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4o6 C.-A LAISANT

en appelant A et B les abscisses minimum et maximum des points
du contour. Cela résulte encore de la remarque faite au début
de ce travail, puisque xr et xr+L comprennent toujours entre
elles A, et que B est toujours comprise entre x§_± et x8.

La méthode que nous venons de suivre montre, non seulement

que la somme étudiée a une limite, mais que cette limite est la
même quelle que soit la loi suivant laquelle on fait varier les
distances analogues à xi+i— x{ et à yk+i—yk qui interviennent
dans notre démonstration. En effet, l'expression (6) conserve
toujours la même valeur quelle que soit cette loi. De plus, nous
aurions pu faire la même démonstration en intervertissant les
rôles des différences xi+i— xi9 yk+l — yk. Nous aurions trouvé
une expression de la limite cherchée, différente de (6) quant à la
forme, mais devant avoir même valeur numérique et même signe.
De là le théorème usuel sur la possibilité d'intervertir l'ordre
des intégrations indiquées dans la formule (6) sans changer le
résultat. V. Jamet (Marseille).

INTERPRÉTATION GÉOMÉTRIQUE

DES DÉRIVÉES RARTIELLES
DANS LA THÉORIE DES COURBES ET DES SURFACES ALGÉBRIQUES

i. — Dans l'étude des coniques et des quadriques, on considère
constamment les dérivées partielles, prises par rapport aux
coordonnées, du premier membre de l'équation de la courbe ou de

la surface; et il en est de même dans la théorie des surfaces

algébriques en général. •*

Il semble dès lors intéressant de se demander quelle est la

signification géométrique de ces dérivées, notamment lorsque
l'on y remplace les coordonnées courantes par celles d'un point
de la figure. Cela peut être en même temps utile pour certaines
applications.
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En ce qui concerne les figures du second ordre, cette

interprétation est d une telle, simplicité qu'on peut sans exagération
la considérer comme intuitive; et cependant les nombreux traités

de Géométrie analytique que j'ai consultés sont muets sur ce

point. D'autre part, les renseignements, recueillis verbalement

par moi, de plusieurs professeurs de mathématiques spéciales,
me portent à croire que la remarque dont il s'agit est nouvelle,
en dépit de son extrême simplicité. Je dois ajouter qu'elle s'est

présentée tout récemment à mon esprit, bien que depuis de fort
longues années je n'aie guère cessé de m'occuper de Géométrie

analytique. C'est une preuve de plus que les choses les plus simples

et les plus faciles ne s'aperçoivent pas toujours immédiatement;

cela montre aussi que dans l'enseignement de la Géométrie

analytique, — et cela un peu partout — le calcul a pris une
place peut être excessive, si bien que toute l'attention se porte
sur le symbole et nous fait trop oublier l'objet.

Dans ce qui va suivre, je me propose d'établir les remarques
dont je viens de parler, et d'en montrer quelques rapides
applications.

2. —J'examinerai d'abord, pour plus de simplicité, ce qui
concerne les figures du second ordre ; et je considérerai tout de suite
les quadriques, car les résultats obtenus seront applicables
immédiatement aux coniques, par analogie, avec une facilité plus
grande encore.

Soit donc l'équation d'une quadrique en coordonnées
cartésiennes

f[x,yyz) — A.X2 A'y2 -f- A."z2 -f* • • • — °>

la surface étant rapportée a des axes coordonnés quelconques.
Appelons^, yv z1., les coordonnées d'un point M delà surface.

Si nous menons par ce point des parallèles aux trois axes
coordonnés, les nouveaux points d'intersection, M1? M(, M7/, détermineront

trois cordes MAM, M{M, M[7M, et nous aurons
#

f'x,ixt>3u"1)
irrTTr -- „„ f'z, 3l)

MtM= 1Z1 ,M'1M=
1

m7m= Zi
A A / ' l

Ces relations existent en grandeur et en signe.
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Elles sont tellement évidentes, il faut le répéter, qu'on les
constate plutôt qu'on ne les démontre. Le moyen le plus simple est
peut-être de remarquer que l'équation fx — o représentant le plan
diamétral conjugué à la direction de l'axe des x, la distance du
point (#, y, z,) a ce plan, comptée suivant la direction de cet

faxe, a pour expression et que la corde M4M est double de

cette distance. De même pour les deux autres cordes.
Cependant, et en vue d une généralisation ultérieure, nous

allons présenter une démonstration proprement dite de la
propriété dont il s'agit. Si dans l'équation f (x, y, z) o nous
considérons provisoirement y et z comme des constantes, nous
pouvons l'écrire

