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- SUR LA THEORIE DES DETERMINANTS

Je me propose d’indiquer ici un exposé de la théorie élémen-

taire des déterminants, plus rapide que la méthode. h_zibituél_le{-,

‘ment suivie dans les classes de Mathématiques spéciales.

Derinition. — On appelle déterminant de n? quantités un
tableau carré formé par ces quantités rangées sur 7 lignes et n
colonnes; n est Vordre du ‘déterminant ‘que, pour abréger, je
désignerai par : |

A=W | O=abenl),

la-premiére ligne étant formée avec la lettre o affectée successi-
vement des n indices, la deuxieme avec la lettre b, ete... Le
déterminant représente, par définition, une certaine fonction de
ses n® éléments que je vais définir de proche en ‘proc_/ze'; pour les
valeurs successives de n; pour cela, Jemploierai les déterminants
d’ordre n — 1 déduits de Aeny supprimant la premiere ligne (a),
et successivement chaque colonne ; -Je désignerai généralement,
par o; le déterminant obtenu en supprimant la ligne (a) et la
colonne de rang i, qui se croisent sur a; et qu'on appelle
déterminant mineur de A, relatif i a;. 1° Pour n==1, je poserai :
A=ua,; 2° pour passer de ’ordre » — 1 & 1'ordre n, j’appliquerai
la formule générale : | ‘ :

X . . o, p+i .. . ni41 .
(1) -~ A=a,q, Ay = g - (— 1) @potp + ..o 4 (— 1) ayay.

Constiquence. — 11 est évident, d’aprés cela, que A sera une
somme algébrique de n ! produits de chacun » éléments, chaque-
produit renfermant un élément et un' seul de chaque ligne et de
chaque colonne : donc A est une fonction linéaire et homogéne
des éléments d’une méme :ligne ou d’une méme colonne. ’

-
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TrioREME FONDAMENTAL. — Si lon désigne par n, le mineur de

A relatif & un élément quelconque h, de la ligne de rang q; et
qu’on obtient en supprimant la p“™ ligne et la q“" colonne, le
. v . - ptg
coefficient de h, dans le devel'oppement}(l) de A est . .H], =(—1)7, .
I1 suffit de montrer que sile théoreme est admis pour l'ordre
(n— 1), il est vrai pour » : admettons-le donc pour les détermi-
nants mineurs o;; remarquons qu’il est vrai par définition pour
les éléments de la premieére ligne de A, et cherchons le coeffi-
cient de %, appartenant a toute autre ligne : appelons générale-
ment ; le mineur relatif & %, dans a;, et remarquons que /, ne
figure pas dans «,, qu'il appartient a la (p — 1) colonne de
a;, si i est < p,et ala pv siiest>p;le coefficient cherché, tiré
de (1), sera donc, d’apres le théoréme admis pour les o, : |

My = (—1)? * 9[a,3, — a8, + “383‘-- + (—1)ray 1 61) — 1

—|-(——1)~P+1ap+13p+1+~- + (—1)"an da].

de sorte que les signes‘mis en évidence dans le crochet sont
alternés : donc ce crochet n’est autre chose que 7,, par définition
méme,

ConsiQueENnce. — On peut développer A par rapport a toute
ligne ou a toute colonne aussi bien que par rapport a la pre-
miere ligne; la regle pratique est évidente et s’exprime par la
formule générale :

(2) A=hH 4 hH,... +hy Hyd ... + hy Hy,

ou H, a la valeur ci-dessus.

PRroPRIETES FONDAMENTALES DU DETERMINANT. — 1° Quand on
multiplie par un méme facteur A les éléments d’une ligne ou
d’une colonne, A est multiplié par A.

2° Sil’on a, quel que soit p: h,=h,—h,/, onaura: A=A’ A",
en désignant par A’ le déterminant déduit de A par la substitu-
tion de la ligne 4’ a la ligne A, par A” celui qui résulte de la
substitution de A" a k. |

Ces deux propriétés sont évidentes, d’apres la formule (2).

