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SUR LA DEMONSTRATION DU THÉORÈME DE TAYLOR 355

En tenant compte de la relation bien connue :

Pp. Qp_i — Pp_i. Qp ± i,

on peut former l'équation

Qp _i2 + i\BQp_i — (A — A2) B" i o,

qui, résolue en Qp r, donne :

Qp-i ~ —'MB + \jÄß2±7
où l'on a

B zzz =z
P?J~*

~ 7i m

On aurait trouvé de même

Pp=XB+

Comme ces valeurs doivent être des nombres entiers, on en

déduit que la quantité sous le radical est un carré parfait ; ce

qui donne lieu au théorème suivant de la théorie des nombres.

Théorème. — Etant donné un nombre A non carré parfait il
existe un ou plusieurs nombres entiers B, tels que Ion a

A. B2± i carré parfait.
Il faut remarquer qu'au nombre A correspondent un nombre

limité d'irrationnelles z/, et par conséquent aussi un nombre

limité de valeurs B.
L. Crelier (Bienne).

SUR LA DÉMONSTRATION

DU THÉORÈME DE TAYLOR

L —. M. Hatzidakis (Athènes) a donné dans cette revue (II,
p. 447) un article très intéressant sur une démonstration simplifiée

de la formule de Taylor. Cependant trois inconvénients

m'inspirent des scrupules :
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i° L'adoption arbitraire des fonctions :

(7 (x -f- (*)) (7 (pc) — U> 0"' (x) T — (a)

et

m fi)2 • lûr Q)H-1 /qv
— <7(^)— — a' (a?) — p-p gW(X) — r £f+1

; (P)

La supposition attaquable que T, en réalité, fonction de n'

et x, soit, dans la différentiation, une quantité constante ;

3° L'invraisemblance de pouvoir trouver la fonction (ß) avant

de connaître la formule de Taylor elle-même.

II. — J'essaierai donc de démontrer, sans hypothèses
arbitraires, que le théorème de Taylor résulte presque immédiatement

du théorème de Rolle.

Supposons (ce qu'il faut admettre dans ce théorème), que non
seulement f(x)> mais aussi f'(x), f"(x) f[r)(x) soient continues.

On aura donc :

'
/(»){x + KK-i-..e, h)=f(n)(*) + en...fin+i) + en+1. en...eAh)

Or, bien que plusieurs e,.... 9„+1 puissent répondre a chaque
équation, chaque expression se compose de deux parties, c'est-
à-dire d'une partie, susceptible d'une seule interprétation, et
d'une autre susceptible de plusieurs interprétations. Celle-ci

disparaît continuellement et ne reste qu'à la dernière expression

:

f(x -f h) =z f(x) + hf (x + 0JL h) ;

mais, en outre,

f (* + etA) f (x) + ÔA/z f" (x + 02 0, h)

et pour chaque 9, :

o < 0,- < i.

f{n+l) (X -f- 0n-(-i 0n h).
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III. — Je multiplie d'abord les équations (i) (la 2e, 3e, 4e->-)

par h,9;A2,'9, 9,2 A8,.... etc., et j'obtiens, en les additionnant :

f(x+ h.) f(x) 4 hf' (x) f"(+ O20i2A3 (x) 4 • • •

+ 0„->02„-2... e,"-1 /•(") (x) + <e> (2)

où
<ï> 0„62n_i 0)" hn+i (x + 0A). 0< 6<I.

De plus, en supposant A variable, on aura les dérivations suc-

cessives de (2) :

f [X + h) f H + 2 6, h f"(x) + 3 02 0,2 2 D* <1>

f"(x+ h) 1.2 0i 1"(*)+ 2.3.620j2A + + *

r f(n+i){x + h)DfM) <î> 0n 62„-l 0!« + '• f{n+»+ 6A)

+^"7 ')«•' h- 0f+2 (x+0A)+ ••• +(n+ i) h"+l ^ fHn+1) (x + 6*)]'

Donnons à h dans toutes ces équations la valeur h o, nous

aurons :

donc :

/ (x + A) f(x)+ ~f'(x) 4 Yj- f' (x) 4" • • • + /,n) H*

4-JS_/<"+1> (X4-0A) (3)
71 + I •

Ainsi toutes les expressions (i), dont nous avons parlé ci-dessus

(II) deviennent interprétables d'une seule manière à l'exception

du dernier terme de (3), qui s'annule, comme on le sait, dans

tous les cas où cette formule peut avoir lieu.

Richard Suppautschitsch (Vienne, Autriche).
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