Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 3 (1901)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: Andoyer (H.). — Leçons sur la théorie des formes et la Géométrie

analytique supérieure. — Tome 1er, 1 vol. grand in-8° de 508 pages ;

prix: fr. 15. Gauthier-Villars, Paris, 1900.

Autor: Buhl, A.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BIBLIOGRAPHIE

Andover (H.). — Leçons sur la théorie des formes et la Géométrie analytique supérieure. — Tome Ier, 1 vol. grand in-8° de 508 pages; prix : fr. 15. Gauthier-Villars, Paris, 1900.

L'ouvrage sur la théorie des formes que publie M. Andoyer est d'un caractère essentiellement didactique. Si j'emploie cet adjectif c'est que l'auteur l'emploie lui-même dans sa préface et qu'en parcourant l'œuvre, je me suis rendu compte qu'il était justifié autant qu'il pouvait l'être.

D'après M. Andoyer l'ouvrage est destiné aux étudiants des Facultés des sciences, mais il m'est impossible de me convaincre que son but ne soit pas plus élevé.

La théorie des formes est, en effet, à peine enseignée dans les Facultés si ce n'est pour les candidats à l'agrégation et, à ce point de vue, elle l'est d'une façon assez sommaire.

D'un autre côté, les savants auxquels la théorie des formes doit son écla actuel n'out guère publié, au point de vue didactique, que des fragments de la théorie générale lesquels, il est vrai, gagnaient en profondeur ce qu'ils perdaient en étendue, mais, précisément à cause de cela, ne donnaient pas une vue d'ensemble d'une des plus belles branches des mathématiques modernes. Or c'est un ouvrage d'ensemble que nous présente M. Andoyer.

Le premier volume est relatif aux formes binaires et ternaires, le second traitera des formes quaternaires. Par la première partie de l'œuvre on peut déjà juger de sa grande uniformité.

Nombreux sont les passages de la théorie des formes ternaires qui semblent absolument intuitifs à qui a étudié auparavant les chapitres consacrés aux formes binaires car, au nombre des éléments près, ce sont les mêmes raisonnements, les mêmes notations.

Mais d'abord avant d'analyser l'œuvre en détail parlons un peu de cette théorie des formes au point de vue philosophique. Pourrait-on expliquer ce qu'elle est à l'étudiant qui ne la connaît pas encore et lui donner un avant-goût de la merveilleuse harmonie qu'il y pourra trouver. C'est en somme fort possible.

L'impossibilité de la résolution générale des équations algébriques fut un fait établi pour la première fois, mais d'une façon indiscutable, par Abel.

De ce fait l'étude de ces équations qui semblait devoir rester à jamais inféconde quant à la recherche directe des racines, prit son essor dans un sens différent.

On connaissait déjà les relations, considérées aujourd'hui comme élémentaires, qui existent entre les racines et les coefficients. On s'aperçut aussi qu'il existait des fonctions symétriques des racines exprimables au moyen

des coefficients, d'où des relations d'une importance capitale qui devaient immédiatement servir de base aux différentes théories de l'élimination. Et d'une façon tout à fait générale on remarqua qu'il existait des fonctions des coefficients qu'une substitution linéaire effectuée dans l'équation primitive laissait inaltérées. A chaque équation ou plutôt à chaque forme binaire qui, égalée à zéro, donnait une équation algébrique à une seule variable correspondait un nombre déterminé d'invariants et la théorie des formes devint à elle seule une algèbre nouvelle dans laquelle ces formes étaient étudiées d'après leurs invariants.

Mais ce n'était pas là tout. Exprimer algébriquement qu'une forme avait un invariant, c'était exprimer géométriquement que la variété représentée par cette forme avait une propriété projective. Ces propriétés projectives, si peu aisées à mettre en évidence par les anciennes méthodes de Descartes, correspondaient ici à des conceptions algébriques pures, et une nouvelle géométrie analytique se fonda dans laquelle il n'était plus besoin ni de figures, ni de l'usage explicite de coordonnées, ni même de la notion vulgaire de l'espace qui, elle aussi, se trouvait généralisée. Cela dit, abordons l'examen de l'ouvrage de M. Andoyer.

