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En tenant compte de la relation bien »oon_nu'e : |
Py Qpi—Ppr. Q=1
on peuf former I’équation |
| Qp_12+213 Qpi— (A— 29 Brp1=o,
, qui, résolue en Qpr, donne : |

Qp—1=—2B + /AB 1

oulon a ,
B — Qp o Pp—-1 )
~n . m

On aurait trouvé de méme

P,= AB- VABIE 1.

Comme ces yaleurs doivent &tre des nombres entiers, on en
déduit que la quantlte sous le radical est un carré parffut ce
qm donne heu au théoreme suivant de la théorie des nombres.

TutorkME. — Etant donné un nombre A non carré parﬁut'zl
existe un ou plusieurs nombres entiers B, tels que lon a

A. B4y caneparfazt
‘11 faut remarquer qu’au nombre A correspondent un nombre

limité d’irrationnelles y, et par consequent aussi un nombre

limité de valems B.
: L. Crerier (Bienne).
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"SUR LA DhMONSTRATION

DU THEOREME DE TAYLOR

I. — M. Hatzidakis (Athénes) a donné dans cette revue (II,
p- 447) un article trés intéressant sur une démonstration simpli-
fiée de la formule de Taﬂor Cependant trois inconvénients

m’inspirent des scrupules )
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° L’adoption arbitraire des fonctions :

¢(x+w)—o(x) —wd(x) —T—, (a)
et
o(x+ w) —o(x)— ;wTo" (x) ;—(:-—j-d”(x)— ——?—7‘:— ol)(x) — T w:i i (B)

2° La supposition attaquable que T, en réalité, fonction de »’
et x, soit, dans la différentiation, une quantité constante ;

3° L’invraisemblance de pouvoir trouver la fonction ({3) avant
de connaitre la formule de Taylor elle-méme.

II. — Jessaierai donc de démontrer, sans hypotheses arbi-
b

traires, que le théoreme de Taylor résulte presque immédia-

tement du théoreme de Rolle.

Supposons (ce qu’il faut admettre dans ce théoreme), que non
seulement f(z), mais aussi f'(z), f"(x)..... 7 (z) soient conti-
nues.

On aura donc :

flo+ 1) = [ (@) +hf (o + 0,5
mais, en outre,

f@+6m—fm+wmﬂ@+%mm | &

-----------------

f(" (x+0n6n_1...0, h)= f(” {x) —{-Gn 0, f+0) (2 4 0. 00 ... 0, B)

et pour chaque 9, :
' 0< 0; < 1.

Or, bien que plusieurs 0,, 0,.... 0, puissent répondre a chaque
équation, chaque expression se compose de deux parties, c’est-
a-dire d’une partie, susceptible d’une seule interprétation, et
d’une autre susceptible de plusieurs intelprétations Celle-ci
dlsparalt contlnuellement et ne reste qu’a la derniere expres-
sion :

fnty) (2 it On ... 6, k).
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III. — Je multiplie d’abord ies équations (1) (la 2°, 3°, 4°...)

par k, 8,728,672 R%,.... elc., et jobtiens, en les additionnant :
f(z 4 B) = f(x) + bf' (@) 4052 F" (%) 4 002h* /7 (#) + ...

B0y .. B RO (@) @ (2)
B 0,00y ... 8,0 fet f040) (% - OF). 0< 0T,

_De plus, en supposant & variable, on aura les dérivations suc-
cessives de (2) :

Flodh)=F @420 hf (@) +30,028 " @+ ...+ Du®
' (x+ h) = 1.2 0, f" (%) + 2.3.00 2k f7 (%) 4+ ...+ D® @

{4 k) = DipH) b = 0 0%y ... 6, [n 1! finkn) (x4 OR)

n-t1

+‘<njl>n. Uh. 0 fri2 (2 4 0R) 4 ... —1—\(,, +I> st ) Pt (z Gh)]-

Donnons i % dans toutes ces équations la valeur ~==o0, nous
aurons : ' ‘ '

Y
b, = —;}!—5 00,2 = 3T e O 02—t b = T;— 1!
done :
| ho, B o A
[+h) =F(x)+— [ ® n el A GOl eAP R gl s i (x)*
h’.H-»

1 -
O a0 (O

Ainsi toutes les expressions (1), dont nous avons parlé ci-des-
sus (II) deviennent interprétables d’une seule maniere a 'excep-
tion du dernier terme de (3), qui s’annule, comme on le sait, dans
tous les cas ou cette formule peut avoir lieu.

Ricaarp SuvepaurscuirscH (Vienne, Autriche).
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