3° Le déterminant A ne change pas de valeur par Péchange des
lignes et des colonnes de méme rang : si cela est admis pour
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Vordre n — 1, le théoréme en résulte aussitét pour l'ordre n,
d’apreés (2), car le développement du déterminant donné par rap-
port a la p* ligne et du transformé par rapport a la p™" colonne,
seront identiques. Toute propriété relative aux lignes s’étend
donec aux colonnes. |

4 L’échange de deux lignes de A entre elles, le multiplie
par —1 : en effet, cela est prouvé par la formule (2), pour
vl’éch;‘mge de deux lignes consécutives & et k, qui ne modifie pas
les coefficients H, etaltére d’une unité le rang de laligne %; on
peut maintenant permuter deux lignes qui en comprennent m
entre elles, par un nombre impair 2 m - 1 d’échanges successifs
de deux lignes consécutives.

Arrricarions. — 1° Un déterminant qui a deux lignes iden-
tiques est nul : application au déterminant de Vandermonde.

2° Transformations diverses d’un déterminant par combinai-
sons linéaires des lignes ou des colonnes résultant des deux pre-
mieres propriétés du paragraphe précédent. ’

3° Application a la multiplication de deux déterminants; soit,
par exemple : '

A= Ao +)\2°‘2 . )‘3“3 )\162 + )‘2(32+)\3@3 )\1Y1 +}2Y2_)‘3Y3 l ()‘ =a,b,c)

on le décompose immédiatement en six déterminants contenant
chacun en facteur, par exemple :

AN= AN | (A=a,b,c),
d’ou : ‘
A=AF(a,B, 7)

en désignant par F (a, 8, v) une expression ne renfermant plus
les éléments de A’, et dont on aura par suite la valeur en faisant
par exemple : @, == b, = ¢, =1 et tous les autres éléments de A’
égaux a o; d’olr aussitdt : F (a, B, v) = A” en posant A=, u, &)
(r=0,8,7); done : A==A'A", | -

On déduit aussitét de cette regle les propriétés connues de
Iadjoint D de A et celles de 'adjoint de cet adjoint.

ComprimMENT. — La définition (1) adoptée pour A rameéne faci-
m

lement a la définition ordinaire : A =3 (—1)a,b,... I, les élé-
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ments’éta‘nf rangés dans echaque terme de A suivant. lordre des

hgnes, et'm étant de méme parité que le nombre des inversions

de la. permutatlon d’indices p;.g...s : il suffit, en effet, d’adw
mettre . cette régle de formation du mul‘tlplICdtBUI (—1)™ po,ur\

Pordre n— 1, et de 'appliquer dans (1) aux o; qui sont_de cet
ordre, pour I'établir aussitdt relativement 4 Iordre 7.

M. LELIEUVRE (C‘Aae"n)i.

TRANSFORMATION

DES COORDONNEES BARYCENTRIQUES

Plusieurs correspondants m’ont manifesté le désir de connaitre

des formules simples permettant de passer d'un triangle de réfé-
rence a un autre (ou d’un tétraédre a un autre) en coordonnées
homogenes trilinéaires ou tétraédriques. La question, en ce qui
concerne les coordonnées barycentriques, est d’'une telle simpli-
cité que je la crois classique ; mais par cela méme qu’elle a été

posée, c’est qu’il peut y avoir un intérét a faire connaitre une

réponse. C'est cette seule considération qui m’engage a publier
~la présente Note, o j’emploie les vecteurs pour I'établissement
des formules dont il s’agit Il est facile de voir qu’'on y parvien-
drait aussi, mais moins rapidement, par lemplm pur et 51mple
des coordonnées cartésiennes.

Je me borne au cas des coordonnées trilinéaires, I’extension a
I'espace (coordonnées tétraédriques) étant toute naturelle.

Soient: ABC un triangle de référence ; x, y, z les coordonnées
barycentriques d’un point M par rapport a ABC; A, A, A, un
second triangle donné. Il s’agit de trouver les coordonnees 2,y :
%' de M par rapport a ce second triangle de référence.

Appelons o,, 3, 7, les coordonnées de A, ; a,, B, T2 celles de A;
o, Ps, v, celles de A; par rapport a ABC et supposons qu’on ait :

r—+y +z;_“1f+‘g1+71=“2‘+12 +'Y2f““3+pa’ +yvs=1,’
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