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406 o C.-A. LAISANT

en appelant A et B les abscisses minimum et maximum des points -
du contour. Cela résulte encore de la remarque faite au début
de ce travail, puisque z, et z,,, comprennent toujours entre
elles. A, et que B est toujours comprise entre z,_, et z,.

La méthode que nous venons de suivre montre, non seulement
que la somme étudiée a une limite, mais que cette limite est la
méme quelle que soit la loi suivant laquelle on fait varier les
distances analogues a 2;,,—2; et & y,,, — y, qui interviennent
dans notre démonstration. En effet, 1’expression (6) conserve
toujours la méme valeur quelle que soit cette loi. De plus, nous
aurions pu faire la méme démonstration en intervertissant les
roles des différences x,,,—x;, ¥y, —y,. Nous aurions trouvé
une expressmn de la limite cherchée, différente de (6) quant a la
forme, mais devant avoir méme valeur numérique et méme signe.
De la le théoréme usuel sur la p0551b111te d’intervertir 'ordre
des intégrations indiquées dans la formule (6) sans changer le
résultat. V. Jamer (Marseille).

INTERPRETATION GEOMETRIQUE

DES DERIVEES PARTIELLES

DANS LA THEORIE DES COURBES ET DES SURFAGES ALGEBRIQUES

*

1. — Dans1’étude des coniques et des quadriques, on considére
constamment les dérivées partielles, prises par rapport aux coor-
données, du premier membre de ’équation de la courbe ou de
la surface; et il en est de méme dans la théorie des surfaces
algébriques en général. -

Il semble deés lors intéressant de se demander quelle est la
signification géométrique de ces dérivées, notamment lorsque
I'on y remplace les coordonnées courantes par celles d’un point
de la figure. Cela peut étre en méme temps utile pour certaines
applications. |




INTERPRETATION GEOMETRIQUE DES DERIVEES PARTIELLES 407

En ce qui concerne les ﬁgures du second ordre, cette inter-
prétation est d’ une telle. 51mphclte qu’on peut sans exagération
la considérer comme intuitive; et cependant les nombreux trai-
tés de Géométrie analytique que j’ai consultés sont muets sur ce
point. D’autre part, les renseignements, recueillis verbalement
par moi, de plusieurs Professeurs de mathématiques spéc‘iales,
me portent a croire que la remarque dont il s’agit est nouvelle,
en dépit de son extréme simplicité. Je dois ajouter qu'elle s’est
présentée tout récemment & mon esprit, bien que depuis de fort
longues années je n’aie guére cessé de m’occuper de Géométrie
analytique. C’est une preuve de plus que les choses les plus sim-
ples et les plus faciles ne s’apercoivent pas toujours immédiate-
ment; cela montre aussi que dans I’enseignement de la Géomé-
trie analytique, — et cela un peu partout — le calcul a pris une
place peut étre excessive, si bien que toute I'attention se porte
sur le symbole et nous faitirop oublier 'objet.

Dans ce qui va suivre, je me propose d’établir les remarques
dont je viens de parler, et d’en montrer quelques rapides appli-
cations.

2. —J’examinerai d’abord, pour plus de simplicité, ce qui con-
cerne les figures du second ordre ; et je considérerai tout de suite
les quadriques, car les résultats obtenus seront applicables immé-
diatement aux coniques, par analogie, avec une facilité plus
grande encore.

Soit done I'équation d’une quadrique en coordonnées carté-
siennes

f(@y,2) = Ax? L Aly2 - A"22 |- ... = o,

la surface étant rapportée a des axes coordonnés quelconques.

