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LES IDÉES DE HERTZ SUR LA MÉCANIQUE 253

notion, auxiliaire, simplement définie par une expression analytique.

Telle est la conception de Hertz.
L'hypothèse qui en est la base suffit-elle a supprimer la difficulté

rencontrée jusqu'ici dans la définition de la force On en

jugera plus loin d'ap.rès l'exposé que nous ferons de la manière
dont Hertz introduit cette définition.

PREMIÈRE PARTIE

GÉOMÉTRIE ET CINÉMATIQUE DES SYSTEMES MATÉRIELS

Liaisons. — Hertz soumet les liaisonsyà la restriction de pouvoir

être représentées par des systèmes d'équations linéaires aux
différentielles totales de la forme

Al 4- A2 + + An oqn — O,

où (]±, q2, qn sont les paramètres déterminant la position du

système, et les coefficients A1? A2, An, des fonctions continues
de ces paramètres.

On peut dire, d'une manière équivalente, que la somme de deux

déplacements infinitésimaux possibles Sq et %q à partir d'une
même position est un déplacement infinitésimal possible à partir

de cette même position (possibilité de superposer les déplacements

infinitésimaux compatibles avec les liaisons).
Hertz rattache la forme linéaire des équations de condition à une

propriété des liaisons, qu'il désigne sous le nom de continuité dans

Vinfinitésimal et qui consiste dans le fait que tout déplacement
infinitésimal possible peut être obtenupar wie trajectoire rectiligne.

Il résulte d'abord de la continuité des liaisons, entendue au sens
ordinafre de ce mot, qu'on peut opérer successivement deux
déplacements infinitésimaux8^(8^, S^2, ùqn) eto'q (S'qv 8'^,.8'<^)
supposés possibles à partir de la position q (qi9 q^ qjj,
car il existe, à partir de la position q + Sq, un déplacement
possible ne différant de S'q que par des infiniment petits d'ordre
supérieur. On peut donc, par ce trajet, faire passer le système
de la position q à la position q -f- $q + 8'q.

Ênseigncmenl math. 17
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La condition de Hertz exprime qu'on peut "passer "en outre de

la position q à la position q -f- bq -f- S'q par un trajet rectiligne,
ou plutôt, le mot rectiligne n'ayant pas de sens dans l'infinitésimal,

que les positions q et q -|- ùq -f- ù'q appartiennent à une
même trajectoire possible, ayant des éléments différentiels du

premier et du deuxième ordre continus en cette position.
Nous préférerions l'énoncé suivant, qui nous paraît caractériser

les liaisons s'exprimant par des équations linéaires homogènes

par rapport aux différentielles des paramètres et qui exprime
un fait concret.

Toute trajectoire tracée parmi les positions obtenues par tous
les déplacements infinitésimaux possibles à partir Tune position
quelconque est une trajectoire possible.

Mouvement d'un point matériel. — Un point assujetti à rester
sur une surface fixe et soustrait à toute autre influence, parcourt
une géodésique de la surface avec une vitesse constante.

Ce cas est compris dans celui où les coordonnées x, y, z du

point sont soumises à une équation différentielle linéaire

Adx Cdz±z o,

intégrable ou non.
La loi du mouvement est toujours représentée, eri coordonnées

rectangulaires, par la formule

d2x s d*y d2z ^~dë*x +-dW-^+iw0Z 0>

S#, S z/, Sz représentant les variations des coordonnées^, z/,~ z du

point dans un déplacement virtuel quelconque compatible avec
les liaisons.

Cette formule exprime que la direction de l'accélération est,

pour toute positions rectangulaire avec tous les déplaçefneiits
virtuels.

Comme d'ailleurs l'accélération est toujours contenue dans le

plan osculateur de la trajectoire, celle-ci se trouve' déterminée

par la condition que son plan osculateur Contienne, eh chaque
pointy la normale à l'élément superficiel déterminé pâr,tous; les

déplacements virtuels relu tifs,à ce „point, '
; f ;.v' '*
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Les trajectoires ainsi déterminées, très analogues aux géodési-

qo.es d'une surface, jouissent comme celles-ci de la propriété
d'avoir, en chacun de leurs points, une courbure moindre que les

trajectoires qui leur sont tangentes en ce point.
Nous les appellerons, pour cette raison, trajectoires de moindre

courbure traduisant ainsi l'expression de Hertz '.geradeste Bahnen.
Hertz réserve le nom de gèodésique aux trajectoires déterminées

par la condition que la longueur entre deux de leurs points
présente une variation nulle, quand on passe à une trajectoire
infiniment voisine réunissant ces deux mêmes points.

