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20& e.~A. LAI»ANT > r

ipen-ts* étant rangés dans chaque terme de À suivant, l'ordre des
lignes, et m étant de même parité que le nombre des inversions
de la permutation d'indices />, q s : il suffit, eh effet,
d'admettre cette règle de formation du multiplicateur (—i)m pour
1 ordre n— 1, et de l'appliquer dans (1) aux qui sontjde cet
ordre, pour l'établir aussitôt relativement à l'ordre n.

M. Lelieuvre (Caen).

TRANSFORMATION

DES COORDONNÉES BARYCENTRIQUES

Plusieurs correspondants m'ont manifesté le désir de connaître
des formules simples permettant de passer d'un triangle de
référence à un autre (ou d'un tétraèdre à un autre) en coordonnées
homogènes trilinéaires ou tétraédriques. La question, en ce qui
concerne les coordonnées barycentriques, est d'une telle simplicité

que je la crois classique ; mais par cela même qu'elle a été
posée, c'est qu'il peut y avoir un intérêt à faire connaître une
réponse. C'est cette seule considération qui m'engage à publier
la présente Note, où j'emploie les vecteurs pour l'établissement
des formules dont il s'agit. Il est facile de voir qu'on y parviendrait

aussi, mais moins rapidement, par l'emploi pur et simple
des coordonnées cartésiennes.

Je me borne au cas des coordonnées trilinéaires, l'extension à

l'espace (coordonnées tétraédriques) étant toute naturelle.
Soient : ABC un triangle de référence ; x, y, £ les coordonnées

barycentriques d'un point M par rapport à ABC; A, A2 A3 un
second triangle donné. Il s'agit de trouver les coordonnées xf, y',
z' de M par rapport à ce second triangle de référence.

Appelons oq, ßf, les coordonnées de At; a2, ß2, y2 celles de A2;

az> ß3> T3 celles de A3 par rapport a ABC ; et supposons qu'on ait :

X- y + Z Äl + ßl + Ti a2 + ^2 + T2=a3 + ß3> + ï3 I
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ce qui est toujours permis,, puisque les coordonnées sont homo;-

gènes.
En prenant une origine commune quelconque 0, et appelant

A,« B,... les.vecteurs 0Ar OB,... on a les relations

M xA. -(- jB -f- zC,

A1 a1A"+ßj,B-f-YiiC,
_

'

A2 a2^- ~f~ ß2® +Ï2C'
• ^3 — 'a3^ + ?3® + Ï3^ •

Eliminons A, B, G entre ces quatre équations linéaires, et il
vient

• M x y Z

Ai a ßl Yi

A2 a2 ß2 Y2

— °,

A3 a.3 " ^3 Ys

ai Pi'n x y z k y 'z X V 3

M Ka h Ta -Ax a2 Ï2 + ^2 ai ßi «i -^3 «1 ßi Ti

a3 ^3 Ï3 a3 ?3 Ï3 a3 COCO

COL. «? ßa Ta

«1 ßl Tl x y z X y z x y z

M a2 ß2Ta A, ce
2 ?2 Y2 + ^2 a3 ß3 Ys + A3 ai ßi Ti

a3 ßä Tä a3 ^3 Y3 ai ßi Yi aa ßa Ta

Les coordonnées barycentriques de M par rapport au triangle
de référence A± A2 A3 sont donc, comme il s'agit de coordonnées
homogènes, 7

as y Ä x y z x y z

X'' — a2 ßa Ts J J — «3 ßs Ts 1
3 «i ßi Ti

% ßä Ts a! ßl Ti aa ßa Yjt

On peut aussi écrire, et peut-être de préférence

« I 2 ai ßi Ti ai ßi Ti
aa ßa Ta ' 7' ~ x y «a ßa Ta

«3 ßs Ts a3 ßs T3I
' 7'3

1 •• Gomme - application très simple, supposons que A,, A,y A3,
soient les centres des cercles exinscrits au triangle ABC; alors
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a«
u Q O c

2{p—a)} P« ~ 2 (p—a)' Yi
2 (p—a)'"' et 11 obtient

oc y z

4 (p-b)(p-c) " ~ b

%(p-b){p-c)üb — c

ou, plus simplement, en remplaçant ces résultats par des quan-tités proportionnelles,

On pourrait déduire par exemple de là l'équation générale des
coniques passant par les centres des trois cercles exinscrits à
ABC, et divers autres résultats faciles à obtenir et sur lesquels
il nous semble inutile d'insister.

DES FORMULES TRIGONOMÉTRIQUES

i. Le rôle important que joue la quantité complexe de la forme
P qi a fait comprendre à ceux qui s'occupent d'enseignement
que l'étude de ces quantités devait se faire par le jeune
mathématicien dès le début de ses études. Aussi leur étude est déjà
inscrite depuis longtemps~au programme des cours de mathéma-
tiques spéciales.

On sait que l'on peut mettre une telle quantité sous la forme r
(cos a -j- isina),r étant son module, a son argument. On con-

C.-A. Laisant.

NOTE SUR L'EMPLOI DU SYMBOLE 1.
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