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ou, plus simplement, en remplaçant ces résultats par des quan-tités proportionnelles,

On pourrait déduire par exemple de là l'équation générale des
coniques passant par les centres des trois cercles exinscrits à
ABC, et divers autres résultats faciles à obtenir et sur lesquels
il nous semble inutile d'insister.

DES FORMULES TRIGONOMÉTRIQUES

i. Le rôle important que joue la quantité complexe de la forme
P qi a fait comprendre à ceux qui s'occupent d'enseignement
que l'étude de ces quantités devait se faire par le jeune
mathématicien dès le début de ses études. Aussi leur étude est déjà
inscrite depuis longtemps~au programme des cours de mathéma-
tiques spéciales.

On sait que l'on peut mettre une telle quantité sous la forme r
(cos a -j- isina),r étant son module, a son argument. On con-

C.-A. Laisant.
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naît également la facilité avec laquelle on est conduit à établir

un grand nombre de formules de la théorie des fonctions circu**

laires en considérant la quantité complexe mise sous cette forme

trigonométriqué *

J'ai remarqué, — et il est bien facile de faire cette remarque
— que la quantité complexe pouvait se mettre sous une forme

trigonométrique renfermant, au lieu de z, un autre symbole, dont
celui-ci n'est qu'un cas particulier. Ce symbole (*) est i$, déjà
considéré par Houël dans ses éléments de la théorie des quantités

complexes et avant lui par d'autres mathématiciens, et que je définis

par la formule ;

iö — cos 6 + i sin 0

D'après cela, pourvu que sin 9 soit différent de zéro,

_ ig — cos 6
1 ~~ sin 0

La quantité A p + q ii qui peut se mettre sous la forme r
(cos a -f- i sin a), peut ainsi se représenter par

sin (0 — a) + i0 sin aA «+»i, r ^
où l'on a

cos 0 i
vi—p — q ——n — q. ——r-* 1 ein H 7 1 ein H

On peut se proposer d'étudier les quantités complexes sous la
forme m + n i6. Cette étude ne diffère au fond aucunement de

l'étude des quantités p + q i; elle présente néanmoins un certain

intérêt en ce que, dans la recherche des formules trigono-
métrîques, elle conduit à des résultats plus généraux que ceux
auxquels on arrive par la considération des quantités de la forme
P+qi.

On conçoit dès lors que ceux qui enseignent les éléments de la
théorie des fonctions circulaires aux jeunes mathématiciens
peuvent avec profit leur exposer cette étude et leur montrer com-

(') Bellavitis emploie le symbole £0 pour représenter l'expression cos 0 -J- / sin 0;
et représente la quantité e* par e.

M. Laisant emploie les mêmes notations dans son ouvrage : Théorie et
Applications des Equipollences.
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•.ment ils peuvent s'en-servir dans la recherche des propriétés de
»ces'fonctions.

_
.,r

e L objet de la présente note consiste dans un exposé très
succinct des règles fondamentales du calcul des quantités m 4- i,cet dans l'application de ces règles à la recherche des formules
trigonométriques. ; :

: Je commencerai, pur établir le, principe de l'égalité de deux
.quantités complexes écrites.sous cette forme. 1 *

a- Principe ciel'égalité de deucomplexes
forme m'-j-ri i0. — Considérons la relation

(m -j- n i| m[ 4- n' 16

Eii y remplaçant iô par sa valeur, il vient

mJrn (cos ô + fsin 6) j=p 111' 4- n' (cos 6 -f i sin 6)

et par suite, si sin 0 o,

M m— m', n — nf.

L'égalité (w,) est donc équivalente au système (w et récipro-
quement. j ^

3. Opérations fondamentales sur ces quantités. — Les règlesdu calcul des quantités de la forme /-(cos -j- sin a) étant
conclues, on peut, e'n se basant sûr la relation (i), établir sans peine

' du calcul de ces mêmes quantités mises sous la
forme rsln(9 — f)-j-i9 sin a -

' - ' ;

Sin 0 ~ • C me bornerai a faire, remarquer
* que l'on a

_ _
sm (6 — ax) -f- it sin g,

_
èin ($ —«2)+i, sin

'

siu0 ' ä ~
sin 0 ^ -

r r2sm(9 — a2) + 1» sin (at + <*•>)

• -
1

sinO -

t
et que, en vertu de la formule de Moivre, savoir

(cos « + i sin «)»* gos ma -\~ i sin ma,
011 aura aussi, pour m entier,

-'.<11) f sin- (e~ «) +H. sin a -j»» _ sin (0 — ma) + i9 sin ma
L " sin 6 J sin 6

