ajouter a ces équations celles qu'on trouve en alternant
le rôle des trièdres adjoints

sinij sin^
cosÇ'3 1= cos^t

>ints

: sinf2 sin£'2 =z sini3 sin£'3 =z YY, (i')
cosÇ'2 — sin^ sin^2 cos£3, (2')

Divisons les équations (1) par les (Y) correspondantes, on a

sin^ _ sin£2 _ sin£3
_ k /ET ^sink ~VD' ' Usin^ sin§'2 sin^'j

Les formules (2), (2') et (3) sont celles de la Trigonométrie
sphérique, sauf une légère variante due aux notations adoptées.

Arrêtons-nous un instant sur la quantité y/D5 souvent nommée
sinus du trièdre. Voici la raison de cette dénomination.

Si l'on considère un triangle de côtés à et b comprenant entre
eux l'angle C, sa surface vaut ~ ab sin G. De même, coupons le
trièdre OX1? OX2, OX3 par un plan détachant les trois segments

av a:2, az ; le tétraèdre ainsi formé a pour mesure ~aia2as y/Ü3.

En effet la base (âqa2) a pour surface — axa2 sin S3 et la hauteur
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est égale à <23 sin i3, enfin y/D — sin i3 sin 1;3 ; le volume est donc

égal au sixième du produit des arêtes par le sinus du trièdre
qu'elles forment.

Cette remarque permet de former une autre expression de ce
sinus. Supposons la quatrième face du tétraèdre menée

perpendiculairement à OX^, et cette 'face prise comme base. La

valeur du volume qui résulte de cette supposition sera ~ aia%az

sin sin £3 sin ainsi

\/D ~ sin£2 sin£3 sin^ — sinÇ3 sin^ sin£'2 — sin^ sin£2 sin?'3. (4)

A ces diverses formes de y/D, joignons celle qui résulte du

développement du déterminant

D I- I -)- 2 COS^ COS £2 COS^3 COS2^ COS2Ç2 COS2 £3, (5)

ou, décomposant le trinôme en cos^ en deux facteurs du premier
degré,

D 4. sin + h~h.sinh.+ ~ sjn .(6)

Enfin, si dans la relation (4), on substitue la valeur de sin
tirée de la proportion des sinus, nouä trouvons

D — sin^ sin£2 sin£3 j/l)',
ou

D'
1)2

et de même
sin2^ sin2ç2 sin2£3 '

D'2
D (7)

sm2 ç, ± smaç2 sm2ç 3

Ces diverses formules permettent de former sans peine le
sinus dii trièdre en fonction de trois quelconques des six élé-
ments £1, ;s, ç8, ï/, j;

§ 5. Changement de notations. Nous laisserons de côté le

trièdre supplémentaire et nous n'emploierons plus que ' le

trièdre OX4, OX2, OX3. Pour plus de clarté nous désignerons
maintenant les axes par OX, QX,= OZ, les faces, du trièdre par
!;, y1, Ç, ses dièdres par 480°-^, iSo0--//, 180°-^. Un vecteur ÖP

sera déterminé par ses composan tfeÜ y, z) ou ses projections
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(,Pi r) : on a vu plus haut que ces six quantités sont liées par
les équations

x + y cosC -Ps c°s'o p} \
* ' x cos£ -[- y -j- s cosÇ q, > (8)

x cost) -|- y cos£ -j- s r ; /

et y/D étant le sinus du trièdre des axes,

p sin2£ -J- q sinÇ sinT) cos Ç'-f- r sinÇ sin£ cost/—Da;,

p sin£ sin?) cos Ç -{- q sin2'/) -{- r sin7) sin £ cos^== Dj, (9)

p sinÇ sin £ cost)'-{- q sirnr) sinÇ cos£' +,r sin2 Ç— Ds, J

qui permettent de déterminer x, y, 5 en fonction de /?, q, r et

réciproquement. Nous verrons qu'il y a souvent avantage, au point
de vue|de la simplicité des formules, à conserver les six quantités.

§ 6. Les deux problèmes métriques fondamentaux. — Toute
question de Géométrie pouvant être ramenée à des évaluations de

longueurs ou d'angles, il importe de trouver deux formules,
servant à mesurer la première la grandeur l d'un vecteur OP(.r, ?/, jsj
p, q, r), la seconde l'inclinaison i de deux vecteurs OP (x, y, z ;

/?, q, r) et 0?\x\ y', z'. ; pf, q', r').
a) Longueur.— Soient pour un instant a, ß, y les angles que fait

le vecteur OP avec les axes coordonnés, de sorte que_p l cos a,
<7 —/cos ß, r — lcosy. Projetons un contour de composantes sur
OP, nous trouverons l comme projection, ainsi L x cos a-j- y
eos ß-J- .s cosy; et tenant compte des égalités précédentes.

