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LES IDEES DE HERTZ SUR L4 ME"CANIQ UE 253

notion auxiliaire, s1mp1ement deﬁme par une expressmn analy-
tique. . |
Telle est la conceptmn de Hertz.

L’hypothése qui en est la base suffit-elle & supprlmer la diffi-
culté rencontrée jusqu'ici dans la définition de la force? On en
jugera plus loin d’apres ’exposé que nous ferons de la maniere -
dont Hertz introduit cette définition.

PREMIERE PARTIE

GEOMETRIE ET CINEMATIQUE DES SYSTEMES MATERIELS

Liaisons. — Hertz soumet les liaisons a la restriction de pou-
volr étre représentées par des systemes d’équations linéaires aux
différentielles totales de la forme

ol ¢, ¢y +..» ¢, sontles parametres déterminant la position du
systeme, et les coeflicients A, A,, ..., A,, des fonctions continues
de ces paramétres. o |

On peut dire, d'une maniere équivalente, que la somme de deux
déplacements lnﬁmte51maux possibles 3¢ et &g a partir d'une
méme position est un déplacement infinitésimal possible a par-
tir de cette méme position (possibilité de superposer les déplace-
ments infinitésimaux compatibles avec les liaisons). ,

Hertz rattache la forme linéaire des équations de condition a une
propriété des liaisons, qu'il désigne sous le nom de continuité dans
Vinfinitésimal et qui consiste dans le fait que tout déplacement
infinitésimal possible peut étre oblenu par une trajectoire rectiligne.

I1 résulte d’abord de la continuité des liaisons, entendue au sens
ordinaire de ce mot, qu’'on peut opérer successivement deux dépla-
cements infinitésimaux 8¢ (3¢,, d¢,, ..., 8¢,) eto'q (3'¢,, &g,, ..., 8'q,)
supposés possibles a partir de la position ¢ (g¢,, ¢,, ..., ¢,),
car il existe, a partir de la position ¢ -+ 8¢, un déplacement pos-
sible ne différant de &g que par des infiniment petits d’ordre
supérieur. On peut donc, par ce trajet, faire passer le systeme
de la position ¢ a la position ¢ - 89 —+ d'q.

Enseignement math 17
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La condition de Hertz exprlme qu’on peut passer en outre de -
la position ¢ a la position ¢ + 8¢ 4 ¢ par un trajet rectiligne, -
ou plutét, le mot rectiligne n’ayant pas'de sens dans 'infinitési-
mal, que les positions ¢ et ¢ - 6¢ - &g appartiennent a une
méme trajectoire possible,. ayant des éléments différentiels du
premier et du deuxieme ordre continus en cette position. .

Nous préférerions 1'énoncé suivant, qui nous parait caractériser >
les liaisons s’exprimant par des équations linéaires homogenes
par rapport aux différentielles des paramétres et qui exprime
un fait concret.

Toute trajectoire tracée parmi les positions obtenues par tous
les déplacements infinitésimaux possibles partir d'une position
quelconqgue est une trajectoire ]}ossiblg.

Mouvement d’un point matériel. — Un point assujetti a rester
sur une surface fixe et soustrait a toute autre influence, parcourt

Ce cas est COIIIpI‘lS dans celui ot les coordonnees z, y, = du
point somt soumises a une équation différentielle linéaire. -

Adx + Bdy 4 Cdz =

mtegrable ounon.
La loi du mouvement est toujours représentée, en coordonnees

rectangulaires, par la- formule

d?x n
e T g dt" -3y dt2 0% =0,

3z, 3y, 8z représentant les variations des coordonnées z, y, z du
point dans un déplacement virtuel quelconque compatlble avec
les liaisons. :

‘Cette formule exprime que la direction de l’accélération est:
pour toute posmon, rectangulalre avec tous les deplacemeﬂts
v1rtuels C ‘ “

‘Comme dailleurs Iaccélération est toujours contenue dans le
~plan osculateur de la. traject01re, celle-ci se trouve: determmee ‘
par la eondition que son plan osculateur: contienne, en chaque ~
pomt, la. normale a lelement superﬁmel det@rmlne par tous les ;
deplacements virtuels rel‘a’ufs ace pomt gl nel E

1 \ . ‘
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Les trajectoires ainsi déterminées, trés analogues aux géodési-
ques d’une surface, jouissent comme celles-ci de la propriété
d’avoir, en chacun de leurs points, une courbure moindre que les
trajectoires qui leur sont tangentes en ce point.

