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SUR LES POLYGONES PE PONCELET

< r——————— -

Le probleme des polygones-de Poncelet (*) conduit naturelle-
ment a la question suivante: ' : .

Une relation - biquadratique symétrique déterminant une infi-
nité de polygones de m ¢étés, inscrits dans une unicursale C, forme
Péquation générale de degré m qui a pour racires les para-
meétres t des m sommets de Uun de ces deux polygones.

On observe aussitot que cette équation doit pouvoir dépendre
lindairement d’un. paramétre: %, de fagon a étre déterminée com-
-pletement et d’une maniere u\niqué« par la donnée dlune. seule
racine ?,; ¢’est ce qui.a été vérifié (*). On peut le constater sum-
plement de la facon suivante : '

Nous savons que l'on peut toujours faire en sorte que les para-
méetres des m sommets d'un polygone considéré solent : pu,
p (u+C), ...p[u—+ (m — 1) ©], avec la condition :. m © =0
Déquation correspondante. que I’on veut former est : ‘

Fit; @) =\t — pullt—p (B)N[t—p (u2B)]. - [t—p (et (n—1)T]=o

En vertw de. -G =. o0, on.voit immédiatement.que-l'on a iden-
tiquement, quel que soit Pentier £.: F (¢, u +kT)=F (,, u).
Regardons alors ' comme une fonction elliptique de u, aux
m‘émesapériodesf que pu;‘-elle» aura. les E.(‘)l.egs;:doubl.e~s~> congrus a
B, —G,—25...—~(m— 1) G ; décomp osons-la en. éléments. sim-
ples, et pour cela.considérons.son. développement,.p ar e apportaux
puissances: croissantes: de: u, par exemples. il sera de:-la:forme :

F (b=

A LB
e +_l_6_ + Fsl@(l‘). ,

!) Voir un précédent article, numéro du 15 novembre 1899.

{
(*) Voir une note de M. R. Bricard.au Bulletin - de laxSociéte mathematique, 1898,
p- 93. Je propose ici une démonstration plus simple.

s e




116 M. LELIEUVRE

,‘%‘
¥,

%

F, étant une fonction entiere de u; dou, en\vertli\%gtg la
remarque ci-dessus :
A ' B
s+ ———=_F
(u—f_—KCZS'f + ‘lc—i—K%’_l_ 1

F (t,u—{—K%o) = (u-{—KCE).

De sorte que F a méme résidu B par rapport & tous ses poles ;
la somme des résidus étant nulle, on aura B = o; A sera aussi
le méme pour tous les poles : S

A =lim,—y u2F (t, u);
d’ou ¢
AA:f_@‘T%HVfW%L-U*P@“—Wg:fw~
D’ou la décomposition‘ cherchée :

K u)=10) [petp @d-B)o. + plu+ (m— %) 4o (1

en dééignant par ¢ (¢) un polynéme indépendant de u, qu'on
pourra expliciter en attribuant & x une valeur particuliere. Donc
‘en appelant A la somme des parametres des m sommets, Véqua-
ton générale demandée sera : ‘

() o (1) + Mf(t) = o,

o (t) et f () désignant les polynémes correspondants a deux -
solutions particulieres, et pouvant étre remplacés par deux quel-
conques de I’ensemble (1) obtenu quand X varie (en particulier,
/(z) doit étre regardé comme ayant une racine ¢ infinie). Ainsi
les m sommets des polygones de Poncelet considérés [orment bien

sur la courbe C une involution d'ordre m.

- Remarque, — Réciproquement, toute équation de la forme (1)
et de degré quelconque m, ne détermine pas généralement, quand
A varie, des polygones de Poncelet inscrits dans la courbe : car
Télimination de X entre les deux équations : ¢ (x) + A f(x)= o,
2 )+ X f(y) = o montre que les parameétres z et y de deux
sommets quelconques d’'un des polygones déterminés par (1)
satisfont & la relation symétrique : o | o

() (5) —f(x) o (x)

=o0
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qui est d oaldre m — 1 par rapport a chaque paramétre z ou y:
elle se tr‘msforme en une relation d’ordre m — 1 entre S = x|y
et-P = xy, qui s’obtient d’ailleurs facilement sous. forme de
determm'\nt en écrivant, par la méthode d’ identification, que
t,— St 4 P est diviseur de o (1) 4+ X f(2).

Géométriquement, si la courbe C est une conique, cela revient
a dire que les cordes de l'involution (1) enveloppent une ligne de
classe m — 1, Des que m surpwsse 3, ce n’est qu exceptlonnelle-
ment que cette enveloppe se decomposera en deux autres, dont
I'une F serait de seconde classe : il sera, pour cela, nécessaire
et suffisant que les cotés de deux polygones de m cotés déter-

minés par f == 0, » =0 solent a la f01s tangents a une méme
'comqu’e. '
Cas particulier de m = 3. — Dans ce cas, 'équation (1) déter-

mine toujozu s, quels (/ue sotent [ et o, des txlangles inscrits dans
la conique C et circonscrits a une comque F qul reste fixe quand
A varie : cela est, du reste, a prevoxr pulsqu on peut toujours
comme on sait, inscrire une conlque F a la fois dans les deux
‘triangles déterminés par f== o et ¢ = o. De la résultent fina-
lement la plupart des lieux geometrlques relatifs aux triangles
inscrits dans une conique C et circonscrits a une autle( ).

M. LeLiEuvRE (Caen).

(') Voir, & ce sujet, une note de M. Kontené, Revue de Math. spéciales, avril 190o.
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