F(x) — K{x — rcj (x —x2) — ° -

Alors fx (x, y 9 z) et F' (x) sont identiques; et x19 xa sont des
fonctions de y et de z. Si on donne à y et z des valeurs particulières

yl9 z±, les racines xiS x2 seront les abscisses des intersections

de la surface et de la droite y— yv z z±.
Or,

fw=ä+_^L.x — x1 X — x2

Dans cette identité, faisons x x1; elle deviendra

F' (xj — A(x1 — x2),

ou

ce qui démontre la propriété, puisque x± — x2 représente justement

la corde IV^M. 11 est clair que la même démonstration
s'applique aux deux autres dérivées partielles,

3. — La propriété que nous venons d'indiquer se prête à de
nombreuses applications. Nous nous bornerons ici à quelques
exemples.

i° Trouver sur une conique un point M tel que les cordes MM1?

MMj, menées par ce point parallèlement à deux directions don-
nèès, soient entre elles dans un rapport donné k.

On doit avoir M, M /clVLM, ou — dz k Ll
-

1 ' A • ^ C
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si là conique est rapportée à deux axes parallèles aux directions
données et a pour équation kx2 -\-Cy2,.. — 0.

Donc, en coupant la conique par les droites C/^=t£A/^ o, on
a les solutions. L'ambiguïté du double signe disparaîtrait si
Pons'était donné un sens des directions positives sur chacune des deux

directions. Le rapport k pourrait être alors positif ou négatif.
Plus généralement, si l'on se proposait d'avoir entre les deux

cordes M1M 2^, M{M p, considérées en grandeur et en signe,
une relation donnée cp (u, v) — 0, on rapporterait la conique a

deux demi-droites Ox, Oy parallèles aux directions positives don-
/ f' f \ -

'

nées, et l'on aurait cp (—^> —^-)=o. Les intersections de cette
1 A A G /

courbe, dont l'ordre est le même que le degré de la fonction cp,

avec la conique, donneraient les points cherchés.
20 SiLv une quadrique, trouver le lieu des points M tel que les

trois cordes M±M u, M^M —ç>, M"M *v, aboutissant à ce

point et parallèles à trois demi-droites données, satisfassent à une
relation donnée cp (u, v, w) o.

Les axes Ox, Oy, Oz étant pris parallèles aux trois demi-droites,

on aura

(f*_
T \ A 'A' 'A

L'intersection de cette surface avec la quadrique donnera le
lieu demandé.

On tirera de là tous les cas particuliers que l'on voudra. Il est
seulement bon de remarquer que la nouvelle surface est d'un
ordre égal au degré de la fonction cp. Si celle-ci est linéaire, par
exemple, le lieu cherché sera par conséquent une conique.

3° Trouver sur une quadrique un point tel que les trois cordes

u, v, w, définies ci-dessus, satisfassent à deux relations données

Cp. (u, v, w) O, ^ (il, V, w) — 0.

D'après ce qui précède, il faudra prendre les intersections des
deux surfaces

avec la quadrique. Si m, n sont les degrés respectifs des fonctions

cp, le nombre des solutions sera 2m n.
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Comme cas particulier très simple, soit à rechercher les points
pour lesquels les trois cordes M4M, M "M sont égales. Il
vient alors

f'x _ t'y __ f'z
A A' ~ A1' '

et les deux points d'intersection de cette droite avec la quadrique
sont les points cherchés. Si l'on demandait que les trois cordes
fussent égales en longueur seulement, il faudrait affecter de doubles

signes les expressions précédentes. Au lieu d'une droite on
en aurait alors quatre ; et au lieu de deux points on en aurait
huit.

4° Plan tangent à une quadrique.
Au point M que nous avons considéré, le plan tangent est

parallèle à celui qui a pour équation X/^ + k. Si
donc on porte sur les cordes MM4, MMJ, MM" des longueurs

MT17 MT[, MT", proportionnelles à -4-, -4-, -4-, le plan T4T(T"
'x 'y 'z

sera parallèle au plan tangent, ou ce qui revient au même, la
perpendiculaire à T1T1/Tj/ menée par M sera la normale à la
surface. Il suffit pour cela de construire

MV —lL=-, MTÎ=—MT" 2

i A A/TA/T A ' A/rn/ff 1V11,A.MM1 AijMMi 1 A"MM"

Dans le cas particulier des coordonnées rectangulaires, si l'on
construit MN4 A.MM4,... la diagonale du parallélépipède
formé sur MN4, MN(, MN", sera la normale en M à la quadrique.