Appelons z,, y,, %, les coordonnées d’un point M de la surface.
S1 nous menons par ce point des paralleles aux trois axes coor-
donnés, les nouveaux points d’intersection, M,, M], M/, détermi-

neront trois cordes MM, M;M, MM, et nous aurons

f;l (@4, Y15 241) AT — f;;l (1715 24) M T — f/ (xv.')'i: %)

M, M= T , M, % N

Ces relations existent en grandeur et en signe.
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Elles sont tellement évidentes, il faut le répéter, qu’on les con-
state plutét qu'on ne les démontre. Le moyen le plus simple est
peut-étre de remarquer que I’équation f,— o représentant le plan
diamétral conjugué a la direction de 1'axe des z, la distance du

point (2, y, z,) a ce plan, comptée suivant la direction de cet
/

axe, a pour expression fg » et que la corde M,M est double de
% 2

cette distance, De méme pour les deux autres cordes.
Cependant, et en vue d'une généralisation ultérieure, nous
allons présenter une démonstration proprement dite de la pro-
priété dont il s’agit. Si dans I’équation / (z, y, 5) = o nous con-
sidérons provisoirement y et z comme des constantes, nous pou-

vons ’écrire
Flx) =A(x—=x) (x—x,) —o.

Alors 1} (z, y, z) et F'(z) sont identiques; et z,, x, sont des
fonctions de y et de z. Si on donne a y et z des valeurs particu-
lieres y,, z,, les racines z,, x, seront les abscisses des intersec-
tions de la surface et de la droite y=y,, 5=3

Or

T

1

F() FIRIC)

x— 2, x— i,

F/(a) =

Dans cette identité, faisons 2 =uz,; elle deviendra

F' (2,) = A(x; — ),
ou
f;l(xi’yi’ z)) = Ax, — x,),

ce qui démontre la propriété, puisque x, — &, représente juste-
ment la corde M,M. 1l est clair que la méme démonstration
s’applique aux deux autres dérivées partielles,

3. — La propriété que nous venons d’indiquer se préte a de
nombreuses applications. Nous nous bornerons ici a quelques
exemples, " .

1° Trouser sur une conique un point M tel que les cordes MM,,
MM!, menées par ce point parallélement & deux directions don-
neés, soient entre elles dans un rapport donné k.

£/ /
On doit avoir m =/d_Vl—{TVl—, Qq.f:’;’”— == il—fci »
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si la conique est rapportee a deux axes paralléles aux directions |
données et a pour equatlon Az* 4 2Bxy + Cy? .. |

Donc, en coupant la conique par les droites Cﬂ:t/cAf;/ =0, on
a les solutions. L’ambiguité du double signe disparaitrait si I’on
s’était donné un sens des directions positives sur chacune des deux
directions. Le rapport k pourrait &tre alors positif ou négatif.

Plus généralement, si 'on se proposait d’avoir entre les deux

cordes W =u, M/M = ¢, considérées en grandeur et en signe,
une relation donnée ¢ (u, ¢) = o, on rapporterait la conique a
deux demi-droites Ox, Oy paralléles aux directions positives don-
/ / .

nées, et l'on aurait ¢ (7];—, —f-> — 0. Les intersections de cette
courbe dont l'ordre est le méme que le degré de la fonction 0,
avec la conique, donneraient les points cherchés.

2° Sur une quadrique, trouver le lieu des points M tel que les
trois cordes I’Vli—Mz u, W:V, MM =w, aboutissant & ce
point et paralléles a trois'demi-droites données, satisfassent a une
relation donnée ¢ (u, ¢, w)= o.

Les axes Oz, Oy, Oz étant prls paralleles aux trois deml droi-

]sz flz fr
‘?<A ’A{’A'/> o-

L’intersection de cette surface avec la quadrique donnera le

tes, on aura

lieu demandé. . | "

On tirera de la tous les cas particuliers que 'on voudra. Il est
seulement bon de remarquer que la nouvelle surface est d’un
ordre égal au degré de la fonction p. Si celle-ci est linéaire, par
exemple, le lieu cherché sera par conséquent une conique.