" "
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: 4. Expressions générales des puissances entieres de i0, 1 4-
Iô. — On sait que les arguments respectifs des quantités

i„ i + i»et 1+ ie sont Ö, ^ et (9 — tc) et que i, 2 cosset

2 sin sont leurs modules respectifs. L'application de la formule

(II) donne donc

— sin (m — 1) 6 -f- Iq sin m 0

(m) ir ~— ^
; 0 0

0
— 2)——\- 19 sin 171 ~

'(IV) (i + iG)m cos--

(Y) (ï __ J$)m — im sin771 — LO T. ~l 111 /n
(m — 2) — — m — J + ïe sm — (0 — 1?)

sm 1

5. Conséquence des formules précédentes. — La méthode qui
fait l'objet de cette note consiste à partir d'une relation A o,

Jc\ mettre 'A. [sous la dorme (1) et a appliquer le principe du n° 2.

Je me propose d'en donner quelques exemples, \
6. La formule du binôme de Newton permet de transformer

la formule (II) comme suit, pourvu que m soit entier et positif.
p m

2 p + 0 ip ginp a B.nm _ p (6 _ a) sinM _ e

P 0 [sin (0 — ma) -f- iô sin ma].

D'autre part, la formule (III) donne

IV— _
sin (f—') 0

T
sin l9 •'

•

sin 6
0 sin 6

Substituant cette valeur dans la relation précédente et appliquant
le principe du n° 2, il vient • : -

p m

/A * m(m—1):. (m — p —" r) sin (p—1)6sm» 6 — a) — > —L L L_ r ~r j. \i /— smP a/ J 1.2 p sm 0

;1: */.. " L
* sinm~P (ô — a) "= sin7'1-"1 0 sin (0 — ma),

p m

m (m — 1) (m — p 4- 1) ' sin »0- '
: •— -

t
^

• ' :::: K. 1 ~" l~
1 *

A r smP- a sin777-?7' 0~^~ a) — '

t 2 p sm 0 ^

v 1 =r sin777-1 0 sin m#.
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Ces formules donnent lieu à des cas particuliers remarquables •

citons le càs où 9 m a:
'

p' — Wt

V m(m— ') ••• (wt — iP + I
." "

T~2~777p~ sm (p *) ma B'mP a sin^-p (m — I) a
P 2

~ sin 7?ia sinm (/» — i) a.
p — m

»»(m —i) p_|_^ _/ i i.2 p
sm Pma sin sin m-P (m — i) «

P 1 *

sinm+i

7. On a, par la formule du binôme, dans le cas où m est entier
et positif,

p m

V m ("» — P ••• (m — p-f 1)

Zj 1.2
p 0

1P (1 + J#)w.

Remplaçant dans cette relation et (1 -f- ie)m par leurs
pressions (III) et (IV) et faisant usage du principe du n° 2obtient les deux équations

ex-
on

p-m
m (m — 1) (m — p 4. 1

1.2 p
— sin fi _L \ - / - - - v - r 1 *^ Zj 1.2 B «n(p —I)

P^ %

.:= 2 cos — sin (m—2) -1
2 v ' 2 '

p m

Y (m-p+il 0 o/ 1 T2 d sm 6 — 2 cosW - sin m _,f 2 7

P 1

dont la seconde est bien connue.

8. Considérons encore l'identité

i1 + 10 — 2.i0) — (1—IgJm

Elle peut s écrire, dans l'hypothèse de m entier et positif,
p m

Y / m(m 1 (rn — pq.!,Zj ' 1,2...» -—~ 2?(' + '.V"-" if (i-iy«.
p 0
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On sait que (i + i9)m-p et i? ont respectivement pour

modules aw_ pcos m~p j, i et pour arguments (m — et

L'expression générale en fonction linéaire de it du produit

(i + i9) i? est

0 '

'

2m-î> COs-P — i 0 0 Iî-l — sin(m+p—;a) - + n sin I-
sin Ô L 2

La relation précédente peut donc s écrire
Ô

p m COSm—P —p m COS'" p — r a

^ -<—1;;,"7, + ')
-snr- [»" ("+'-> t

1

0
im smm — r 0

in (m + p) 1] sin9
3

pin | (m 2) —

1Vl

p 0

K rix A v

m — — ie sm — (b — tt)
2 2

Appliquant à celle-ci le principe du n° 2, il vient

p m

f iXp m(m ••• ^111
cosw-P — sin (m + p — 2)/ \

v ' 1.2 p 2 2

p 0 0.1, \
0 it 1

— sinm __ gm I (z?i — 2) — m — I

y (_I)P «(»»-ô ('»-p+j) cosm-P 1 siu(ni+p)i..

p 0
0 • 111 /A \smw— sm — (b — tc).
2 2

L. Van Emelen (Louvain).
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