Toute ligne de moindre courbure est évidemment une géodé-
sique ; mais la réciproque n'est vraie que dans le cas où l'équation

de condition est intégrable.
Car, dans le cas contraire, il passe par un point quelconque de

l'espace oo
1 lignes de moindre courbure, et oo2 géodésiques,

puisque deux points quelconques de l'espace déterminent au
moins une géodésique.

La loi du mouvement d'un point soumis à une condition de

l'espèce considérée peut donc s'exprimer en disant que le point
décrit une ligne de moindre courbure avec une vitesse constante.

Systèmes matériels à liaison. — Hertz les aborde directement.
Nous avons pensé qu'en rappelant les propriétés du mouvement
du point, nous simplifierions l'exposé de ce qui va suivre.

Nous désignerons par x, y, s les coordonnées d'un point
quelconque du système, par m sa masse, par ds la longueur d'un
élément de sa trajectoire.

Une trajectoire du système est l'ensemble des positions occupées

par le système dans un mouvement continu.
La longueur S d'une trajectoire est définie par la formule

MdS* S m{dx* + df -f dz*) S mds\
où l'on pose

MriS/n.

La vitesse V du système est définie par la formule

v 4~ \/JL,dt y M

T représentant la force vive.
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En indiquant par des accents la dérivation par rapport à S,
on a, dans le cas où la force vive est constante,

Ä /'V., 5- ="V..

De la formule fondamentale, qui exprime la loi du mouvement,

/ dïx ^ d2y s d2z ^ \m ydW0XdW~dW °J ~°'

on déduira donc

2 m [x" Sx + y" oy -f- z" os) o,

Sx, 8y, Sz représentant un déplacement virtuel quelconque du

système.
Cette dernière formule va nous permettre de déterminer les

éléments différentiels du second ordre de la trajectoire en fonction

de ses éléments différentiels du premier ordre.
Nous avons admis que les équations de condition étaient de la

forme
2 [kxr + By' -\-Cz') — o.

En dérivant les premiers membres par rapport a S, on obtient
des équations égalant des expressions telles que I>(Ax'f

Cz") à des fonctions des coordonnées x, y, z et de leurs
éléments différentiels du premier ordre, x1, y\ z', de sorte que, si

nous considérons les trajectoires donnant lieu aux mêmes valeurs
x', y', z' pour les dérivées premières relatives a chacun des

points du système, l'on aura, pour les dérivées secondes, des

équations de condition de la forme

2 {A.ùx" + B8y" + C8z") o,

c'est-à-dire que les variations Sxf;, Sy'r, Sz" seront soumises aux
mêmes conditions que les variations 8.r, 8y, 8z.

La loi du mouvement pourra donc être exprimée par la
formule

' 2 m (x" Sx" +y" Sy" + z" Sz") — o



LES IDÉES DE HERTZ SUR LA MÉCANIQUE ''2$7

OU

asm(/2+y,2+-"2) o.

Hertz appelle courbure d'une trajectoire la quantité c définie

par la formule

Me2 2- m {x"2 + y"2 -f s"2).

En outre, deux trajectoires passant par une même position y
sont dites tangentes, lorsque, pour chacun des points du
système, les dérivées xj y', z! ont respectivement les mêmes valeurs
dans les deux trajectoires, c'est-à-dire que, dans deux trajectoires
tangentes, tout point matériel du système décrit deux trajectoires

tangentes, et le rapport des vitesses est le même pour
tous les points du système.

Moyennant ces définitions, la loi du mouvement peut être

exprimée en disant qu'un système à liaison, soustrait à toute
autre influence, parcourt avec une vitesse constante une trajectoire

de moindre courbure, en appelant, comme dans le cas du

point, trajectoire de moindre courbure une trajectoire qui
présente, en chacune des positions qui la composent, une courbure
moindre que toutes les trajectoires possibles qui lui sont
tangentes en cette position.

Hertz, voulant faire un exposé didactique de la Mécanique
sans employer les principes ordinaires, pose cette loi comme un
principe expérimental en tête de la deuxième partie de son livre.

Nous avons préféré déduire tout d'abord ladite loi des principes

de d'Alembert et des travaux virtuels et montrer qu!on est
ainsi conduit naturellement à la terminologie de Hertz, terminologie

que nous allons maintenant brièvement compléter.
Comme dans le cas du point, on distingue les géodèsiques des

trajectoires de moindre courbure, ces deux espèces de trajectoires
se confondant, lorsque les équations de condition sont inté-
grables, c'est-à-dire lorsqu'il est possible de déterminer la position

du système au moyen d'un certain nombre de paramètres
indépendants.