Z2 — px + qy + rz. (io)

Cette formule est la plus simple ; si l'on veut exprimer len fonction

des composantes seules ou des projections seules, il suffira
d'éliminer p, y, r ou x, y, £ a l'aide des relations (8) ou (9), ce

qui donne
-1'2 — fiix,J, *), (IO')

'
(ïo")

en faisant pour abréger

fl iX> Z) ~ X2 + J2 + S2 + 2JS COS J -f- 2ZX COST) -f- 2#J COS Ç,

D/2 r) p2 sin2£ #2 sin2T) r2 sin2Ç -f- iqr sint) sin.Ç cosÇ'

-p irp sin Ç sinÇ cost)' -f- ipq sin £ sin T) cos£';

ces deux polynômes prendront le nom de première et seconde
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forme fondamentale du trièdre coordonné, Revenant un instant
au trièdre supplémentaire, j'observe que les composantes
adjointes x', y'y zf, ont les expressions suivantes en p, q^r

sin? sinri sinÇ
Xr p —Tzrr- T =z q z'~ r—— >1

\Jt> Yd \/D
ainsi on a

/a ip> r) — #'2 + j'2 -h s'2 + 3j'^' -Cos£' + 2Z'œ> cost]' + ix'y' cos£',

pour cette raison, on nomme souvent adjointes les deux formes

^Up,q,r)[1)-
_

Remarquons enfin que les équations (8) et (9) peuvent s'écrire
d'une manière très condensée

n - ±,^ÎL n — 1L iL r __
1 d/i

2 d«r ' ^ 2 dj 2 de

r_jLil r—JL-M.
2 ôp 1 èq

' " 2 dr '

Nous avons tout à l'heure considéré les angles directeurs a,ß,y;
ces angles ne sont pas indépendants. En effet remplaçons dans

(io;/) p^q^r par leurs valeurs I cos a, / cos ß, I cos y il vient

(cosa, cosß, cosy) — 1.

b) Problème des angles, — Soient OP (x, y, c ; y?, y, r) et OP'

y\ z' ; //? qj r') les deux vecteurs, £ eti' leurs longueurs, z leur
angle, a, ß, y les angles directeurs du premier. En projetant
sur OP le contour des composantes xj y'y zf, ou le vecteur OP',
on obtient deux résultats égaux : donc

/' cos i — x' cos a -f- y' cos ß -|- z' cos y ;

multiplions par le t remplaçons I cos a, Z cos ß, Z cos y par /?, y,
7*, il vient

//' cos i px' -f- qy' -f- rz\ (12)

et par symétrie
II' cos i ~ p'x -f- q'y + r'z. (12')

{*) On sait qu'on appelle ordinairement en Algèbre adjointe de la forme f\{xyy,z),
la forme D/*2 (p, q, r). — On pourrait généraliser les formules du texte en convenant
que les longueurs des trois composantes x, y, 2 sont rapportées à des unités
différentes ; la forme (x, y, z) deviendrait alors un polynôme homogène du
deuxième degré quelconque ; t:ette généralisation est importante, en particulier
dans la théorie des surfaces ; je me bornerai toutefois à la signaler.
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Les formules (12 et (12') donnent en éliminant les projections
ou les composantes

a:»,; -[-(« -g- + J-M- +,

W + r^) -T[PW+'1'^-

expressions qu'on peut aisément développer.
Ainsi pour trouver l'inclinaison i de deux droites ayant

respectivement pour angles directeurs a, ß, y et a7, ß', y' il suffira
de remplacer dans (i 2777) l et V par l'unité puis de fairep — cos a,

q — cosß, r cos y, pl cos a7, etc.
c) Deuxième solution du pi^oblème précédent. — Bien que les

formules précédentes résolvent sans ambiguïté le problème des

angles, il est indispensable d'en posséder une autre solution
donnant l'angle par son sinus : elle: va Se présenter sous une
forme très différente de la précédente.

