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SUR LE DÉVELOPPEMENT ET L'ÉTAT ACTUEL

DE LA GÉOMÉTRIE A n DIMENSIONS (')

Une nouvelle branche des sciences mathématiques, la Géométrie

à n dimensions, s'est développée progressivement dans la
seconde moitié du siècle. Dans le vaste domaine qu'elles se sont
ouvert, ces recherches ont été fécondes en résultats importants
et, de plus, la Géométrie limitée au champ déjà connu leur doit
des points de vue nouveaux faisant apparaître en particulier les

méthodes dans leur signification la plus claire.
Actuellement, il semble que renseignement doive commencer

ii tenir compte des développements que nous venons de signaler,
et cela d'autant plus que l'étude des domaines avec plus de quatre
dimensions a provoqué des améliorations et des extensions dans
la représentation géométrique en général. En essayant de résumer

pour cette revue les travaux considérables relatifs à ce sujet et
en les référant à une nomenclature aussi complète que possible,
nous espérons que notre tentative sera bien accueillie par les
lecteurs que les questions nouvelles intéressent.

I

On ne saurait dire que la notion d'espaces et de figures à

dimensions multiples doive son origine aux recherches géométriques

contemporaines. Elle existait depuis longtemps en germe :

P) La première partie de ce mémoire a paru en 1886 dans le recueil allemand
Leopoldina et l'auteur a rédigé la seconde partie, qui donne à ce travail son actualité,

pour son insertion dans l Enseignement mathématique. Il est accompagné
d'un Index bibliographique dans l'ordre alphabétique des auteurs cités; c'est à cet
Index que se réfèrent les numéros mis entre parenthèses dans le texte.

Enseignement math. (>
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puisqu'on avait reconnu que le mouvement par lequel la droite
résulte du point, le plan de la droite et l'espace du plan implique

chaque lois l'existence d'une dimension de plus, on pouvait
par la pensée continuer indéfiniment ce mode de génération, bien

que Vintuition (l) des figures cessât d'être possible. Toutefois, le
caractère empirique de la Géométrie fit d'abord condamner cette
incursion au delà de l'intuitif comme inutile, contraire a l'expérience

et même absurde. La notion dont il s'agit trouva dans la
Géométrie analytique un puissant élément de progrès. La
représentation des lignes et des surfaces par des équations a deux et
trois variables conduit a la question : comment les équations a

quatre variables doivent-elles être interprétées Dans d'autres
domaines l'analyse forçait directement la Géométrie à sortir de

l'intuitif : les racines imaginaires font admettre un champ qui
n'est pas réel et la notion de l'infiniment grand implique des

figures infiniment éloignées ; or, par l'emploi de ces innovations
les restrictions de certaines propositions de Géométrie
disparurent.

Ge fut en essayant vainement de démontrer le postulatum d'Eu-
elide que l'on franchit pour la première fois les limites de la
Géométrie expérimentale. Déjà en 1792, Gauss (i4°) concevait
le principe d'une Géométrie dans laquelle le postulatum n'est pas
valable, et Boutai en 1 802 (3g), Lohatschuwky en iBdo (201)
le développèrent avec une ampleur de déduction telle que ces

deux savants sont les fondateurs d'une Géométrie transcendan-
taiefy) caractérisée en particulier par ce fait que la somme des angles
du triangle < 2 droits. Mais il n'existait aucun domaine qui permît
de contrôler par des résultats valables ce qui pouvait sembler des

paradoxes et ces recherche# restèrent ignorées. Puumaxx en

i8o4 (310) et IIulmjioltz en 1868 (102) furent conduits, par des

recherches analytiques sur la différentielle de l'élément linéaire,
à imaginer des espaces satisfaisant a certaines formules générales
dont l'espace euclidien est un cas particulier. Ceci constituait un
double progrès : d'une part, aux deux possibilités de la Géométrie

(1) Par intuitif Fauteur entend susceptible d'être vu in lui ti veinent ou immédiatement.

(-) Cette géométrie est appelée par Gauss non euclidienne, par Bolvai absolue,
par Klein hyperbolique.
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euclidienne et de celle de Lobatsehewsky venait s'en ajouter une

troisième, à savoir que la somme des angles du triangle > 2 droits ;

de Lautre, les résultats nouveaux s'appliquaient aux espaces a

dimensions multiples. L'introduction de la notion de courbure

permettait de caractériser avec précision le domaine de la G éométrie

non euclidienne. Beltrami en 1868 (20) avait montré que la surface

a courbure négative constante réalisait les résultats de

Lobatsehewsky ; on put constater que la troisième possibilité
avait pour champ d'interprétation la surface sphérique a courbure