Les trajectoires rectilignes sont celles dont la courbure est
nulle, c'est-à-dire pour lesquelles on a
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ou encore dans lesquelles les divers points du système décrivent
des lignes droites^ les espaces parcourus dans le même temps
par tous les points étant proportionnels.

Deux positions déterminent une trajectoire rectiligne, en
admettant bien entendu que les points matériels composant le
système ne soient soumis à aucune liaison.

La distance de deux positions est la longueur de la trajectoire
rectiligne réunissant les deux positions.

Cette distance R est donnée par la formule

MR2 — 2 m [{x2 — xj2 + (y2 — Jd2 + {z2 — z±f] 2 mr\

L'angle tu de deux trajectoires rectilignes est défini par la
formule suivante

y/2 mr2 V^2 mr'2 cos to — 2 mrr' cos 6

OU

MRR' cos to — 2 mrr' cos 0.

On vérifiera que la courbure d'une trajectoire est égale au

rapport de l'angle de deux éléments infiniment voisins à la
longueur de l'arc correspondant.

On définit le parallélisme de deux trajectoires rectilignes par
la condition que leur angle soit nul.

En d'autres termes, les droites décrites par un même point
matériel dans les deux trajectoires sont parallèles.

On parvient ainsi à la notion de direction.
Deux directions sont rectangulaires quand leur angle est égal
TZ

a —
2

La condition s'exprime, en désignant par a, ß, y et a/, ß', y' les
cosinus directeurs des déplacements du point de masse m dans

les deux trajectoires rectilignes, par la formule

2/rc(aa'+ ßß' + TT') °-

Par une position quelconque passent oo3n_2, trajectoires
rectilignes rectangulaires avec une direction donnée.

La notion de quantité vectorielle comprend les notions de

direction et de longueur, c'est-à-dire s'applique à un ensemble
de vecteurs affectés chacun à un des points du système.

Si Uj v, w sont les composantes, suivant les axes de coordon-
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nées, du vecteur affecté à un point de masse m appartenant au

système, la grandeur R de la quantité vectorielle est donnée par
la formule

MR2 ='2 m "(tt8 + P* + w2).

L'ensemble des vecteurs quLreprésentent les vitesses des différents

points du système est une quantité vectorielle, dont la

grandeur Y est donnée, d'après la formule précédente, par

•MY2 =2 wpy].
et coïncide avec la valeur déjà donnée de la vitesse.

Cette quantité vectorielle prend elle-même le nom de vitesse.

On définira de même, sous le nom d'accélérationr une quantité

vectorielle constituée par l'ensemble des vecteurs représentant

les accélérations des divers points.
La grandeur f de l'accélération sera donnée par la formule

M/*2 2 m

On appelle composante d'une quantité vectorielle suivant une
direction donnée une quantité vectorielle ayant la direction donnée

et ayant pour grandeur la projection rectangulaire sur cette
direction de la quantité vectorielle, c'est-à-dire la grandeur de cette
dernière multipliée par le cosinus de l'angle des deux directions.

En décomposant l'accélération de chacun des points du
système suivant la tangente à la trajectoire de ce point, on obtient
par cela même la décomposition de l'accélération du système en
une composante tangentielle f et une composante normale fn.

On reconnaît facilement que l'on a

dx dix_„ m ~dC~dFdV d*STt— i MY — dt dt3

fn* f*~ f'- ~W.ou fn CV*,

en tenant compte des relations

+ A2l-r"Y-2I r-
dH

"y2 1
dV

dt'2 ~x * -r* -dt > dp ~r * +r HF> v +3 W
2, m (x'2 -f-y'2 4- z'2) M, 2 m [x'x" -f-y'y" + z' z") — o.
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La direction de la quantité vectorielle caractérisée par
l'ensemble des vecteurs x"., y", z" peut être assimilée à la direction
de la normale principale d'une courbe.

La composante normale de l'accélération est dirigée suivant
cette normale principale.

Il est facile dé voir que, dans le cas où il n'existe pas d'autres
forces que celles dues aux liaisons, la loi du mouvement peut
être exprimée ainsi ^

Dans toute position du système, la direction de Vaccélération
est rectangulaire avec tous les déplacements virtuels relatifs à

cette position.
On peut encore dire :

Le mouvement naturel, dans le cas où il n'existe pas dlautres

forces que celles dues aux liaisons, est celui qui rend minimum la
grandeur de Vaccélération.

Il est entendu que les données du mouvement sont la position
du système, la direction et la grandeur de la vitesse.