3° Trouversur une quadrique un point tel que les trois cordes
u, v, w, définies ci-dessus, satisfassent a deux relations données
o (u, v, w)=o0, ¥ (u, ¢, w)=o. |
~ D’apreés ce qui précede, il faudra prendre les intersections des
deux surfaces

fo £y fs)_o offe Ly 1=
?(A Sy il Oy Anb i A\ withy oty vl el

avec la quadrlque Si m, n sont les degres 1‘espect1fs des fonc-
tions-¢, ©, le nombre des solutions sera 2 m n.
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‘Comme cas particulier tres simple, soit & rechercher les poihfs
pour lesquels les trois cordes M,M, M{M, M;'M sont eg‘lles 11

vient alors

fa _ f’y'__. i
A T AT TR

et les deux points d’intersection de cette droite avec la'quadrique
sont les points cherchés. Si 'on demandait que les trois cordes
fussent Aégales en longueur seulement, il faudrait affecter de dou-
bles signes les expressions précédentes. Au lieu d’une droite on
en aurait alors quatre; et au lieu de deux points on en aurait
huit.

4° Plan tangent a une quadrique,

Au point M que nous avons cons1dere le plan tangent est
‘parallele a celui qui a pour equatlon }\f’+ny—{—Zf’_lﬁ S1
donc on porte sur les cordes MM“ MMj, MM/ des longueurs

MT,, MT;, MT}, proportionnelles & 7]-[,—, le plan T, TiT{

“T?v 79
i

sera parallele au plan tangent, ou ce qui revient au méme, la

perpendiculaire a T, T{T;" menée par M sera la normale a la sur-
face. Il suflfit pour cela de construire

h? A - k2 S k2.
MT _ —— ,:————-7 =
L. AMM, MT1 Ay, MM,

Dans le cas particulier des coordonnées rectangulaires, sil’on
construit MN, = AMM,,... la diagonale du parallélépipede
formé sur MN,, MN], MN/, sera la normale en M a la quadrique.

4. — Il est facile de représenter géométriquement les dérivées
partielles, alors que le point (z, y, z) considéré n’est pas situé
sur la surface, comme nous I’avons supposé jusqu’a présent.

Reprenant pour cela le calcul- que nous avons Andiqué ci-
dessus (2), nous avons identiquement

ae

f(y,5) =F(x) = Alw—a) (x — ,)

[l = Fla) = 0 1

= A(sx— x, —a,).

Or, si MM,M, est une corde paralléle a Oz, passant par le

[
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point M considéré, et coupant la surface en M, et M,, on a

z—z, = M,M, x——x2=M2M Par c'Onsequent

j“‘('—;%—)" M, M . MM, 72; = MM 4 MM .

On aurait des relations anal()gues en coupant la surface par
des droites paralleles a Oy et Oz. |

Ceci nous donne 1n01demment une representatlon geometrl-
que de la [onction f, en méme temps que de ses dérivées par-
tielles, quand on y remplace les cordonnées x, y, z par celles
d’un point quelconque.-Cela nous permet, comme conséquence,
d’obtenir les coefficients A, A’ A" de I’équation (ou du moins des
quantités proportionnelles), quand on a les trois cordes M,M,M,
MMM, M;"MjM, qui vont concourir en M. Si nous construisons
“en effet

MM,. MM, = == MK?2
MM;. MM, = == MK?,

o

MM, . MM,

on voit que A, A/, A” seront respectivement proportionnels a
I I ' 1

+MK? ' +£MK? ‘"MK

—

M,M + M,M 2 PM
MR O £ MK
lant P le milieu de la corde M,M,; et de méme pour les dérivées

partielles f;, /1. : oo

Alors f; sera exprimé par , en appe-

5. — Il nous est cgalement poss1ble d’arriver a une representf\-
tion geometmque de la dérivée du prermer membre de I’équation
d’'une quadrique

: f(x,y>z>t) — Ax? + o5 oW +Dt2: o}

par rapport a la.variable d’homogénéité, lorsque cette éE[uation a
ét6 rendue homogene, |

