Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 3 (1901)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LE THÉORÈME DE DESCARTES

Autor: Zervos, P.

DOI: https://doi.org/10.5169/seals-4671

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

sont supposés alternativement positifs et négatifs. En outre nous admettons encore que

$$\begin{vmatrix} a_{\nu+1} & | < | a_{\nu} \end{vmatrix},$$

$$\begin{vmatrix} a_{\nu+1} & | < | a_{\nu+2} \end{vmatrix}.$$

Il en résulte l'inégalité

$$\left| \frac{a_{\nu+1}}{a_{\nu}} \right| < \left| \frac{a_{\nu+2}}{a_{\nu+1}} \right|,$$

car

$$\left| \frac{a}{a} \right| < 1 \text{ et } \left| \frac{a}{a} \right| > 1$$

et on retombe, par conséquent, dans le cas précédent, c'est-àdire que le polynôme aura un nombre de racines positives inférieur d'une unité au nombre des variations.

P. Zervos (Athènes).

SUR LE THÉORÈME DE DESCARTES

Dans la démonstration suivante du théorème de Descartes nous employons le théorème de Rolle.

Laguerre (Œuvres complètes, 1) a aussi donné une démonstration du même théorème fondée sur le théorème de Rolle. Mais notre démonstration diffère essentiellement de la sienne. Elle montre comment, étant donné un polynôme, on trouve une limite supérieure du nombre des racines positives au moyen de la limite supérieure du nombre des racines positives de sa dérivée d'un certain ordre.

1. Si nous exprimons par n le nombre des variations d'un polynôme entier à coefficients réels, le nombre de ses racines positives est n-2t, où t est un entier positif ou zéro.

Je dis que, si cette proposition est vraie pour tout polynôme entier ayant n-1 variations, elle l'est aussi pour tous ceux ayant n variations.

2. Nous pouvons exprimer le nombre des racines positives de tout polynôme entier, qui présente n variations, par $n+2\rho_1$ où ρ_1 est zéro ou un entier positif ou négatif.

En effet, si n est un nombre pair, les termes extrêmes du polynôme ont le même signe, et par conséquent le nombre des racines positives est pair. Enfin la différence de deux nombres pairs est un nombre pair. — Et si n est un nombre impair, le premier terme du polynôme a un signe différent du dernier terme; donc le nombre des racines positives est impair, la différence de deux nombres impairs étant un nombre pair.

3. Je démontrerai l'impossibilité de l'inégalité $\rho_i > o$.

Démonstration. — Soit le polynôme donné

$$f(x) = a_0 x^m + a_1 x^{m-1} + \ldots + a_r x^{m-r} + a_{r1} x^{m-r-1} + \ldots + a_m$$

et admettons que la dernière variation se présente entre les termes a_r x^{m-r} et a_{r+1} x^{m-r-1} . Je prends les dérivées successives de f(x). De ces dérivées, la première qui offre n-1 variations est celle de l'ordre m-r. Car la variation que présentaient dans f(x) les termes a_r et a_{r-1} est perdue dans $f^{(m-r)}(x)$, à cause de la disparition des coefficients a_{r+1} , a_{r+2} et suivants.

Mais, pour n-1 variations on a supposé la proposition vraie, et par suite le nombre des racines positives du polynôme $f^{(m-r)}(x)$ est n-1-2k, où k est un entier positif ou zéro.

Donc le polynôme $f^{(m-r-1)}(x)$, dont la dérivée est $f^{(m-r)}(x)$ a des racines positives au nombre de n-2k tout au plus, d'après le théorème de Rolle.

Mais le polynôme $f^{(m-r-1)}(x)$ présente n variations; donc le nombre de ses racines positives est $n + 2p_2(\S 2)$, et il faut que

$$n+2\rho_2 \leq n-2k,$$

(où ρ₂ est un entier ou zéro)

d'où il suit

$$\frac{1}{12} \frac{1}{12} \frac$$

c'est-à-dire

$$n + 2\rho_2 = n - 2k_1$$
 où $0 \le k_1 \le k$

(k, étant un entier positif).

Maintenant, d'une part, je conclus, par le théorème de Rolle, que $n-2k_1+1$ est la limite supérieure du nombre des racines positives de $f^{(m-r-2)}(x)$. D'autre part, la remarque que le polynôme donné a n variations et par suite (§ 2) $n+2\rho_3$ racines positives (où ρ_3 est entier ou zéro) m'interdit la supposition que le polynôme $f^{(m-r-2)}(x)$ a $n-2k_1+1$ racines positives. En effet, dans le cas contraire, j'aurais

$$n-2k_1+1=n+2\rho_3$$
 d'où $\frac{1}{2}=\rho_3+k_1$

ce qui est absurde, puisque ρ_3 et k_4 sont tous les deux entiers. Donc

$$n + 2\rho_3 \leq n - 2k_1, -\rho_3 \geq k_1,$$

d'où

$$n+2\rho_3=n-2\lambda,$$

λ étant un entier positif ou zéro.

Par la même série de raisonnements je conclus que le nombre des racines positives de $f^{(m-r-3)}(x)$ est $n-2\mu$, où μ est un entier positif ou zéro.

De la même manière pour $f^{(m-r-1)}(x)$; par suite, en continuant ainsi, nous arriverons à une semblable conclusion pour f(x), c'est-à-dire que le nombre de ses racines positives s'exprime par n-2t.

Pour n=1 la proposition est évidente, donc le théorème de Descartes est démontré.

ing the first the second of th

P. Zervos (Athènes).

istis pasaisas printingaan

these transmired.