Nommons OL et OL7 deux vecteurs auxiliaires ayant le premier
pour composantes

X qr\ — rq', Y rp' — pr\ Z pq' — qp\

et le second pour projections

P —yz — zyQ zx' — xzf, R ~xy' —yx\

Chacun de ces vecteurs est perpendiculaire sur le plan OP,
OP7; en effet on a, en vertu des conditions de perpendicularité
(formules 12 et 127), pour le premier

pX —j— qY —{— 7'Z ~ o, jP^X -j- q'\ r'Z m: o.

et pour le deuxième

«P+yQ + sRao, x,V + y'Q + z'K-o.
Ainsi les droites OL et OL' ont la même direction; en se reportant

alors à la première formule (8) on voit qu'on peut écrire
lidentité

X + Y cos Ç + Z cos Tj aP,
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où la constante a représente le rapport des longueurs i dé ces

droites.
Si l'on remplace dans X, Y, Z, les quantités pr q, etc., par

leurs valeurs en x, y, z, la comparaison des deux membres de la
dernière équation écrite, donne, par un calcul un peu long, mais

sans difficulté, a — D ou L. L/D.
Appliquons enfin aux deux droites OL, OL7 la formule (12) ; on a

± DL'2 PX + QY + RZ, (i3)

le signe étant + ou — selon que OL et OL7 sont de même sei\s
ou de sens opposé. Le second membre est d'ailleurs égal au
déterminant

px -f- qy + r2 px' -j- qy' -j- rz'

p'x + q'y + r'z p'x' + q'j'+r'z'

ou, en vertu des formules (10) et (12) à la quantité
J2//2 — /2//2 C0S2 i — /2//2 sjn2 i.

Ainsi les deux membres de (i3) sont positifs et l'on a

L ZZ' v/D sini, L' m -4L- sinZ,
VD

formules qui nous donnent les longueurs des vecteurs auxiliaires
OL et OL7 en fonction du sinus de l'angle cherché.

On vient de voir que OL et OL7 sont de même sens ; pour trouver
ce sens par rapport à celui des vecteurs OP et OP7, j'observe qu'il
ne peut pas changer tant que l'angle i reste différent de zéro ou
de 1800, autrement dit tant que les droites OP et OP7 se meuvent
sans coïncider. Si OP a pour composantes 1, o, o et OP7 pour
composantes o, 1,0, le vecteur OL7 est visiblement porté sur la

perpendiculaire au plan XOY du côté de OZ; cette règle est donc

générale et les vecteurs OL et OL7 sont portés perpendiculairement

sur le plan OP, OP7 du même côté de ce plan que l'axe OZ

par rapport au plan XOY.
Une conséquence importante se déduit de la comparaison de

nos deux solutions du problème des angles.
En vertu de la formule (1277), on a

mOOSH[JL^ g. + y |A +,
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et de même en vertu de la formule (10") appliquée au vecteur P,
Q, R,

Pl'i sin2i — D f2(yz'— zy'— xy' —.
D'autre part P f.v (x,y, z)et P f y', ainsi en

additionnant les deux résultats précédents, on a l'identité importante

fi y,z) fi (*'> y''z')

+ irz' — ~r'>zx' — xz'> xï —yx') • (i4)

qui peut facilement s'étendre à une forme ternaire quelconque
et à son adjointe.

§ j. Signification métrique de Véquation du plan. — Nous
terminons cette leçon en cherchant l'équation générale d'un plan.

Soit P celui-ci,/? sa distance à l'origine, R le pied de la
perpendiculaire '.abaissée sur lui de l'origine; a, ô-, c les projections d'un
vecteur normal au plan, enfin #, y, £ les composantes d'un point
A quelconque de l'espace (on dit le plus souvent, d'une manière
absolue, les coordonnées de ce point). La distance de A à P est
égale a la projection de OA sur OR diminuée de p : ainsi, par la
formule (12)

ax -f- by 4- czit distance zu —-—-— p.
f2 (a, b, c) r

Si le point A est dans le plan, cette distance est nulle, donc

ax + by -j- cz — pf2 (a, b, c) zz o

sera l'équation'"du plan ; elle affecte la forme générale du premier
degré

ax + ßj + lz + § °-

Réciproquement toute équation de cette forme sera celle d'un
plan perpendiculaire au vecteur dont les trois projections sont a,
ß, y, à la distance de l'origine, comptée suivant le vecteur

(a, ß, y), si S est négatif et suivant sonprolongement si S est

positif.
On sait que cette même équation peut être trouvée par des

considérations de géométrie projective, le sens des constantes a,
ß, y, S est alors moins simple.

C. Cailler (Genève).
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