A cet effet, nous écrirons ce premler membre D (L‘——t ) (t—1,),
L» L, étant des fonctions de =, y, z. D’autre part, on a aussi

fl@y,58) = D2 A4 to,(@y,%) + 2 (®,2),

t

4 et o, étant des fOIlCthIlb homogenes dont le degre est mar que
par I’ mdlce
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St nous appelons «, 3, v les paramétres directeurs de la droite
qui joint lorlgme au point M, de coordonnées z, y, z, et e la
longueur OM, il vient

f(@,y,2) =D +p; o, (a,,y) SN CAROP
Appelons p,, p, les longueurs OM,, OM,, en grandeur et en

signe, M,, M, étant les intersections de la surface par la droite

OM; et p étant connu, posons —5;— =s; r désigne alors le rayon

vecteur d'un point quelconque de OM, et p,, p, sont les valeurs
particulieres de r qui correspondent a M, et M,.
L’équation qui a pour racines p,, p, est

D 7o (2,87 +720,(2,8,7) = o,
ou

r 72

D+ T 04(%,7,3) + e ?y(®,y,5 = 0

ou enfin

D

L+ Loy d) +ealere) = o;
¢ 'est-a-dire, |
82—1—8?1( %) + 9a(257,3) =o.

Cette equatlon étant 1dent1que avec I'équation en ¢, 1l s’ensuit
0 OM OM

2 y —> ou ="

Pr . P2 OM, OM,

Le premier membre f(z, y, z) de ’équation de la surface, qui

s’obtient en faisant t=1 dans I’équation rendue homogene, a done

que les deux racines ¢, ¢, sont

pour expression

DI———Q_—E—.—)<I———O_£-:D_M_T MM, . )
OM, oM, . OM,

[

Or, puisque f'(z, y, 3, t)=D (t—1t,) (¢—1,), on a 'identité
1 (x,y,2,t) = D(2t — ¢, —1,).
Cela nous donne pour 'l’expression cherchée de

D(2__ oM OM)_D(MMl_l_ MMZ).
OM, OM oM, OM, /

En définitive, si, sur la droite OM, qui coupe la surface en M,,
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M nous construisons le pomt H ‘conjugué harmonique de O par

I 1 . -2

r'lpport a M, M,, ce qui donne_-——"O»—«M'1 .—’_VO—‘Mg = n° lexpres?lon

, , / .
ge_ometrlque de £ sera
” MH

OH

2D

. ,
Pour un pomt phce sur la quadrlque M1 par exemple I’ expres—

le rapport des valeurs de 1 -répondant aux deux points M, M2

est
MH _ OM,
M,H  OM,
6. — En resumant les résultats que mous venons “d’obtenir,

apphques a un pomt quelconque, nous pouvons enoncu les
pr 0p051t10ns su1vantes
Si, dans le pr emier membze de equatwn d’une quadiz(/ue

f(x>.7>:) :sz—‘—A')’l —I— I +D =0,

et dans sa dérivée [, (x, y, z) nous remplacons les coordonnés
X, V, 2, par celles d'un point M ; si d’autre part, MM1 M,, est une
parallele & Ox qui perce la surface en M,, M,, nous aurons
f(x, y, z)=A. MM,. MM,, £, (x,y, z2)=A (M,M~+DM.M);
et de méme, bien entendu pour les déripées fy, f7.

Si, avec les mémes notations, nous appelons P,, P,, les points

ot la droite OM perce la quadrique, nous aurons

|

MM, . MM, ., _/NM, , MM,
f(x,y,Z) o D ——— ) It (xﬁya%t) — D( = -
OM, . OM, ~ OM,  OM,
7. — Fssqyons maintenant d’arriver a des ﬁgurations analogues

pour les coniques rapportées a des coordonnés tr111ne‘ures ou
pour les qtnquues en coordohnees tetraedrlques \Tous nous
bornerons a ce dernier cas, 1appl1c‘1t10n aux coniques en résul-
tant d’une facon ev1dente et nous supposerons qu 11 est falt usage
de coordonnees barycentnques ,