Nous les appellerons, pour cette raison,'ktrajectoires de moindre
courbure,traduisantainsil’expression de Hertz : geradeste Bahnen.

Hertz réserve le nom de géodésique aux trajectoires détermi-
nées par la condition que la longueur entre deux de leurs points
présente une variation nulle, quand on passe a une trajectoire
infiniment voisine réunissant ces deux mémes points.

Toute ligne de moindre courbure est évidemment une géodé-
sique ; mais la réciproque n’est vraie que dansle cas ol 1’équa-
tion de condition est intégrable.

Car, dans le cas contraire, il passe par un point quelconque de
’'espace oo ! lignes de moindre courbure, et oo ? géodésiques,
puisque deux points quelconques de 1'espace déterminent au
moins une géodésique.

La loi du mouvement d’un point soumis & une condition de
espéce considérée peut done s’exprimer en disant que le point
décrit une ligne de moindre courbure avec une vitesse constante.

Systemes matériels & liaison., — Hertz les aborde directement.
Nous avons pensé qu’en rappelant les propriétés du mouvement
du point, nous simplifierions ’exposé de ce qui va suivre.

Nous désignerons par x, y, s les coordonnées d’un point quel-

conque du systéme, par m sa masse par ds la longueur d’un
élément de sa trajectoire.

Une trajectoire du systeme est l’ensemble des positions occu-
pées par le systeme dans un mouvement continu.
La longueur S d’une trajectoire est définie par la formule

| MdS? = X m(dx® + dy® + dz2) = = mds?,
ol 'on pose ,
M==32m.

La pitesse V du systeme est définie par la formule

T représentant la force vive.
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- En indiquant p'ar des accents la dérivation par rapport a S,
on a, dans le cas ol la force vive est constante,

dx , dy , ds e
a Y . =YV =V
d>x X732 rdv 173 d? X2 d’z 1"\s
—E}é—:xvz,—]—x —Zl_i—:x Ve, —d_t:)';:y V2, 57 — z"V2.

- De la formule fondamentale, qui exprime la loi du mouve-
ment, ‘

- [ d%x d%y d?z
p —_— ~) —
3} m( S X -+ —3 Sy T ov) = o,

on déduira donec
= m (z"cx + y"dy + 2"8z) — o,

ox, Gy, 6z représentant un déplacement virtuel quelconque du
systeme. |

Cette derniére formule va nous permettre de déterminer les
éléments différentiels du second ordre de la trajectoire en fonc-
tion de ses éléments différentiels du premier ordre.

Nous avons admis que les équations de condition étaient de la

forme _
S (A’ 4-By' 4 Cz') = o.

En dérivant les premiers membres par rapport a S, on obtient
des équations égalant des expressions telles que Z(Ax" —+ By"
~+ CZ") a des fonctions des coordonnées z, y, z et de leurs élé-
ments différentiels du premier ordre, 2/, 3, 7/, de sorte que, si
nous considérons les trajectoires donnant lieu aux mémes valeurs
2’y y', 7/ pour les dérivées premiéres relatives a chacun des
points du systéme, ’on aura, pour les dérivées secondes, des
équations de condition de la forme

S (Adx” 4+ Bdy” 4 C8z") = o,

c’est-a-dire que les variations dz”, 0y”, 0z” seront soumises aux
mémes conditions que les variations ¢z, 0y, 0z.
La loi du mouvement pourra. denc étre exprimée par la for-

mule

Em (x"8x" 45" 8y" 7" 83") =o
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ou

’n( 22 _+_ynz_+_ ln)__.o.