4. — Il est facile de représenter géométriquement les dérivées
partielles, alors que le point (x9 y, z) considéré n'est pas situé
sur la surface, comme nous l'avons supposé jusqu'à présent.

Reprenant pour cela le calcul que nous avons indiqué ci-
dessus (2), nous avons identiquement

f{xj,z) — F(x)z=z A{x — xi) (.X— x2)

Or, si MM1M2 est une corde parallèle à Ox, passant par le
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point M considéré, et coupant la surface en Mj et M2, on a

a: —= MtM, x—^2==M2M. Par conséquent

ïkûlpÉL— mJÂ.M2MA- MjM + M,M
A, -A

On aurait des relations analogues en coupant la surface par
des droites parallèles à 0 yet Oz.

Ceci nous donne incidemment une représentation géométrique

de la fonction f,en même temps que de ses dérivées

partielles, quand on y remplace les cordonnées z par celles

d'un point quelconque. Cela nous permet, comme conséquence,
d'obtenir les coefficients A, A', A" de l'équation (ou du moins des

quantités proportionnelles), quand on a les trois cordes MjM2M,

M(M(M, qui vont concourir en M. Si nous construisons

en effet
MMj. MM2 ±MK2,
MM(. MM^IMK'V

MM". MMj' =±MK"2,

on voit que A, A', A" seront respectivement proportionnels à

i i i

±MK2 ' zfcMK'2 ' ±MK"»
MTM + MIM aPM

Alors fL sera exprime par —-—=- ou __. » en appe-1 1 ±MKa ± MK2

lant P le milieu de la corde M^; et de même pour les dérivées

partielles f{n f.
5. — Il nous est également possible d'arriver à une représentation

géométrique de la dérivée du premier membre de l'équation
d'une quadrique

'

f(x,y,z,t) — Ax2 + ^-Dê2 o

par rapport a la variable d'homogénéité, lorsque cette équation a

été rendue homogène,.
A cet effet, nous écrirons ce premier membre D [t—ZA) (t—z2),

Z t2 étant des fonctions de x, y, D'autre part, on a aussi

• f(x;y,z,t) Bt2 + to.L(xty,z) + cp2 {x,y,z),

ïi et ?i des fonctions homogènes dont le degré est marqué

par l'indice.
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Si nous appelons a, j3, y les paramètres directeurs de la droite
qui joint l'origine au point M, de coordonnées oc, y} z, et p la
longueur OM, il vient

f(x,y,z) — D + p, cp1(a,ß,y) + p2cp2 (oc,ß,y).

Appelons p,, p2 les longueurs OM,, OM2, en grandeur et en

signe, M,, M2 étant les intersections de la surface par la droite

OM; et p étant connu, posons —- — s; r désigne alors le rayon
vecteur d'un point quelconque de OM, et p,, p2 sont les valeurs
particulières de r qui correspondent à M, et M2.

L'équation qui a pour racines p,, p2 est

D + rcpi(a,ß,y4-r2p2(a,ßJy) o,

OU

r i*2D + — + -j-r P

ou enfin
2 n

D TT + 7- 9L far,z) + y%{x>y>z) — 0 ;

c'est-à-dire,
Ds2 + syt(x,y,z) + ^2(x,y,z) =o.

Cette équation étant identique avec l'équation en t, il s'ensuit

j "
p p OM OM

que les deux racines Z;, L sont—!—? —1— ou >

1 2
Pi P2 OM, OM2

Le premier membre f{x9 y, de l'équation de la surface, qui
s'obtient en faisant t= 1 dans l'équation rendue homogène, a donc

pour expression

/ OM \ / OM\ MM;.MM2

\ 5m^/\ / ÖM^ ômJ

Or, puisque f{x, y, z) — D (z— Z,) (z—Z2), on a l'identité

ft(x,y,z,t) D(a* — t±—t^.