Soit f (x, y, 3, t) = A 2° 4 ..=0 l’equatlon d’une quflduque

Enseignement math. _ 27
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rapportée au tétraedre ABCD. Désignons par z, y, z, ¢ les coor-

données d’un point quelconque M de l'espace, et considéron

la droite AM qui perce la quadrique en M, et M,. ’
Proposons-nous de chercher les coordonnées de ces deux

points M,, M,. Nous pouvons prendre y, z, ¢ pour' trois coor-

données de chacun d’eux, et il n’y a a déterminer que la coor- i

donnée x, pour M, et z, pour M,. Ces valeurs x,, x, sont les

racines de 1’équation Az’ + ...=o0, ol y, z, t sont considérées
comme données, ’ |

Or, nous avons les équipollences
(.x—-}—)'—-}—:—{-t)m:yﬁ—{—zxé—{—trﬁ, z
(#,+y+z+1t) AM;=y AB 4z AC ¢ AD,
(x,+y 4241 AM, = yAB + z AC - £AD.

Dans ces relations, les coordonnées, par cela méme qu’elles
sont homogénes, n’interviennent en réalité que par leurs rapports.

Nous pouvons les rendre absolues en supposant que nous nous
imposions la condition :

x+y—+z4+t—=r. : i

Dés lors, les relations ci-dessus nous donnent

17

AM = M@ —x+x) =AM, (1 —x+ x,);

de la, T
AM MM
—x —1 — —— = ——1
AM, AM,
AM MM,
X— Ly — 1 — —— = —— 2, .
AM,  AM,

Le premier membre de I’équation de la quadrique, qui peut
s’écrire
Alw— ) (2 =) = flay, 21

a donc pour expressibn géométrique

(') Dans cette expression et dans quelques-unes des précédentes, nous em-
ployons la lettre A (et aussi B, G, D) pour déterminer, tantdt les sommets du
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De l'identité précédente nous tirons

X— X, X Xy

ou

ﬁ':A(l\%. 4 Mﬂ)
AM, | AM,

Cette dérivée partielle f, peut encore s’exprimer sous une

autre forme. Si H, indique le conjugué harmonique du sommet A

par rapport au segment M, M,, nous avons

[ ——— —

AM ! ‘ M H,M
fﬁ’IA(Z‘—- AM _AM ):2A<1— Al ):2A g
AM, AM, AH,

1

et aussi

MM,. MM, HA
AM,. AM, H,M

fx.':_zA

s1 H; estle conjugué harmonique de M par rapport a M, M,.

Nous résumerons dans les deux propositions suivantes les
résultats que nous venons d’obtenir:

Une quadrique étant rapportée, en coordonnées barycentriques,
au tétraedre ABCD, appelons x, y, z, t les coordonnées d’un point
M de lespace, la condition x+y—z—-t==1 étant remplie; soient
M,, M, les points de rencontre de AM avec la surface, et Hy,, H., les
points conjugués harmoniques de A et de M par rapport c‘z'M1 Mg‘;
soit enfin £ = o l'équation de la quadrique.

I. — §i dans la fonction f, on remplace les coordonnées-cou-
rantes par celles du point M, le résultat de cette substitution
sera

A MM, MM,

AM,. AM,

Z

le coefficient A étant celui de x* dans Z’éguation de la surface.

tétraedre de référence, tantdt les coefficients de a2, y%, 2%, £ dans le premier
membre de I'équation de la quadrique. Mais aucune confusion n’est possible, et
il nous a paru au contraire que l'exposition n’aurait qu’a gagner en clarté a cette
identité des notations. -



418 C.-A, LAISANT

Par conséquent

f(x,y 2 =A MM. MJM... M,M

‘ . 1 1
fx(x7y’z):A.M1M M];M<MNI+ . MPI\I)

S1, engparticulier, M est sur la surface, ce point coincide avec
'un des points M,,... M,, avec M, par exemple, et alors

fz'(x,y,3) =A. M,M. M.;M... M, M.