Hertz appelle courbure d’une trajectoire la quantité ¢ définie
par la formule

Mc2=2Xm ("4 y"* + 3"%).

En outre, deux: traJectmres passant par une méme posmon y
sont dites fangentes, lorsque pour chacun des points du sys-
teme, les derwees 2y y', 5/ ont respectivement les mémes valeurs
dans les deux trajectoires, c’est-a-dire queA, dans deux trajectoires
tangentes, tout point matériel du systeme décrit deux trajec-
toires fangentes, et le rapport des vitesses est le méme pour
“tous les points du systeme. '

Moyennant ces définitions, la loi du mouvement peut é&tre
exprimée en disant qu'un systéme a liaison, soustrait a toute
autre influence, parcourt avec une vitesse constante une trajec-
toire de moindre courbure, en appelant, comme dans le cas du
pom’r trajectoire de momdre courbure une trajectoire qui pré-
sente, en chacune des positions qui la composent, une courbure
moindre que toutes les trajectoires possibles qui lui sont tan-
gentes en cette position. . |

Hertz, voulant faire un exposé didactique de la Mécanique
sans employer les principes ordinaires, pose cette loi comme un
principe expérimental en téte de la deuxieme partie de son livre.

Nous avons préféré déduire tout d’abord ladite loi des prin-
cipes-de d’Alembert et des travaux virtuels et montrer qulon est
ainsi conduit naturellement a la terminologie de Hertz, termino-
logie que nous allons maintenant brievement compléter.

Comme dans le cas du pomt on distingue les géodésiques des
trajectoires de moindre courbure, ces deux especes de trajectoires
se confondant, lorsque les équations de condition sont inté-
grables, c’est-a-dire lorsqu’il est possible de déterminer la posi-
tion du systéme au moyen d'un certain nombre de parametres
indépendants,

Les trajectoires rectilignes sont celles dont la courbure est
nulle, c¢’est-a-dire pour lesquelles on a
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ou encore dans lesquelles les divers points du systeme décrivent
des lignes droites, les espaces parcourus dans le méme temps
par tous les points étant proportionnels.

Deux positions déterminent uné trajectoire rectiligne, en
admettant bien entendu que les points matériels composant le
systéme ne soient soumis a aucune liaison.

La distance de deux positions est la longueur de la trajectoire
rectiligne réunissant les deux positions.

Cette distance R est donnée par la formule

MR2= % m [(2y— 2,) + (53— 7)* + (5 — 5,)2] = Zmr.

L’angle v de deux trajectoires rectlhgnes est deﬁnl par la for-
mule suivante

VS mr VI mr? cos w= % mrr' cos 8
ou ) ‘
MRR' cos w = X mrr' cosf.

On vérifiera que la courbure d’une trajectoire est égale au
rapport de 'angle de deux éléments infiniment voisins
gueur de 'arc correspondant.

On définit le parallélisme de deux trajectoires rectilignes par
la condition que leur angle soit nul.

[

la lon-

En d’autres termes, les droites décrites par un méme point
matériel dans les deux trajectoires sont paralleles.
On parvient ainsi a la notion de direction.

Deux directions sont rectangulaires quand leur angle est egal
Y w
qa —- :
2 =
La condition s’exprime, en désignant par a, 3, v et o/, ', v les
cosinus directeurs des déplacements du point de masse m dans

les deux trajectoires rectilignes, par la formule

Zm (o' + PP+ vy) =

Par une position quelconque passent «o®” ~?, trajectoires recti-
lignes rectangulaires avec une direction donnée.

La notion de quantité vectorielle comprend les notions de
direction et de longueur, c’est-a-dire s’applique a un ensemble
de vecteurs affectés chacun i un des points du systéeme.