Gela nous donne pour l'expression cherchée de f't,

En définitive, si, sur la droite OM, qui coupe la surface en M,,
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M, nous construisons le point H conjugué harmonique de 0 par

rapport àM/M,, ce qui donne.=-+ M ' rexPressl0n

géométrique de f't sera
MH

sD
OH

\

Pour un point placé sur la quadrique, M, par exemple, 1 expres-
m H M9H

'

sion serait 2 D et pour l'autre 2 D Il s ensuit que

le rapport des valeurs de f't répondant aux deux points M,, M2

est
M^H __ OMa

Mpî
~~

OM2

6. — En résumant les résultats que nous venons d obtenir,

appliqués à un point quelconque, nous pouvons énoncer les

propositions suivantes.

Si, dans le premier membre de Véquation d'une quadrique

z) .+ A'J2 + • • • + D °>

et dans sa dérivée î'x (x, y, z) nous remplaçons les coordonnés

x, y, z, par celles d'un point M. ; si d'autre part, MM, M2, est une

parallèle à Ox qui perce la surface en M,, M2, nous aurons

f (x, y, z) A. MM;. MM2, îl (x, y, z) A (M^+MSl) ;

et de même, bien entendu, pour les dérivées ï'y î'z.

Si, avec les mêmes notations, nous appelons P,, P?, les points
oii la droite OM perce la quadrique, nous aurons

_ MMi MM, _ / MMi MM, \
f(x,y,z) — D =e- fé(ocj,z,t) D -=+- + •/l J'

om, om2 Vom, om,/

r7. —Essayons maintenant d'arriver à des figurations analogues

pour les coniques rapportées à des coordonnés trilinéaires, ou

pour les quadrique s en coordonnées tétraédriques. Nous nous
bornerons à ce dernier cas, l'application aux coniques en résultant

d'une façon évidente, et nous supposerons qu'il est fait usage
de coordonnées barycéntriques.

Soit f (ér, y,.zy t) A ,xS d- — o l'équation d'une quadrique

Enseignement math. 27
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rapportée au tétraèdre ABCD. Désignons par x, t les
coordonnées d'un point quelconque M de l'espace, et considérons
la droite AM qui perce la quadrique en M, et M2.

Proposons-nous de chercher les coordonnées de ces deux
points M,, M2. Nous pouvons prendre z, pour trois
coordonnées de chacun d'eux, et il n'y a à déterminer que la
coordonnée xlpourMj et x2pourM2. Ces valeurs sont les
racines de 1 équation A.r2= o. où t sont considérées
comme données.

Or, nous avons les équipollences

(x+J + - + t) ÄM =jÄB-f-: AC +/Ä5,

+y4--H) ÂMi=y ÄB -f 3 AC 4- AD,

fe+y+î+ f) ÄÄT2=yÄB + s Âc -p tÄü.

Dans ces relations, les coordonnées, par cela même qu'elles
sont homogènes, n'interviennent en réalité que par leurs rapports.
Nous pouvons les rendre absolues en supposant que nous nous
imposions la condition

x-\-y-\-z-\-t= i.
Dès lors, les relations ci-dessus nous donnent

ÄM —aî +arj—* + .r2);

delà,
AM MM.x— x.— L

AM MM,x— -,
am2 am2

Le premier membre de l'équation de la quadrique, qui peut
s'écrire

A(# x^ (x — x.^j — f(x,y, z,t)

a donc pour expression géométrique

A MM, MM2 (')

AM^ ÂM2

Dans cette expression et dans quelques-unes des précédentes, nous
employons la lettre A (et aussi B, G, D) pour déterminer, tantôt les sommets du
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De l'identité précédente nous tirons

f — —X- 1 — K(x — x, A~x -—x9),
>X v -y>

1

n/> /y»
V ' 11

*Aj tAS A UO t/L> Ç\

V AMt AM2

Cette dérivée partielle f'x peut encore s'exprimer sous une
autre forme. Si Hrt indique le conjugué harmonique du sommet A

par rapport au segment nous avons

AM4 AM2 / V AHa / HaA

et aussi

fj 2A -
MMr MM, HqA

AMr AM2 H'„M

si li^ est le conjugué harmonique de M par rapport à MiM2.
Nous résumerons dans les deux propositions suivantes les

résultats que nous venons d'obtenir?
Une quadrique étant rapportée, en coordonnées barycentriques,

au tétraèdre ABCD, appelons x, y, z, t les coordonnées d'un point
M de l'espace, la condition x+.y+ z +t i étant remplie-, soient
M1? M2 les points de rencontre de AM avec la surface, et Bh, les

points conjugués harmoniques de A et de M par rapport à Mi M2 ;

soit enfn f o l'équation de la quadrique.