"En generdl si la moyenne proportionnelle des segments
\/IM M . MM, est MP (en tenant compte du prmclpe des
51gnes blen entendu ce qui peut amener le point P & étre ima-
ginaire) et si H' est le centre harmonique des points M,,... M
par rapport a M pris comme poéle, nous aurons

P

flx,y,5) =A. PM?,
BIL
oM

fle(x,7,2)= Ap.

11 est bon de rappeler que le coefficient A peut étre, soit un
nombre constant, soit une fonction des coordonnées 1 y et z du

pomt M.

Si le point M est tel que la somme des inverses des segments

MM,,... MM, soit nulle, on a £,/ (x, y, z) = 0; d’ol1 une définition
directe de la sarface représentée par cette dernlere équation en

considérant z, y, = comme des coordonnées courantes.
Il est clair que 'on obtient des résultats analogues pour les
autres coordonnées y, z

L ]

T ——

9. — Cherchons, par extension des considérations indiquées
aun® 5, a interpréter la dérivée // du premier membre de 1’ équa-
tion d’une surface algébrique, par rapport a.la variable d’homo-.
généité, lorsqu on remplace les coordonnées courantes par celles
d’un point M quelconeue.

L’équation f'= o peut s’écrire

Dir+4..=o
ou
D (t—t,)... (t—tp) =9,
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p étant égal au degré n de la surface si celle-ci ne passe pas par
1’01’igine, auquel cas D est une constante. Autrement, D seraune
certaine fonction des coordonnées x, ¥y, z.

Sinous voulons déterminer maintenant les intersections (autres
que Vorigine) d’une droite joignant V'origine au point M, de coor-
données z, y, =, nous pouvons écrire le premier membre, en
groupant les termes homogénes, |

On—p (2,5, 2) A oo+ o0 (%57 2),

et o, _, est identique a D.
Posant # = ap, y = B3p, 5 ==yp, et prenant pour inconnue le

rapport —f— = s, en appelant r le rayon vecteur d'un point de OM

qui devra se trouver sur la surface, nous obtenons, apres avolir
supprimé les n — p racines nulles,

p
%; ‘?n_—p(x,y,Z)—i— ——!—(?n (x’y,z)zo,

ou
Pn — P (ZL’, ¥, l') sb + ——!»c?n ((L”, 7, ,:) e

Les équations en s et en ¢ sont donc identiques, ¢ est-a-dire
que les racines ¢, 1,,... ¢, représentent les rapports

OM OM OM

OM, OM,  OM,

Z

&’

les points M,, M,,... M, étant ceux ot la droite 'OM perce la sur-
face. | , «

Par suite, le premier membre de cette derniere, ou f (z, y, z)
a pour expression géométrique

< 6M> ( OM>
D{i1— e e
oM, OM,,

ou

On a en outre

| 'S
ft, (2, 7, 2, 8) = (%, 7,5, ) L_i— 4+ “‘“_I“‘“—J;

t—et, T t—1
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c’est-a-dire, ¢ devant étre remplacé par 'unité,

W_J)MML“MMP< OM)
T oM, ... oM, \MM, MM

Si en partlcuher le pomt M est s1tue sur la surface en M,
par cxemple I’ expressmn se réduit a

o MM, MM,
oM, OM,
10. — Considérons maintenant une surface rapportée, en coor-

données homogenes balycentrlques a un tetraedre ABCD de
référence, et soit

f(xa.;ya 3, t) :A,’X:p+ —-—o0

son équation, ordonnée par rapport aux puissances de la coor-

donnée &, Si p = n (Uordre de la surface) A sera un coefficient
numeérique. Si p < n, A sera une fonction des trois autres coor-
données. En tous cas, I’ équation en x aura p racines, c¢’est-a-dire

que le premier membre pourra s’écrire

Alx—az)) ... (x—ua,).