positive constante. Ainsi se formèrent les conceptions aes

formes d'espace de Lobatschewky à courbure constante négative
et de itxeinami (positive) pour un nombre quelconque de

dimensions.
C'est d'un tout autre point de départ que procédèrent les

travaux de Grassmann que je 11e fais que mentionner ici, leur objet
essentiel étant le calcul géométrique. Par une conception
d'importance fondamentale, il créa, sans rien emprunter à la
Géométrie analytique, une analyse parfaitement adéquate à la recherche

géométrique, réalisant l'idéal entrevu par Leirmz (216).
Cette méthode capable d'extension dans le domaine des dimensions

multiples fut exposée dans toute sa généralité dans I'Ausdehxuxcs-

lehre en i844 x4ö)- Let ouvrage contient tous les principes d'une
Géométrie a 11 dimensions, et il faut en signaler la portée en ce

sens que la Géométrie réelle apparaît comme l'application de la
science abstraite de l'extension à l'espace représentable. Les

principes établis par Grassmann f 14ö) ont été énoncés plus tard

par Erdmanx (120) sous une forme nouvelle.
Toute une série de travaux se rattachent à ceux de Riemann et

de Ilelmholtz et sont essentiellement analytiques. Il s'agit de fonctions

de n variables, de problèmes de transformations, d'expressions

pour la mesure de la courbure, et les résultats géométriques
sont plutôt des interprétations des résultats analytiques que le but
qu'on se propose. La généralisation d'une formule il deux ou
trois variables est indiquée comme s'appliquant aux Mn (x). Dans
cette catégorie se rangent les travaux de Kroxecker (20p),

0 £uns ce qui Suit 011 emploie les abréviations suivantes : R11 signifie espace
linéaire (droite, plan, etc.) a u dimensions; Mf espace courbé (courbe, surface,
etc.) a r dimensions et d ordre y;; Gu, Géométrie à n dimensions.
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Beez (19), Lipschitz (221-228)31 Christoffel (94)? etc. Les
géomètres spécialistes se tenaient sur la réserve à l'égard de ces

incursions dans le transcendantal, bien justifiés en pensant qu'il
y avait encore beaucoup à trouver dans l'espace euclidien et dans
le plan ; mais les expressions propres à la Cn se naturalisaient
dans le langage mathématique et la nécessité de relier aux
autres connaissances ce nouveau domaine s'imposait de plus
en plus. Bien que la Géométrie du plan et de l'espace eût été

libérée des liens de l'analyse par Steiner dont la force d'imagination

donnait à ses recherches une valeur indépendante de sa

méthode, et que Grassmann eût depuis longtemps trouvé un
mode de calcul propre a la Géométrie abstraite, c'est encore aux
méthodes usuelles de la Géométrie analytique qu'ont recours la

plupart des savants dont il faut rappeler les noms. Betti (35)
s'est occupé des principes généraux d'une Géométrie analytique
à n dimensions et a traité entre autres des rapports linéaires, de

la limitation et du fractionnement des Mn. Lie (217, 218) a étudié

les figures correspondant aux lignes et aux surfaces, l'intersection

orthogonale, la sphère à n dimensions et a donné une
extension du théorème de Dupin. Jordan (186-188) a établi les
conditions des directions parallèles et perpendiculaires de champs

plans, a étudié leurs invariants-simultanés et a étendu le principe
de la substitution orthogonale et ceux de la théorie des courbes
relatifs a la courbure ; de plus 011 lui doit des recherches trigo-
nométriques et cinématiques. Une partie de ces résultats, ce qui
concerne le principe d'Euler sur la rotation autour d'un point fixe,
avaient été aussi obtenus par Schlaefli (327). Frahm 136) a

considéré ce même problème de Mécanique dans un Rn + 1. G. Cantor

(63, 64) 2 montré comment le nombre des variables dont
dépend la position d'un élément dans le Kn se réduit lorsque cet

espace cesse d'être continu et a étudié les relations de deux

points dans des champs de cette nature. Netto (204) a démontré

(pie la relation réciproque entre deux champs à m et à n dimensions

11e peut pas être en même temps continue et univoque.
S. Kantor (189) a étudié les transformations linéaires dans le

Rn dont Eichler (112) s'était déjà occupé. Pilgrim (289) a déterminé

le nombre de parties dans lesquelles un IL est partagé par
n PWl. Brunei, (56) a étudié les propriétés métriques des cour-



LA GÉOMÉTRIE A n DIME NSI 0 X S 8 r

bcs dans le Rn et Kretkowsky (208) a donné les coordonnées

d'un point equidistant de n -j- 1 points dans un Rn. Enfin Genoc-

chi (142) a attiré l'attention sur le fait que celles des recherches

de Cauciiy (84) qui peuvent être rattachées à la Gn sout
antérieures à 1847.

