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SLR L'EXPRESSION SIMILITUDE IJS VERSE

EN GÉOMÉTRIE PLANE

I, Supposons que l'on ait deux figures planes semblables,
situées d'une manière quelconque dans l'espace. Si on les place
dans un même plan, de manière que les angles homologues
tournent dans le même sens de rotation, on obtient une similitude

ordinaire. On peut ramener cette similitude à l'homothétie
en faisant tourner l'une des figures dans le plan commun.

Si on place les deux mêmes figures dans un même plan, de

manière que les angles homologues tournent en sens contraires,
on obtient une autre espèce de similitude, que la plupart des

auteurs nomment similitude inverse.
Cette expression est impropre, car elle donne à penser que

cette similitude peut se ramener à l'homothétie inverse, ce qui
est inexact tant que les deux figures ne peuvent que glisser dans
le plan commun.

Je propose de dire que les deux figures sont virtuellement
semblables et forment une similitude virtuelle, pour rappeler qu'ils
ne peuvent être ramenés à l'homothétie qu'à la condition de faire
sortir l'une d'elles du plan commun, ce qui, dans cette partie de

la Géométrie plane, constitue une espèce d'imaginaire.
On peut étudier séparément ces deux espèces de similitude, et •

on arrive à des propriétés toutes différentes. Mais il vaut mieux

ramener ces deux théories à une seule, en regardant les figures
planes comme cas particulier des figures solides, car on sait que
dans l'espace il n'y a qu'une seule espèce de similitude.

Les propriétés générales de la similitude des figures solides se

réduisent à ces trois points : i° il y a un point double ou centre
de similitude ; 2° il y a une droite double ou axe de similitude ;

3° il y a un plan double ou plan de similitude.
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Dans le cas de la similitude plane ordinaire ou réelle, le plan

double se confond avec le plan de la figure. Il en résulte que

l'intersection de ces deux plans est indéterminée et ne fait pas

connaître les propriétés du système semblable. Dans le cas de

la similitude plane virtuelle le plan double est perpendiculaire

au plan de la figure, et l'intersection de ces deux plans détermine

les propriétés de ce système semblable.

L'ordre à suivre pour exposer une théorie générale de la

similitude doit donc être le suivant :

1° Étude de la similitude plane ordinaire ou réelle ;

2° Étude de la similitude dans l'espace ;

3° Étude de la similitude plane virtuelle considérée comme

cas particulier de la similitude dans l'espace.

II. Si l'expression similitude inverse est impropre en Géométrie

plane avec le sens qu'on lui attribue ordinairement, elle doit
néanmoins y être introduite avec un autre sens déduit de la Géométrie

dans l'espace, où il y a une véritable homothétie inverse et une

véritable similitude inverse.
Pour cela il suffit de regarder les deux figures planes placées

dans un même plan comme bases de deux pyramides semblables

de hauteurs infiniment petites représentées par des flèches

perpendiculaires au plan commun. On peut aussi remplacer ces

hauteurs par deux observateurs regardant chacun les éléments

de l'une des figures. Dans le cas de la similitude réelle«, si les

deux observateurs sont d'un même côté du plan commun pour
regarder les éléments homologues en tournant de droite à gauche,

cette similitude est dite directe; elle est dite inverse si les deux

observateurs sont de côtés différents. Dans le cas de la similitude

virtuelle, c'est le contraire.
Il résulte de là que, si l'on a deux figures planes semblables,

on peut, en les mettant dans un même plan, constituer quatre

systèmes semblables, donnant lieu chacun à des propriété
différentes.

Cette considération de la similitude directe et inverse permet
d'expliquer certaines anomalies.

Exemple. Étant données deux circonférences o, of dans un même.
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plan, on peut-foire correspondra, à un point donné de la
première successivement tous les points de la seconde, De là résulte
une infinité de systèmes semblables, et le lieu des centres de
similitude est le cercle conjugué aux points o, o' suivant le

rapport ~ Aux points s, sf situés sur là ligne des centres le rapport
de similitude devient rapport d'homothétie. On a l'habitude de
dire que, au point s, compris entre o et o', lë rapport d'homothétie

7»'
t >

7»' test —et au point sf il est +— « D'où vient ce changement
de signe En réalité il n'y a pas changement de signe : suivant la
manière dont on placé les observateurs le rapport de similitude
est toujours positif ou toujours négatif.

Ces considérations sont tirées d'un mémoire sur la Similitude des figures
solides qui a paru dans les Annales de la Faculté des sciences de Marseille,
t. IX, 1899.

II. Dellac (Marseille).
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