Appelons z, y, z, ¢ les coordonnées-d’un point M, et M,, M),

les points ol AM pelce la surface. Supposons enfin que & 4 y
+ z - ¢ = 1. Nous pouvons représenter par (x,, y, s, t),...les
coordonnées des points M,,... et il est évident que ces points
sont au nombre de p, et que les valeurs z,,... x, sont précisé-
ment les mémes que les racines de 1equat10n en x, considérées -
ci-dessus. Exactement comme au n° 7, DOUS voyons aussi que
pour un point M, quelconque, nous avons

AM MM,
X — X =1 ——— T ———,

as

Le premler membre de lequatlon de 1d surf'ice a done pour
expressmn geometrlque

=

|
.
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et, exactement comme dans ce qui précede, nous avons auss:

: MM, ... MM, / AM AM,
e I, (R, B,
AM, ... AM, \ MM, MM,

e . '. ) ‘ - tWay 4 %) 1. %)
La quantité entre crochets peut encore s ecrire

MA . MA

—ME——...‘—W,
ou ‘ A
( MA \ - AH,

P M—Hla>— M_Hla,

si H/ est le centre harmonique des points M,,... M,, par rapport
au point M.
Nous obtenons donc en définitive, pour 'expression de f,

MM, ... MM, H', A
AM..AM, H/M

Ap

11. — En nous reportant aux résultats du n° 3, nous voyons
que si, par rapport a un point quelconque M (x, y, z), le centre
harmonique des points oli une parallele menée par M a Oz perce
la surface est a 'infini, on a '

fa (2,7, z) — o,

Cette conclusion est encore vraie si onl’étend & tous les points

de rencontre, et non plus seulement aux points considérés; car
I

les termes 5% qu on introduirait seraient nuls, des lors que

AWLg

le point M; s’éloignerait a Pinfini.

Supposons qu’il en soit de méme pour f; (x, y, ) etfy (x Y,3);
et sans changer les d1rect10ns des axes coordonnes, prenons le
point M pour origine.

L’équation de la-surface-dans ce systeme ne contiendra évidem-
ment plus les termes du premier degré en z, y, z. Si neus cher-
chons alors les points d’intersection de la surface avec une droite
de direction quelconque (o, {3, y) issue de Porigine, nous obtien-
drons une équation de la forme.

on (Aan_l_)+ -+ p? .(Ka2—|—...)—|—.:D — 0.‘
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En appelant ¢,,... 0, les racines de cette équation, on a

I

I I
—
Py P2 Pn

Donec, si le centre harmonique des points de rencontre par rap-
port a M est a linfini dans trois directions distinctes, il en est
de méme pour toute droite passant par M. On pent dire d’un tel
point que c’est un centre harmonique de la surface.

Comme les coordonnées du point M sont données par les équa-
°/
Yy
surfaces d’ordre n — 1, il s’ensuit qu’une surface du »° ordre

tions f, = o, f/ = o, f: = 0, qui représentent en général des
possede (n — 1)* centres harmoniques. Chacune des surfaces
[: = o,... peut étre considérée comme une surface diamétrale
harmonique, en appelant ainsi le lieu des points jouissant de. la
propriété indiquée, pour un systeme de droites paralleles i une
direction donnsée.

En admettant que I’équation f'= o soit complete, 1l est visible
que le lieu des centres des moyennes distances des points d’in-
tersection de la surface par des cordes paralleles 4 Ox est un
plan, /2 -9 = o; mais, s’il en est ainsi pour les trois directions
d’axes Oz, Oy, Oz, il ne s’ensuit plus que la méme propriété
subsiste pour une autre direction ; on le reconnait sans aucune
peine en examinant Iéquation de la surface ‘dans cette hypo-
these. | | |

La véritable généralisation de la théorie des plans diamétraux
et des centres se trouve donc plutét dans la considération des
centres harmoniques dont nous venons de parler, et qui pour-
rait mériter une étude h part. .

Nous ferons remarquer en terminant que les centres harmo-

niques coincident exactement dans les quadriques avec les centres

I I

dans le sens ordinaire du mot, parce que de M - T —

on tire MM + M,M = o ; ce qui cesse d’étre vrai lorsqu’il y a
plus de deux points d’'intersection.

C.-A. Larsanr.
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