Si u, v, w sont les composantes, suivant les axes de coordon-
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. nées, du vectéur affecté a un p'oinf de masse m appar’ten‘mf au
~systeme, la grandeur R dela quantlte vectorlelle est donnée p‘lI‘

la formule

MR2 =%m (w242} w’zj

L’ensemble des vecteurs qui. representent les V1tesses des dlﬂ'e-
rents pomts du - -systeme est une quantité vectorielle, dont la
grandeur V est donnée, d’apres la formule precedente par

. dx dy dz
\IVZl__Em[<dt) + <—d—t—> ,+<dt) ],

et coincide avec la valeur déja donnée de la- v1tesse |
Cette quantité vectorielle prend elle-méme le nom de vztesse
On définira de méme, sous le nom d’accélération, une quan-

tité vectorielle constituée par I’ensemble des vecteurs représen-
tant les accélérations des divers points.
‘La grandeur [ de I'accélération sera donnée par la formule

A2z \ 2 d2y \ 2 d2z \ 2
L)+ @)+ (=) ]

On appelle composante d’une quantité vectorielle suivant une

[\

direction donnée une quantité vectorielle ayant la direction don-
née et ayant pour grandeur la projection rectangulaire sur cette
direction de la quantité vectorielle, ¢’est-a-dire la grandeur de cette
derniére multipliée par le cosinus de 'angle des deux directions.
- En décomposant l’accélération de chacun des points du sys-
téme suivant la tangente a la trajectoire de ce point, on obtient
par cela méme la décomposition de I'accélération du systéme en
une composanie tangentielle f; et une composante normale f,.
On reconnait facilement que 'on a

- dx d2x A
f_y_ dt de_ 4V _ &S
E= MY — Tdt T de

fRE=r— )"-—c"V2 (')uf—*(:V‘2

en tenant compte des relations

d’x e AU J d\r d.') u V: V ‘ d;zz : | d\[
.dt2’—‘?v+“7§'>‘dt9—‘ ity prER -d—tg-:z”V2—|—z’:———

dt’
E\'m (xliz +_’)’I2+5’2) : , Hl7l( l ”'l"y, u+ ! u): 7
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La direction de la quantité vectorielle caractérisée par l'en-
semble des vecteurs 2", 3", z” peut étre assimilée a la direction
de la normale principale d’une courbe.

La composante normale de I'accélération est dirigée suivant
cette normale principale. |

11 est facile de voir que, dans le cas ol il n’existe pas d’autres
forces que celles dues aux liaisons, la loi du mouvement peut
étre exprimée a1n51 ‘

Dans toute posmon du systeme, la direction de Paccélération

est rectangulaire avec tous les déplacements pirtuels relatzﬁs a
cette position.

On peut encore dire :

Le mouvement naturel, dans le cas ot il n’existe pas d autres
' [orces que celles dues aux liaisons, est celui qui rend minimum la
grandeur de Uaccélération. :

I1 est entendu que les données du mouvement sont la position
du systeme, la .direction et la grandeur de la vitesse.

L’une quelconque des propositions ci-dessus suffit & détermi-
ner les éléments différentiels du second ordre des coordonnées
en fonction de ces coordonnées et de leurs éléments différentiels
du premier ordre, et par suite permet la mise en équation du
probléme du mouvement,

Supposons maintenant que la position du systeme soit déter-
minée au moyen d’un certain nombre de parameétres ou coordon-
NEéeS G,y -evy Gy

A partir d’une position du systéeme, faisons varier une coor-
donnée - g en laissant les autres constantes. La direction de la
trajectoire ainsi obtenue sera appelée la direction de la coordon-
née g pour la position considérée, '

Pour une position du systeme, la vitesse est completement
déterminée en- grandeur et en direction par ses composantes
suivant les directions des coordonnées, de méme que la vitesse
d’un point assujetti a se mouvoir sur une surface fixe est déter-
minée par ses composantes suivant les tangentes aux courbes de
coordonnées curvilignes choisies sur la 'surface.