I. — Si dans la fonction f, on remplace les coordonnées
courantes par celles du point M, le résultat de cette substitution
sera

A MMr MM2

AM1. AM2

le coeffcient A étant celui de x2 dans l'équation de la surface.

tétraèdre de référence, tantôt les coefficients de ;r2, y-, z'2, p dans le premier
membre de l'équation de la quadrique. Mais aucune confusion n'est possible, et
il nous a paru au contraire que l'exposition n'aurait qu'à gagner en clarté à cette
identité des notations.
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Par conséquent

f [oc, y, z) A. MjM. M2M... M,M

foc{x) J, z)~ A. M^... M, M
X

MJM _r'" Up M

Si, en^jparticulier, M est sur la surface, ce point coïncide avec
1 un des points Mr,... M,, avec Ml par exemple, et alors

fx{oc,y, z)~A. M2M. M3M... M, M.

général, si la moyenne proportionnelle des segments
MMlf MM, est MP (en tenant compte du principe des
signes, bien entendu, ce qui peut amener le point P à être
imaginaire) et si H7 est le centre harmonique des points Mp... M,
par rapport à M pris comme pôle, nous aurons

f{x,y,z)- A. PM*,

VMP
f'x{oc,y, z) — Ap.

H'M

Il est bon de rappeler que le coefficient A peut être, soit un
nombre constant, soit une fonction des coordonnées y et z du
point M.

Si le point M est tel que la somme des inverses des segments
MM17,.. MM, soit nulle, on a fj (#, y, i)=^o; d'où une définition
directe de la surface représentée par cette dernière équation en
considérant x, y, £ comme des coordonnées courantes.

Il est clair que l'on obtient des résultats analogues pour les
autres coordonnées y, 3,

9- — Cherchons, par extension des considérations indiquées
au n° 5, à interpréter la dérivée f/ du premier membre de l'équation

d'une surface algébrique, par rapport à la variable d'homogénéité,

lorsqu'on remplace les coordonnées courantes par celles
d'un point M quelconque.

L'équation f o peut s'écrire

D^'-f — o,

ou
D (f-f,)... (t-tp) o,
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p étant égal au degré n de la surface si celle-ci ne passe pas par

l'origine, auquel cas D est une constante. Autrement, D sera une

certaine fonction des coordonnées xy y, z.

Si nous voulons déterminer maintenant les intersections (autres

que l'origine) d'une droite joignant l'origine au point M1 de

coordonnées x, y„ nous pouvons écrire le premier membre, en

groupant les termes homogènes,

—p y>z) "h • H- Tn y iz)'

et cpn_p est identique à D. '

Posant x «s ap, y (3p, z yp, et prenant pour inconnue le

rapport — 5, en appelant r le rayon vecteur d'un point de OM

qui devra se trouver sur la surface, nous obtenons, après avoir

supprimé les n — p racines nulles,

yy <Pn _ p
(x>y>z) + • •• + (x> z) °'

ou
o {x,y,z). + •• + ?» {X'Ji z) — °-

Les équations en s et en t sont donc identiques, c'est-à-dire

que les racines t±9 tv représentent les rapports

OM OM OM

OMt OM2 OM^'

les points M1? Mp étant ceux où la droite OM perce la
surface.

Par suite, le premier membre de cette dernière, ou f(x, y, z)

a pour expression géométriqr

D

que

OM \ / OM

OMJ \ OM_

D MM1 MMj;

ÔMi OMr

On a en outre

ft'{x,y, z,t f(x,y,z,t)-jXj- ++ ]
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c'est-à-dire, t devant être remplacé par l'unité,

f,_D Mg ...MM; /ÖM, 5M;y
;

'
ÖM, OMp XMM, mm;/

Si en particulier, le point M est situé sur la surface, en Mt
par exemple, l'expression se réduit à

D MM, MM;
OM2

' ' '
ÔM(,

'

Considérons maintenant une surface rapportée, en
coordonnées homogènes barycentriques, à un tétraèdre ABCD de
référence, et soit

/ y-, Z) t) — Axp -{-... zzz o

son équation, ordonnée par rapport aux puissances de la
coordonnée x. Sip z=z. n (1 ordre de la surface), A sera un coefficient
numérique. Si p << 72, A sera une fonction des trois autres
coordonnées. En tous cas, l'équation en x aura p racines, c'est-à-dire
que le premier membre pourra s'écrire

A(x — xJ {x — xp).