L'une quelconque des propositions ci-dessus suffit à déterminer

les éléments différentiels du second ordre des coordonnées

en fonction de ces coordonnées et de leurs éléments différentiels
du premier ordre, et par suite permet la mise en équation du

problème du mouvement.
Supposons maintenant que la position du système soit

déterminée au moyen d'un certain nombre de paramètres ou coordonnées

qvq29 qr.
A partir d'une position du système, faisons varier une

coordonnée q en laissant les autres constantes. La direction de la
trajectoire ainsi obtenue sera appelée la direction de la coordon-
née q pour la position considérée.

Pour une position du système, la vitesse est complètement
déterminée en grandeur et en direction par ses composantes
suivant les directions des coordonnées, de même que la vitesse
d'un point assujetti à se mouvoir sur une surface fixe est déterminée

par ses composantes suivant les tangentes aux courbes de
coordonnées curvilignes choisies sur la surface.

Il n'en est pas de même de l'accélération, lorsque le nombre
des coordonnées q est inférieur à 3/?, n étant le nombre des points
matériels. ' " '



LES IDÉES DE HERTZ SUR LA MÉCANIQUE 261

Si l'on désigne par T l'expression de la force vive en fonction
des coordonnées q et de leurs dérivées qf par rapport au temps

on trouve, en appliquant les définitions données, que la composante

^ suivant la coordonnée q de l'accélération f est donnée

par la formule

Mf*-Z dt bq' àq '

7 V|1
où le terme est dû à la composante tangentielle de

l'accélération et le terme - à sa composante normale.

La condition que l'accélération doit être rectangulaire avec

tous les déplacements virtuels du système s'écrira

s fg Sq o,

oùles Sq représentent un déplacement virtuel, quelconque.
Si les S q sont arbitraires, la condition s'écrira

f< 0ou -jtw~0(requations)-

Si les S q sont soumis à des équations de condition de la forme

I, aoq o, 2 hùq 0

on devra avoir
fq — "f" V b -|-

ou

— -^-—7 — la -f- Vb -f- (r équations).dt dq àq

La terminologie de Hertz s'applique non moins heureusement
au cas où le système est soumis à des forces.

Ces forces déterminent une quantité vectorielle qui représentera,
par définition, la force appliquée au système matériel.

En désignant par J la quantité vectorielle à laquelle a été donné
le nom d'accélération, l'équation générale de la dynamique
exprime que la quantité vectorielle MJ—F est rectangulaire avec
tous les déplacements virtuels, le signe—- indiquant une opération
sur les quantités vectorielles, dont la signification est évidente.

Cette quantité vectorielle peut être appelée la contrainte (der
Zwang de Gauss), et l'on voit que le mouvement est déterminé
par la condition que la grandeur de la contrainte soit minimum,
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les mouvements comparés présentant,' pour la position considérée,

la même vitesse ën grandeur et en direction.
On voit que lés propositions générales de la mécanique des

systèmes à liaisons prennent, moyennant la terminologie de Hertz,
une forme particulièrement simple.

Il est juste d'observer qu'une terminologie analogue, peut-être
un peu moins heureuse, avait déjà été exposée par Julius Kœnig(1).

DEUXIÈME PARTIE
MÉCANIQUE DES SYSTEMES MATERIELS

Dans cette partie de son ouvrage, Hertz s'est proposé d'édifier

la Mécanique rationnelle, moyennant son hypothèse et sa

terminologie, suivant une ordonnance parfaitement logique.
En fait il ne s'agit pas d'autre chose que de supprimer la force

en tant que notion primordiale.
Les notions d'espace, de temps et de masse étant supposées

acquises, les liaisons entre les masses étant supposées indépendantes

du temps et soumises aux restrictions déjà indiquées,
Hertz appelle libre «ua- système matériel dont les liaisons sont
internes, c'est-à-dire n'intéressent que les positions relatives des

points du système, ou; "plus nettement, permettent tout déplacement

sans déformation du système.
Hertz pose à priori, comme loi fondamentale de la Mécanique,

la loi du mouvement des systèmes libres, savoir :

Tout système libre décrit une trajectoire de moindre courbure
avec une vitesse constante.

Par hypothèse, tout système non libre fait partie d'un système
libre, et son mouvement peut par conséquent, au moins
théoriquement, être déterminé au moyen de la loi fondamentale.

Telle est l'économie générale de l'édifice logique construit par
Hertz.

Sa terminologie lui a permis d'exprimer sous forme de loi
unique les propriétés du mouvemeilt des systèmes libres.

(^ Julius IÇœnig, Interpretation der fundamental Gleichungen der Dynamik.
rMath. Annalen, 1888, t. XXXI:
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