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QUELQUES REMARQUES

SUR LA

RECHERCHE DU NOMBRE DES RACINES POSITIVES

D'UN POLYNOME

1. Tout polynôme entier à coefficients réels perd 2 k variations

(k= entier positif ou zéro) par la multiplication par x-fa
(a > o).

2. Söit cl'abord un polynome complet, c'est-à-dire renfermant
toutes les puissances de x :

Ax* + 4. B'*v+1 — BxJ — BV"1 — CV+1 -f Cx'w + C"xw~l

qz K'x'+l zt Kx?zt K"x9~1 zt HxT-

Il y a une et une seule variation entre

Kx[K et — BxV|. etc.

il n'y a plus de variation entre les termes

K'V-1 et Hx'7

La multiplication par x -|-a donne

xoj+1 4-Ax^+1 +.. .+B< xv+2— B
' xv+1 — B" x' — — C' xw+2+C

•+()! + «B' — «B — •"•-O —aC'

+ C" + K' xp + 2±K xp+ l ± K" xe .±H
4~ aC H- • •+() qzaK' zt aK ..±0 : flHx7.

Ax^1 + ....+( K+2 + K+1 — (B" +«B)x" K+2 ± )x+1

+ (C" + aC)xu + ...+:( )*,f+1 ± (K" + «K)xp zh

Du premier terme du produit jusqu'à celui en nous n'au-
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rons qu une variation, car le premier terme et tous les suivants
jusqua celui en x' + 2sont positifs et le terme en est négatif;

donc, que le coefficient de soit positif ou négatif, nousn avons qu une variation jusqu'au terme en
De meme, du terme en x'jusqu'àcelui en », il n'y a

qu'une variation ; en effet, du terme en jusqu'à celui en
y+2, il y a constamment des termes négatifs et, le coefficient
de .r» étant positif, celui de x-> + 1 n'introduira, qu'il soit positifou négatif, qu'une nouvelle variation qui se présente jusqu'au
terme en xM.

En suivant de même, on remarquera qu'à chaque variation du
mu tiplicande en correspond une du produit, et, comme dans le
multiplicande tous les termes depuis K.r? ont le même signe, de
meme, dans le produit, tous les termes depuis celui en ontle même signe.

Nous avons ainsi montré que le nombre des variations n'aag-
mentera paspar la multiplication par -f ; mais il est

possible qu'il devienne moindre ; la démonstration précédente donne
par exemple, entre les termes +BV + I et — Bx% une varia-
A°n+ f multlPll®ande et de même une au produit entre les termes

11 + 1 et — aB)x\maiscela quand les termes B '.< • •'
etc., jusqu'au terme — Gr» +2 existent dans le polynôme primitif ;
si, au contraire, on n'a que le terme—Bx", alors on aura le pro-duit r

(termes posit.)+ (-B + aB>"+1 + )x"+
D'où l'on voit que si _B+«B'>0 et C-«B>o, une varia-

tion sera effectivement perdue.

3. Passons au cas d'un polynôme incomplet.
En multipliant par x+ aon n'augmentera pas les variations.

Car on passe du polynôme complet à l'incomplet, en égalant à
zero quelques coefficients du polynôme complet, tels que les
variations restent les mêmes. Alors, évidemment, le produit ne
présentera pas plus de variations qu'avant. Car, ou bien quelques

termes du produit, positifs ou négatifs, s'annuleront (ce
qui n influence pas les variations) ou bien quelques coefficients
positifs deviendront plus petits, tout en restant positifs, ou quelques

coefficients négatifs deviendront plus petits en valeur abso-
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lue, tout en restant négatifs (ce qui ne nuit pas aux variations),

ou bien parmi les coefficients de ar+i, ^w + 1, quelques-uns

vont changer de signe, ce qui n'augmentera pas les variations ; en

effet, comme nous l'avons déjà dit, ces coefficients seront de

mêmes signes que les précédents ou que les suivants, donc, dans

tous les cas, le nombre des variations n'augmente pas.

4- Corollaire. — En multipliant par on trouve une

limite supérieure du nombre des racines positives égale à celle

trouvée par le théorème de Descartes, ou même plus approchée.
E11 effet, la multiplication par x-\-a n'ajoute aucune racine

positive au polynôme ; d'autre part, le nombre des variations

peut diminuer, mais nullement augmenter.