Iln’en est pas de méme de l'accélération, lorsque le nombre

des coordonnees g est inférieur a 3n, n étant le nombre des pomts
materlels. LY
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S1i l'on de31gne par T ¢ expression de la’ force vive en fonction
des coordonnées g et-de leurs dérivées ¢’  par rapport au temps
on trouve, en appliquant les définitions données, que la compo-
sante f;smvant la coordonnée ¢ de lacceleratlon [ est donnée
par la formule

: d oT oT
M= 3¢ ~ 3
\ d AT . .., | y : :
ou le terme — — 3—,— est dd 4 la composante tangentielle de l'ac-

7 z 8 T “ .
célération et le terme 3, A sa composante normale.

La condition que Vaccélération doit étre rectangulaire avec
tous les déplacements virtuels du systeme s’écrira

S f; 8¢ = o,
| ou les 87 r‘eprése'ntent un déplacement virtuel. quelconque. .
Si les 3¢ sont arbitraires, la condition s’écrira

h d dr  .3T

fy =0 ou 3¢  9q

— o (r équations).

Si les 59 sont soumis a des équations de condition de la forme

S adg =0, 2b0g=0.....,4
on devra avoir
fq = Aa —!—}\, b+4.....
ou
d oT. oT , o
TS g ha-Ab—4..... (r equgtlox?s).

La terminologie de Hertz s’applique non moins heureusement
au cas ol le systeme est soumis a des forces. |
Ces forces déterminent une quantité vectorielle qui représentera,
par définition, la force appliquée au systeme matériel.

En demgnant par J la quantité vectorielle a laquelle a été donné
le nom d’accélération, I’équation générale -de la dynamique ex-
prime que la quantité vectorielle M — F est rectangulaire avec
tous les déplacements virtuels,le signe — indiquant une opération
sur les quantités vectorielles, dont la signification est évidente.
Cette quantité vectorielle peut étre appelée la contrainte (der
Zwang de Gauss), et I'on voit que le mouvement est déterminé
par la condition que la grandeur de la contrainte soit minimum,
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" .les mouvements comparés présentant, pour la position considé- §
‘rée, la méme vitesse en grandeur et en direction. '
-On voit que-lés propositions générales de la mécanique des

systemes a liaisons prennent, moyennant la termmologle de Hertz,

une forme partlcuherement simple.
I est Juste d’observer qu’une terminologie analogue, peut-étre
un peu moins heureuse, avait déja été exposée par Julius Keenig(*).

- DEUXIEME PARTIE

MECANIQUE DES SYSTEMES MATERIELS

Dans cette partie de son ouvrage, Hertz s’est proposé d’édi-
fier la Mécanique rationnelle, moyennant son hypothese et sa
terminologie, suivant une ordonnance parfaitemeﬁt logique

En fait il ne s’agit pas d’autre chose que de supprlmer la force
en tant (ue notion primordiale. |

Les notions d’espace, de temps et de masse étant supposées
acquises, les liaisons entre les masses étant supposées indépen-
dantes du temps et soumises aux restrictions déja indiquées,
Hertz appelle libre un- systéme matériel dont les liaisons sont
internes, ¢’est-a-dire n’intéressent que les positions relatives des
pomts du systeme, ou; “pl"us nettement, permettent tout dephce—
ment sans deformatlon du systeme.

Hertz pose a priori, comme loi-fondamentale de la Mécanique,
la loi du mouvement des systemes libres, savou‘ ;

Tout systéme libre décrit une tia]ectozre de moindre courbure
avec une yitesse corstante.

Par Hypothése tout Systéme non libre fait partie d'un systeme
libre, et son mouvement peut par conséquent, au moins théori-
quement ‘é&tre déterminé au moyen de laloi fondamentale.

Telle est l’economle generale de V’édifice log1que constrult par
Hertz.

Sa termlnologle lu1 a permls d’ exprlmer sous forme de 101

unlque les proprletes du mouvemerit des systemes libres.

(‘) JULIUS KCENIG Intezpretatzon der fundamental Glewhungen der Dynamzk
.Math. Annealen, 1888, t XXXI.
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