L'ouvrage débute naturellement par l'étude des systèmes binaires et aborde rapidement les transformations linéaires effectuées sur lesdits systèmes. Ces transformations forment un groupe, c'est-à-dire que deux transformations consécutives effectuées sur un même système donnent un système transformé que l'on aurait pu obtenir directement par une seule transformation de même nature. De là résulte immédiatement la notion d'invariant mise alors en lumière d'une façon remarquable. Soit symboliquement (e) l'ensemble des éléments d'un système binaire et (e') l'ensemble des éléments d'un système transformé du premier. Les relations de transformation sont de la forme

$$e'_i = f_i (e, \lambda)$$

et si entre elles on élimine les (λ) on a des relations de la forme

$$e'_{i} = \varphi_{i} (e, e'_{1}, e'_{2}, ..., e'_{p}).$$

Faisons une nouvelle transformation pour passer des (e') à des éléments (e''). On pourra de même trouver une relation telle que

$$e''_i = \varphi_i (e', e''_1, e''_2, ..., e''_p).$$

Mais puisque les substitutions linéaires forment un groupe on aurait puavoir directement

$$e''_{i} = \varphi_{i} (e, e''_{1}, e''_{2}..., e''_{p}),$$

d'où

$$\varphi_i (e', e''_1, e''_2, \dots e''_p) = \varphi_i (e, e''_1, e''_2, \dots, e''_p).$$

Ces fonctions φ qui ne changent pas de valeur quand on y remplace les (e) par les (e') sont les invariants absolus du système considéré. Elles satisfont à un système complet d'équations aux dérivées partielles.

Le chapitre ii a trait aux formations invariantes générales et tout d'abord aux polaires dont la notion a déjà été rencontrée au cours du chapitre précédent. On y reconnaît immédiatement la généralisation de la conception géométrique bien connue. Il en est de même quant aux jacobiens et aux hessiens.

Le chapitre in revient d'une façon approfondie sur les systèmes linéaires et leurs invariants. L'un des plus importants de ces derniers est le rapport

anharmonique relatif à quatre éléments.

Le chapitre iv traite des résultants et des discriminants. Nous sommes ici dans le problème si important de l'élimination. Le résultant est naturellement un invariant. Egalé à zéro il représente la condition nécessaire pour que deux formes aient une racine commune. Le résultant des dérivées partielles d'une forme en est le discriminant. Egalé à zéro il donne la condition nécessaire et suffisante pour que ladite forme ait une racine double.

L'étude de formes particulières fait l'objet des chapitres v, vi, vii et viii. Après la forme bilinéaire viennent les formes quadratique, cubique, biquadratique et quintique et l'étude générale de la réduction aux formes canoniques. Il n'est guère possible d'analyser ceci en détail. Remarquons simplement l'intérêt qui s'attache à l'étude de la forme bilinéaire

$$f(x,y) = a_{11}x_1y_1 + a_{12}x_1y_2 + a_{21}x_2y_1 + a_{22}x_2y_2$$

qui égalée à zéro donne

$$\frac{x_1}{a_{21}y_1 + a_{22}y_2} = \frac{x_2}{a_{11}y_1 + a_{12}y_2}$$

et définit la correspondance homographique entre les éléments (x) et (y). Il est particulièrement intéressant de supposer coincidantes les séries X formées des (x) et Y formées des (γ) . On a alors des invariants intéressants, tels que f(x, x) et f(y, y) qui égalés à zéro définissent les éléments qui, considérés comme appartenant à X ou à Y, coincident avec leurs correspondants.

On reconnaît immédiatement que cette analyse donne en Géométrie la

théorie de l'homographie et de ses points doubles.