5. Règle pour trouver rapidement les coefficients du produit par
x + i.

Le produit du polynôme

u, u.— 1 u.— 2

CIqX —j— Ct^X -j~" Cl.yX —j- • • • i"

par x -f- i donne

Cl^X* —j— (#q"~f- cl^X* —j— {pi d- Ct.^jX^ —j- ($9 -1— Cl^jX*

D'où la règle :

Pour trouver le coefficient de xy j'ajoute a,K_v à +

6. Remarque 4. — Un polynôme dont toutes les racines sont
réelles et positives a précisément autant de variations que de

racines.

f[x) — (x—ci) (x — b) (x — k)

Ces racines sont au nombre dev ;

a,.ß, y, k

tous positifs;

Je dis que le polynôme ne présentera pas plus de v variations.

En effet, il n'a que v-+- i termes. D'après le théorème de

Descartes, il ne peut pas y avoir moins de variations; donc il y
aura v.

y. Remarque 2. — La proposition connue : « Tout polynôme
n'ayant que des racines réelles, a précisément autant de racines
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positives que de variations » peut être démontrée très facilement
d'après ce qui précède. Soient

a, b, c, d, e, — », — —l
les racines d'un polynôme ; on a donc

(x— a){x—b)...{x— e)(xo.
Les cinq premiers facteurs donneront, d'après la remarque

un polynôme avec cinq variations, qui multiplié par {x + i),n'aura pas plus de variations qu'avant'(peut-être moins).

^

Mais ici le nombre des variations ne diminuera pas ; car,
d'après le théorème de Descartes, il y aura nécessairement autant
de variations que de racines positives c'est-à-dire cinq variations.
On démontrera la même chose pour la multiplication par (.r + Â) et
[x + l).

8. Cas oùCon peut effectivement trouver une limite plus
rapprochée des racines positives que par le théorème de Descartes.

Soit un polynôme avec trois termes alternativement positifs et
négatifs :

«0 X1* + alx'K
1

+ X|i~v+1—. a' x1' "v + ar*-"-1. +aV+
P-

Je dis que, si l'on a -

' Vl ^77 ' —>

OU

a a' a
V — 1, V, v+i

sont tous positifs, le nombre des racines positives sera nécessai
rement moindre, au moins d'une unité, que celui des variations
il serait donc, d'après le théorème de Descartes, moindre ai
moins de deux unités. En effet, puisque

a' a
V V — 1

il est évident que l'on peut choisir un nombre positif a tel que
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Multiplions le polynôme

M. I 1 r [X—v+l |x—v+l ix — y a—y—1
a0x' +. -f- a _2 x -}- a^__^ x —ci x -|- a + 1 x

- I H-—v—2+ «+2* +
par x -|- a y nous aurons

ciyT^1 -j~ (aav_i — a'vj«fA~v+1 +^v_|_1 — ad+ ..••••

Nous remarquons,• comme dans la première démonstration,
que, pour que le produit ait autant de variations que le
multiplicande, il faut qu'a la variation du multiplicande présentée par
les termes

;x—v+i i v—aa x et a xy—1

en corresponde une du produit entre les termes

(aav_j — a\) x^~v+i

et

(av+i aa\)x>J'~\

Mais, d'après notre hypothèse, les coefficients

cia — a' et a — ad
y —1 y y-1-1 y.

sont tous les deux positifs.
d

^ar ~~ä—^ d'où a!v < a ^v_i puisque a v_i > o, et par con-

a
sequent o < aay_i — a!, De même puisque —~— > <2, on a

tfy+i > afva, et ay+i — a'v a > o.

9. Application. — Soit le polynôme.

a0x[xJC ••• À~ ay_i x' -j--a^m* x[X 2

les coefficients
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sont supposés alternativement positifs et négatifs. En outre nous

admettons encore que

la,+.i<ki>
I av+l|<|av+2|-

Il en résulte l'inégalité

Vj-1 <

car

v+1 < i et

Vfl

\+2 > 1

et on retombe, par conséquent, dans le cas précédent, c'est-à-

dire que le polynôme aura un nombre de racines positives
inférieur d'une unité au nombre des variations.

P. Zervos (Athènes).

SUR LE THÉORÈME DE DESCARTES

Dans la démonstration suivante du théorème de Descartes

nous employons le théorème de Rolle.

Laguerre (Œuvres complètes, i) a .aussi donné une démonstration

du même théorème fondée sur le théorème de Rolle. Mais

notre démonstration diffère essentiellement de la sienne. Elle

montre comment, étant donné un polynôme, on trouve une

limite supérieure du nombre des racines positives au moyen de

la limite supérieure du nombre des racines positives de sa dérivée

d'un certain ordre. —

i. Si nous exprimons par n le nombre des variations dun

polynôme entier à coefficients réels, le nombre de ses racines

positives est n — 21, où t est un entier positif ou zéro.
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