Appelons x, y, %y t les coordonnées d'un point M, etM1? M.,,
les points ou AM perce la surface. .Supposons enfin que x —|— y

Z~\~ t — I. Nous pouvons représenter par (x±i y5 *),... les
coordonnées des points M15... et il est évident que ces points
sont au nombre de p, et que les valeurs xif... xp sont précisément

les mêmes que les racines de l'équation en x, considérées
ci-dessus. Exactement comme au n° 7, nous voyons aussi que
pour un point M,- quelconque, nous avons

AM MMfX — Xi r
AM; AM;

Le premier membre de 1 équation de la surface a donc pour
expression géométrique

MM"t MMp
• âm; ÂM;

'
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et, exactement comme dans ce qui précède, nous avons aussi

A MM,... ,MMf / Al, ÂMP \
_' fx ~ AM^-AMp\Mlp-"" MM„/

La quantité entre crochets peut encore s écrire

Ml - - _
MA

pmm;"MMT. :

ou
/ MÄ \ _ .Vlï:„

'T MHV/
P

si Efa est le centre harmonique des points Ml5... M?, par rapport
au point M.

Nous obtenons donc, en définitive, pour l'expression de f'xy

• • MB, MM?? H 'g À
P

AjS..; TMp H'rt M
'

n. — En nous reportant aux résultats du n° 8, nous voyons

que si, par rapport à un point quelconque M (#, y-, z), le centre

harmonique des points où une parallèle menée par M à Ox perce
la surface est à l'infini, on a

£'(*, j, z)=o.

Cette conclusion est encore vraie si onl'étend à tous les points
de rencontre, et non plus seulement aux points considérés, car

les termes — qu'on introduirait seraient nuls, dès lors que
MM* ^

le point M; s'éloignerait à l'infini.
Supposons qu'il en soit de même pour f'y (x, z/, z) et fx (x, y, z) ;

et sans changer les directions des axes coordonnés, prenons le

point M pour origine.
L'équation de la surface dans ce systèmeme contiendra évidemment

plus les termes du premier degré en -x, y, -z. Si nous
cherchons alors les points d'intersection de la surface avec une droite
de direction quelconque (a, ß, y) issue de l'origine, nous obtiendrons

une équation de la forme.

pn(Aa"+.+ p2(Ka2 + ...)+D o.
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En appelant p,,... pn les racines de cette équation, on a

Donc, si le centre harmonique des points de rencontre par
rapport à M est à l'infini dans trois directions distinctes, il en est
de même pour toute droite passant par M. On pent dire d'un tel
point que c'est un centre harmonique de la surface.

Comme les coordonnées du point M sont données par les équa-
tions fx o, fv o, f'x o, qui représentent en général des
surfaces d'ordre n — i, il s'ensuit qu'une surface du ordre
possédé (n— i)3 centres harmoniques. Chacune des surfaces
fx o,... peut être considérée comme une surface diamétrale
harmonique, en appelant ainsi le lieu des points jouissant de- la
propriété indiquée, pour un système de droites parallèles à une
direction donnée.

En admettant que l'équation fo soit complète, il est visible
que le lieu des centres des moyennes distances des points
d'intersection de la surface par des cortfes parallèles à O.r est un
plan, —° ; mais, s'il en est ainsi pour les trois directions
d'axes O.r, O y,Os,il ne s'ensuit plus que la même propriété
subsiste pour une autre direction ; on le reconnaît sans aucune
peine en examinant l'équation de la surface -dans cette hypo-
thèse.

La véritable généralisation de la théorie des plans diamétraux
et des centres se trouve donc plutôt dans la considération des
centres harmoniques dont nous venons de parler, et qui pour-rait mériter une étude h part.

Nous ferons remarquer en terminant que les centres, harmoniques

coïncident exactement dans les quadriques avec les centres
dans le sens ordinaire du mot, parce que de —- 1-

1

r 1 M,M ~ M.,M —
on tire MtM + MSM o ; ce qui cesse d'être vrai lorsqu'il y a
plus de deux points d'intersection.

C.-A. Laisant.
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