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NOTE SUR UN POINT DE LA THEORIE
' DE LA

- FONCTION EXPONENTIELLE ET DES LOGARITHMES

Apres avoir défini la fonction a® dans le cas ol x est irra-
tionnel, on démontre aisément que la formule

(x) o a® > a® — qr* ol -

subsiste alors méme que les exposants sont irrationnels; on en
conclut ensuite la formule correspondante pour la fonction loga-
rithmique, & savoir, en posant a”=y, a*' =y :

logayy" = logay + logay'.

Il est singulier que presque tous les traités omettent alors de
démontrer, pour le méme cas ou les exposants sont entierement
quelconques, c’est-a-dire peuvent étre irrationnels, la propriété
exprimée par la formule | |

(2) ' (az)" = aws!
a laquelle correspond, pour le logarithme, la formule
(3) logq y*' = &' log,y.

- Ce n’est pas que les auteurs n’aient pas a faire ensuite usage
de cette formule (2), puisque, pour établir la formule (3), presque
tous partent de 'identité de définition

A loe ¥
J. — a oa s

et, élevant les deux membres & la puissance d’exposant 2,
concluent

i (alo%ﬂg/)w — o508,




THEORIE DE LA FONEDION-EXPONENTIELLE, ETC. 119

L& logarithme de y étant, en général, méme pour'? e‘t"y‘ ra-
tionnels, un: nombre 1rr atlonnel ils font: ainsi uS‘1ge de: la: for:
mule (2) pour le cas: d’ exposantsx irrationnels, sans Paveir- aucu-
nement établie. Quelques suns- méme; aprés avoir demontre la
formule: (3): comme je. viens-'de le-dire; vont plus 101n et s«en
.servent. pour: en conclure la fm*mfule-( ); qui se: tl’ouve ainsl
démontrée- apres: avoir été implicitement: admise.

Je ne connais, pour ma part, qu'un:seul ouvrage ou les choses
soient correctement présentées ; c’est le Traité d Algebre éle-
mentaire de MM. Cor et Riemann ; encore que la demons-
tration. de- la relatlon-( ), directe il est vrai, me: pzrr*usse un: peu
compliquée pour l’obj et dont 1l s’a o1t _

Que l'on regarde le nombre-irrationnel comme: défini: par’l‘a
méthode de Dedekind ou par celle de- G. Cantor, la: difficulté
a laquelle on se heurte pour établir la relation (2) par le méme
procédé que celul employé pour la relation (1), provient touJours
de la méme source. En:se placant, par e\emple, au peint de vue
de M. G. Gantor, elle-réside en'ce: que 'on n’est. pas assuré que
la limite de |

/
<a.r n) Ty

soit. (aﬂx)x xm et &/, .désignant. deux.-nombres:rationnels, fonctions
d’un indice entier et positif n, qui. ent respectivement. z- et.x’
pour limites quand » grandit indéfiniment. On a, en. effet, ici
affaire a une-exponentielle d’exposant variable: 2/, dont la base,
@™, varie aussi: avec 2. ; en sorte que la question. revient, au
fond, a la. démonstration de la continuité de:la fonction «”, ol «
et ¢ sont deux fonctions. continues, dont. la premiére est essen-
tiellement positive. | |

Et cette continuité ne S‘luralt comme le font be’llICOllp d’au-

teurs, étre conclue.de la formule

v — vlog, u
u’— a a7,

jointe & la continuité de la fonction exponentielle, puisque, ainsi
que je l'ai fait remarquer plus haut, cette formule n’est qu’une
conséquence de la relation (2) qu’il s’agit précisément d’établir.
Mais elle se démontre aisément en faisant intervenir les pro-
priétés les plus simples de la fonction 2™, ol & est une variable
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positive et m un exposant entidrement quelconque La démons-
tration, tres facile, de ces propriétés, a savoir, que la fonction
‘est continue et qu’elle varie toujours dans le-méme sens, ne sup-
pose d’ailleurs que la formule (1). (Voir J. Tannery. Introduction
a la théorie des fonctions d'une pariable. Paris, 1886 ; n° 83.)

Soient, alors, p et q les limites respectives de u et ¢, p étant
un nombre positif ; soient o et B les différences infiniment petites
w—p, v —¢q; on a, en vertu de (1)

uw = (p+ aldti=(p+ ) (p + o)

De la propriété de «™ d’étre continue, on conclut que (p—+ a)?
a pour limite p?- quand o« tend vers zéro ; de la propriété de 2™
de varier toujours dans le méme sens, on conclut que, ¢ désignant
un nombre fixe satisfaisant aux condltlons

l[’|>5>'“])

(p-+)* est compris entre (p-¢)f et (p—+<)¥, quantités qui, en
vertu des propriétés de la fonction a”, tendent vers 1, quand B
tend vers zéro. .

Donc «” tend bien vers p?, et la fonction u" est continue. |

Revenant alors & la relation (2), on voit que @™ ayant, quand n
grandit indéfiniment, le nombre positif a” pour limite, la quan-
tité (ax")x/" a pour limite(w'”)x/, comme 1l fallait établir.

Il est treés vraisemblable que cette démonstration si simple a
été déja établie ailleurs, bien que je I'ignore. Je I'ai donnée dans
‘mon enseignement et communiquée autrefois a plusieurs pro-
fesseurs. Il est seulement assez surprenant qu'une telle lacune
s’observe si généralement dans les traités did'act_iques en un
méme point aussi important de la théorie de Pexponentielle.

H. Papé (Lille).
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