Si la forme f est constamment égale à celle g que l'on obtient en y permutant les (x) et les (γ) , on a

$$f-g=(a_{12}-a_{21}) (x_1y_2-x_2y_1)=0.$$

Réciproquement la condition pour que f = g est simplement $a_{12} - a_{21} = 0$. Alors (y) a toujours même correspondant qu'on le considère comme appartenant à X ou à Y : c'est le cas de l'involution.

Comme second point important des chapitres ci-dessus mentionnés il faut surtout citer ce qui est relatif à la réduction des formes quadratiques aux formes canoniques correspondantes qui sont des sommes de carrés. Au seul point de vue de la géométrie analytique ordinaire on sait que les cas sont nombreux où il faut effectuer de telles réductions.

La forme linéo-quadratique, ainsi que son nom l'indique, est du second degré par rapport aux éléments (x) et du premier par rapport aux éléments (y). A chaque élément (x) correspond donc un seul élément (y), tandis

qu'à chaque élément (y) correspondent deux éléments (x).

Vient ensuite la forme doublement quadratique qui est de beaucoup la plus importante. Elle définit entre les (x) et les (y) une correspondance telle qu'à chaque élément de l'une des séries correspondent deux éléments de l'autre. Cette étude de la forme doublement quadratique est non seulement importante, mais très élégante. Tous ses invariants notamment s'expriment facilement au moyen du système fondamental formé par sept d'entre eux.

Enfin après avoir indiqué en quelques pages (chapitre ix) comment on peut étudier directement les formes à deux séries de variables, l'auteur termine son premier livre par un aperçu sur la géométrie métrique binaire.

C'est surtout là que l'on se rend compte que la géométrie ordinaire n'est

qu'un cas particulier des théories précédemment développées.

Les mots distance et mouvement, par exemple, prennent un caractère analytique abstrait que l'intelligence peut juger, mais qui ne peut être transporté dans l'espace euclidien et tomber sous nos sens en reprenant la signification vulgaire qu'à la condition d'être dégénéré d'une façon particulière.

Et ce n'est pas là la conclusion philosophique la moins remarquable.

Le second livre de l'ouvrage de M. Andoyer a trait aux formes ternaires et il est plus de deux fois aussi étendu que le premier, mais à cause, je le répète, de l'uniformité de la notation et de l'exposition son étude sera simplifiée de beaucoup pour qui aura bien compris le premier. On y revoit tout d'abord les substitutions linéaires et leurs invariants, puis des considérations sur les faisceaux d'éléments qui rappellent immédiatement des théorèmes bien connus de la géométrie ordinaire à deux dimensions relatifs aux quadrilatères complets, aux transversales, etc...

L'analogie de la géométrie à deux dimensions avec la théorie des formes ternaires qui en est une généralisation, se remarquera à chaque instant dans les chapitres suivants qui seront même d'une lecture facile pour qui connaît les théories géométriques élémentaires des développées, des polaires des divers ordres d'une courbe plane, de la jacobienne, de la hessienne, de la cayleyenne, de la steinérienne. Les célèbres formules de Plücker se retrouveront également avec tout le degré de généralité possible. Les mots ne seront pas changés, leur sens seul apparaîtra comme considérablement étendu.

Tout comme dans le livre I, nous retrouvons I homographie comme correspondant à la forme bilinéaire et l'on arrive ensuite aux formes quadratiques et aux systèmes de deux formes quadratiques. Ces parties de l'œuvre deviennent de plus en plus difficiles à analyser brièvement. Là comme ailleurs, M. Andoyer laisse nettement voir l'analogie des théories générales avec les théories particulières de la géométrie analytique ordinaire. On a par exemple, à propos des séries quadratiques des théorèmes absolument analogues à ceux de la théorie géométrique des polaires dans les coniques.

L'étude des séries cubiques et de leurs polaires offre des résultats de même nature et l'on examine ensuite rapidement les séries quartiques. Le premier volume de l'ouvrage de M. Andoyer se termine avec la géométrie métrique ternaire. On se reprend à admirer alors la portée philosophique d'une science qui au début ne semblait être que celle des propriétés projectives.

