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SUR LES POLYSOMES DE PÖNCELET

Le problème des polygones-de Poncelet (L) conduit naturelle-

ment à la question suivante : -

Une relation biquadratique symétrique déterminant une infinité

de polygones de m côtés, inscrits dans une unicUrsale C, forme

Véquation générale de degré m qui a pour racines les pai a

mètres t des m sommets de V un de ces deux polygones.

On observe aussitôt que cette équation doit pouvoir dépendre

linéairement d'un paramètre A, cle façon a être déterminée

complètement et d'une manière unique par la donnée d une seule

.racine t0 ; c'est ce qui a été vérifié (2). On peut le constater

simplement de la façon suivante :

Nous savons que l'on peut toujours faire en sorte que les

paramètres des m sommets d'un polygone considéré soient : pu,

p. (u-+-*%)> "'P L« + im — 0 ^]r avec la condition u m % o ;

l'équation correspondante que l'on veut former est :

En vertu de- m% o, on voit immédiatement que l'on a

identiquement, quel que soit l'entier k : F \tr u +' k %) F (t,-u).

Regardons alors F comme une fonction elliptique de u, aux

mêmes périodes que pw ; elle aura les: pôles-doubles congrus a

9Q- 2®....—-(m — i).Ç décomposons-la en éléments

simples, et pour cela considérons- son développement.,/par rapport aux

puissances croissantes * dé u, par exemple ; il sera de. la forme :

F M)-

(*) Voir un précédent article, numéro du i5 novembre 1899.

(*) Voir une note de M. R. Bricard au Bulletin de* lœ< Société mathématique, 1898,

p. 93. Je propose ici une démonstration plu.s simple.
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F, étant une fonction entière de u ; d'où, en vertuAde la
remarque ci-dessus :

F [t, u + K<%)——Ï + ~~^+ F1 (« + K<5).

De sorte que F a même résidu B.par rapport à tous ses pôles ;
a somme des résidus étant nulle, on aura B 0 ; A sera aussi

le meme pour tous les pôles :

A — limM=0 ^^2F (t, ;

d'où :

D ou la décomposition cherchée :

F(<, u) f(t)[pu+p(u + <&)... -|

en désignant par cp un polynôme indépendant de qu'on
pourra expliciter en attribuant à u une valeur particulière. Donc
en appelant X la somme des paramètres des m sommets, Yéqua-tion générale demandée sera :

(l) (t) + Xf(t) o

(e) et f (t) désignant les polynômes correspondants à deux
solutions particulières, et pouvant être remplacés par deux quel-
conques de l'ensemble (i) obtenu quand A varie (en particulier,
t{t) oit etre regardé comme ayant une racine infinie).les m sommets des polygones de Poncelet considérés forment bien

sur la courbe C une involution d'ordre m.

Remarque. — Réciproquement, toute équation de la forme (i)et, e degré quelconque m, ne détermine pas généralement, quand
Àvarie, des polygones de Poncelet inscrits dans la courbe : car

1 élimination de X entre les deux équations : cp (x) -f- X f{x)~ o
y)+ ^ /(y) — o montre que les paramètres x et y de deux

sommets quelconques d'un des polygones déterminés par (i)satisfont à la relation symétrique :

/"(*)? (:r) — (x)_
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qui est d'ordre m — 1 par rapport à chaque paramètre x ou y :

elle se transforme en une relation d'ordre m — 1 entre S — x-\-y
eh-'P qui s'obtient d'ailleurs facilement sous forme de
déterminant, en écrivant, par la méthode d'identification, que

—j— P est diviseur de <p (t.) -f- X f{t).
Géométriquement, si la courbe G est une conique, cela revient

a dire que les cordes de Vinvolution (1) enveloppent une ligne de
classe m — 1. Dès que m surpasse 3, ce n'est qu'exceptionnellement

que cette enveloppe se décomposera en deux autres, dont
1 une F serait de seconde classe : il sera, pour cela, nécessaire
et suffisant que les côtés de deux polygones de m côtés déterminés

par f o, <p o soient à la fois tangents à une même
conique.

Cas particulier de m 3. — Dans ce cas, l'équation (1) détermine

toujours, quels que soient f et <p, des triangles inscrits dans
la conique C et circonscrits à une conique F, qui reste fixe quand
X varie: cela est, du reste, à prévoir, puisqu'on peut toujours,
comme on sait, inscrire une conique F à la fois dans les deux
triangles déterminés par f o et cp o. De là résultent
finalement la plupart des lieux géométriques relatifs aux triangles
inscrits dans une conique C et circonscrits à une autre (*).

___
M. Lelieuvre (Caen).

O Voir, à ce sujet, une note de M. Fontené, Revue de Math. spéciales, avril 1900,
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