Les travaux déjà mentionnés de Beez et Lipschitz font partie
d'une autre catégorie concernant les multiplicités avec courbure,

comprenant aussi les recherches d'Ovmio (260) sur les rapports
des métriques, de Killing (194) sur diverses formes d'espaces,
de Schering (324) sur les figures dans ces champs, et sur la

pesanteur et autres forces, de Beltrami (21) sur les lignes géo-
désiques, de Geiser 14G sur une question de maximum, enumeration

qui n'a pas la prétention d'être absolument complète.
Entre temps il faut signaler des tentatives pour transporter

dans un domaine représentable les résultats de la Gn. En 1870,
Cayley (85) considéra les coefficients de l'équation d'une courbe

assujettie à certaines conditions comme les coordonnées d'un
point dans une multiplicité. Spottiswood (4o4, 4°3) attaqua
directement, le problème en partageant en groupes de trois
éléments les variables d'une équation, le dernier groupe pouvant
renfermer deux ou une variable. Si l'on considère alors les
éléments d'un groupe comme des variables et les autres comme des

paramètres, l'équation constitue pour chaque groupe un svstème
de surfaces et tous ces systèmes dans leur ensemble donnent
l'image géométrique de l'équation. Halphen (i49< projeta une
Mn _ 1} sur [n—2) IG et Veronese (419~4S 1 ^ appliqua d'une
manière systématique le principe de la projection et de l'intersection

à l'étude des relations projectives. Ce Aie (99) représenta une
surface, donnée par deux équations à quatre variables dans R-,

par une surface dans R3 satisfaisant à la condition de similitude
des éléments infinitésimaux. Il faut rappeler des essais de
représentation d une M. dans 1\3 ion dés dans la plupart des cas sur la
substitution d un élément représentable, la densité par Schettler

(3a 1), la coloration par Most (249) à la quatrième dimension.

Les considérations par lesquelles Duiiring (107) assimila la
Mécanique de Lagrange a une G. rentrent dans cet ordre de
travaux ; la plus ancienne des tentatives de ce genre est sans doute
celle du spiritiste anglais Henry More au xvuc siècle qui, du reste,
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comme l'a montré Zimmermann ^oßj, ne cherchait pas clans une

quatrième dimension un élément analogue aux trois dimensions.
Ces essais ne semblent pas avoir amélioré Ja représentation des

figures et de plus il est fâcheux d'introduire un élément étranger
a îa recherche mathématique pure. Dans cette question il ne
reste d'autre parti à prendre que de sacrifier les dimensions
d'ordre élevé et de ne représenter les figures que par leurs
projections d'après les méthodes usuelles, et ce procédé n'est réalisable

que s'il s'agit de passer d'un champ au champ immédiatement

inférieur.
lui méthode projective donne lieu au procédé probablement le

meilleur pour obtenir la compréhension des Mu. fin se guidant sur
le passage du plan a l'espace, on peut passer de R3 a ih, et aller au
delà en renonçant à toute représentation. Cette manière de procéder
s'est montrée féconde ; elle a conduit a la conception du corps a

quatre dimensions limité par des corps à trois dimensions. Aux
plus anciens travaux de ce genre appartiennent ceux de Rudel
(3 i 4-3x6) sur les rapports des points, droites, plans et espaces
dans Pu, sur les plans qui se croisent et sur la congruence et Ja

svmétrie. On doit à JIorrE loq-ificg une série importante de

recherches dans lesquelles, partant d'une extension plane d'un

grand nombre de conceptions spatiales, il a découvert une foule
de propriétés des Mn et donné un ensemble de résultats intéressants

sur la métriqne de Ru La considération de la figure limitée
a conduit plusieurs des auteurs cités auxquels il faut joindre
Dur eue 108) a l'extension du principe d'Pul er sur les polyèdres
aux M?î, G. Cantor ..63-66 a étendu a Rn ses recherches sur les

multiplicités de points. Kantor (Ago) s'est occupé, ainsi que
ScnuREicr ufig, 35o) des configurations dans R% tandis que
Study '411)? V'dv A méthode des déterminants, a donné un grand,
nombre de propositions sur les angles, les pyramides et les

puissances par rapport a un cercle. Un ouvrage de Mehmke (afiuj
traite les mêmes sujets et par l'application de la méthode de

Gi'assmann donne l'extension des propriétés des points singuliers

du triangle. Cette même méthode a servi à Schleueu ('] (daHi

pour étendre les propriétés des points harmoniques, des média-

f1) L'autour du présoul nn'inoire
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nés et du centre de figure du triangle aux figures analogues
dans R

