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THÉORÈMES DE BEZOUT E T DEHLER

L'établissement cle la formule AU-f-BV R/t et l'évaluation
des degrés des polygones U et Y se font généralement d'une

façon lourde et pénible ; je me propose de donner une démonstration

plus rapide et beaucoup plus facile a présenter.
A polynôme de degré m, B de degré p5 m~>p. La recherche

du plus grand commun diviseur donne les identités

It« -f- K« _ t Q« — R«, _ 2 — o

i° AU +BV ^ R/0 U et Y polynômes entiers.
Je résous le système (ù par rapport à Ba ; le déterminant des

inconnues est + I.
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THÉORÈMES DE BE Z OUT ET D'EULER i%

2° Si R„ est de degré q, U est de degré p— q— i au plus
et Y de degré m — q — i au plus.

Le terme de degré le plus élevé dans U est contenu dans

Q, Qr.. Q,t, celui de Y dans QQ^-.Q«; je multiplie membre à

membre les identités (i).

ABRiy... Rw _ 2 «= BRR^.. R„ _ * QQj... Q„ +

Si on tient compte des facteurs communs aux premiers termes
des deux membres, on voit que QQr».Q„ est du degré de A.

Or R„ est de degré y, R>î_1 est donc au moins de degré q t, par
suite QOr..Q/? est au plus de degré m —q— i et comme Q est
de degré m —p, QjQo-.-Qn est au plus de degré p — q — i.

CONSÉQUENCES

I. Si li/( est le plus grand commun diviseur, U et Y sont
premiers entre eux,

R;J contient les facteurs communs à A et B et ne contient

qu eux, clone U et Y ne peuvent avoir cle facteur commun.

II. Les polynômes U et Y sont les seuls polynômes de degré

p — q — i, m — q — i ou de degré inférieur vérifiant la relation

AU+BY=R„:
Si on avait

AU, + RU, Rn

on en conclurait :

A^-U,) =B (Yj — Y).

Or A et B ont q facteurs communs, donc les m—q autres
facteurs de A devraient diviser V,—Y qui est de degré m — q — i
au plus.

III. Théorème de Bezout. — AU-j-BV i. —- Si A et B

sont premiers entre eux, q degré du plus grand commun diviseur

est nul, divisant par Rn,

AU + BY — i.

Les théorèmes I et II s'appliquent encore a U et Y.
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IV. Théorème cVEuler. — La condition nécessaire et suffisante

pour que A et B aient un plus grand commun diviseur de degré q,
est qu'on puisse trouver deux polynômes premiers entre eux,
U de degré p — q, Y de degré m— q et tels que :

AU -r BY o.

i° La condition est nécessaire. Supposons R/v o, l'identité
fondamentale devient

AU + BY d.

Le plus grand commun diviseur est alors qui est degré q,
il en résulte d'après le n° 2 que U est de degré ]) — q et Y de

degré m — q.
U et Y sont premiers entre eux, car s'ils avaient un commun

diviseur du premier degré, 011 aura après l'avoir supprimé :

AU, + BY1 o

XJL de degré p —q — r Y1 de degré m — q — 1

En admettant que les p — q — 1 facteurs de U1 appartiennent
à B, il y aurait encore q-\~ 1 facteurs de B qui devraient appartenir

à A, ce qui est contre l'hypothèse.
20 La condition est suffisante. Y de degré m — q est premier

avec U, donc ses m—q facteurs appartiennent à A etil reste q
facteurs de A qui appartiennent à B.

A. Poussart (Paris).
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