On retrouve d'abord les notions fondamentales d'espace et de distance de même qu'en géométrie binaire, puis vient l'étude du groupe des déplacements.

L'examen des propriétés des séries circulaires ou cercles, offre également un très grand intérèt.

Les éléments définis par la forme quadratique fixe F^2_x constituant l'absolu de l'espace, considérons une série quadratique bitangente à l'absolu définie par l'équation

 $(\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3)^2 + \alpha_4^2 F_x^2 = 0.$

On peut écrire

$$\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 \sqrt{-F^2 x} = 0$$

le radical ayant deux signes différents d'où deux séries composées des mêmes éléments, mais différemment orientés. Ce sont les cercles en question dont le nom se trouve déjà justifié par cette simple remarque qu'en géométrie ordinaire tous les cercles, au sens élémentaire du mot, ont deux points communs avec le cercle imaginaire de l'infini.

Reprenant la définition générale du cercle, on est amené à des généralisations d'un extrême intérêt. Pour prendre un exemple des plus importants, remarquons simplement que les cercles de rayon nul qui sont tangents à une série quelconque, en définissent les foyers.

Le dernier chapitre de l'ouvrage de M. Andoyer examine ce que devient la géométrie métrique précédente quand la forme F_x^2 dont les éléments définissent l'absolu, admet un discriminant nul.

Les lignes qui précèdent ne peuvent donner qu'une faible idée de l'œuvre. L'auteur a fait un choix plus qu'heureux dans tous les matériaux qui étaient à sa disposition et a mis une marque bien personnelle dans l'uniformité de l'exposition. Il ne reste qu'à souhaiter que beaucoup de jeunes géomètres prennent la peine de l'étudier.

Ceux-ci comprendront alors que la géométrie analytique cartésienne et l'antique géométrie rendue moderne par Chasles et ses disciples ne sont pas deux sœurs ennemies devant toujours mettre leur amour-propre à s'ignorer mutuellement, mais ayant seulement eu besoin de grandir pour se reconnaître sur le terrain de l'algèbre supérieure.

A. Buhl (Paris).

Cantor (Moritz). — Vorlesungen über Geschichte der Mathematik, Dritter Band, Erste Abteilung (1668-1699). Zweite Auflage. Un fascicule in-8° de 261 pages. B. G. Teubner, éditeur à Leipzig.

Le savant Moritz Cantor poursuit, avec une ardeur toute juvénile bien que septuagénaire, la publication de la seconde édition de sa remarquable Histoire des Mathématiques. Il nous donne aujourd'hui la première partie du troisième volume. Ce fascicule comprend la période 1668-1699.

Il y étudie d'abord les travaux de Géométrie élémentaire que produisirent à cette époque les anglais John Collins (1625-1683) et Isaac Barrow (1630-1677), l'italien Giordano Giordani (1633-1711), les français Milliet Dechales et Sébastien Le Clerc dont la *Pratique de la Géométrie* (1669) a joui pendant une trentaine d'années d'un succès mérité. Puis il passe en revue les travaux de Nicolas Mercator, de lord Brouncker qui trouva pour π l'expression d'où découle la théorie des fractions continues, de Halley de Grégory et d'Abraham de Moivre qui contribua à édifier la trigonométrie des quantités imaginaires.

L'auteur aborde ensuite la grande découverte de l'Analyse infinitésimale que Leibniz et Newton partagent la gloire d'avoir inventée. Il montre la part qui revient à chacun d'eux dans cette immortelle conquête. Les érudites discussions du professeur de Heidelberg peuvent d'ailleurs se résumer en ces quelques lignes de Joseph Bertrand. « Quoique la publication de Newton ait été postérieure à celle de Leibniz, il est prouvé qu'il ne lui doit rien; mais tout porte à croire qu'il ne l'a aidé en rien... Si Newton plus diligent avait formulé dix ans plus tôt sa « théorie des fluxions », le nom de Leibniz resterait un des plus grands dans l'histoire de l'esprit humain; mais tout en