Les nouvelles notions représentatives ont aussi trouvé leur

application dans la Géométrie projective. Déjà en 1872, dans ses

recherches sur les équations différentielles partielles, Dàrboux

(101) était arrive à déterminer les transformations de contact
dans Rn. Des recherches ultérieures (102) l'on fait renoncer a

l'emploi de projections tirées de R4, à cause de son dé la ut d utilité

pratique. En connexion avec les travaux de Lie, Klein (200,

206) a établi la liaison entre la Géométrie réglée et la Géométrie

métrique de R4 avec extension à Rn. Sèche (366, 867, 870) a

donné un exposé détaillé des propriétés des surfaces du
quatrième ordre à double section conique, en les considérant comme
projection centrale, de la section de deux figures quadratiques
à trois dimensions dans R,, sur R3.Dans l'ouvrage de Meyer (420,
424) sur l'apolarité et sur les courbes rationelles, des extensions
d'une grande généralité sont obtenues au moyen des ressources
de l'Algèbre moderne.

Il faut parler ici d'un problème d'un intérêt spécial consistant
à déterminer les figures régulières de l'espace plan à quatre
dimensions qui correspondent aux polygones et aux polyèdres
réguliers. Vu l'irrégularité présentée par le fait qu'il existe une
infinité des premiers et seulement cinq des seconds, l'attention
est attirée sur ce qui a lieu dans R,. Rappelons seulement que la

figure ne doit être limitée que par des polyèdres réguliers et que
à chaque sommet et sur chaque arête le même nombre de ces
solides se joignent. Citant pour mémoire un essai insuffisant de

Emsmann i i 3) pour trouver les figures correspondant au triangle
et au tétraèdre, il faut mentionner Hoppe (109) qui a défini cette
ligure et déterminé son volume ainsi que ses analogues dans les

champs plus élevés. A cette série Sciieffler (821) a joint celle
qui commence par le carré et le cube, et montré qu'en laissant
de côté la condition d'égalité des arêtes, la solution dans R;i est
celle des racines d'une équation du degré. Rudel (817), qui
trouva ces mêmes séries, donna onze procédés pour construire les

figures régulières de R-, ; mais les deux seuls utilisables conduisent

aux deux séries ci-dessus et c'est en construisant leurs
projections sur R3 qu'on parvient aux autres figures. Ces projections
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sont des figures composées d'un certain nombre de polyèdres. On

peut les obtenir de deux manières : soit en procédant du dedans

vers le dehors par une formation progressive, soit du dehors

vers le dedans par une décomposition. Stringham (4°6) et

Hoppe (170) ont obtenu la solution complète du problème, en

employant l'un ou l'autre des procédés. Schlegel (Sag) a employé
le second procédé également avec succès. Il résulte de ces recherches

que l'on connaît dans II. six figures régulières respectivement

limitées par 5, 16, et 600 tétraèdres, 8 hexaèdres, 24 octaèdres

et 120 dodécaèdres (x). De plus, Stringham a établi que les

trois séries commençant respectivement: 1) par le triangle, le

tétraèdre, le pentaédroïde (limité par cinq tétraèdres) ; 2) par le

carré, l'hexaèdre, l'octaédroïde (limité par huit hexaèdres) ; 3)

par le carré, l'octaèdre, l'hexadécaédroïde (limité par 16 tétraèdres)

continuent dans toutes les multiplicités et que dans tout
Rn supérieur à R4 il n'existe pas d'autre figure régulière. Qu'il
me soit permis d'ajouter qu'en renonçant h la régularité des

figures limites j'arrive à une plus grande généralité pour les figures

elles-mêmes et que j'obtiens nombre de résultats relatifs à la

courbure et à la théorie métrique. Forchhammer (.1 35) est également

parvenu aux solutions mentionnées ; Puchta (296, 297), a traité
la question par l'Analyse. Sciiapira (319) a remarqué que les

nombres figurés qui se présentent dans la multiplication abé-
lienne de séries infinies trouvent leur signification dans les

figures régulières de multiplicité élevée.
Des recherches de ce genre ont de l'importance en raison des

nouveaux aperçus qu'elles ouvrent sur la Géométrie du plan et
de l'espace, sur le Calcul différentiel et la Mécanique. C'est ainsi

que Lie (219) en a tiré une nouvelle méthode d'intégration. La

dépendance des propositions analogues dans le plan et l'espace
est élucidée par l'extension à Gn. 11 arrive aussi qu'on obtient des

résultats nouveaux en spécialisant les propositions relatives a R;l.
Le théorème de Halphen (149) sur hî nombre de points doubles
dans une courbe du miùmc ordre en est un exemple.

(*) Des modèles des solides de projection sont fournis par la librairie Martin
Schilling, à Halle.
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