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NOTE SUR LES LOGARITHMES

J'ai montré dans un article précédent (') comment on pouvait
définir nettement l'égalité, l'addition, la quantité et le nombre.
Je voudrais, pour bien mettre en lumière l'utilité de ces défini-
lions qui ne sont autre chose que la traduction en langage précis
de l'idée que l'on se fait tout naturellement de ces notions, faire
une application à la théorie des logarithmes.

Les nombres sont des quantités puisque l'on peut définir leur
égalité et leur addition, mais l'addition elle-même peut être définie

de bien des manières et pour éviter toute confusion appelons
la multiplication des nombres une pseudo-addition, ou soit que
le produit de plusieurs nombres soit leur pseudo-somme. Le

produit de plusieurs nombres étant indépendant de leur ordre,
m peut évidemment le considérer comme un produit, l'objet nul
est alors l'unité ordinaire.

Parmi les objets que nous appelons nombres prenons-en un

i arbitrairement que nous appellerons l'unité ou pour éviter toute
confusion, la base, les nombres, P, P, b'\ obtenus en ajoutant
(au nouveau sens du mot), la base b avec elle-même, puis b avec le

résultat, etc... seront les entiers (a), (3), (4)--- et 2 seront
les entiers (—i), (- - 2), (—3)... que nous enveloppons de

parenthèses, pour ne pas les confondre avec les entiers ordinaires.
Pour trouver le représentant d'un nombre N non entier, c'est-

à-dire, non compris dans la suite b, P, b'\ nous partagerons la
hase h en 1,2, 3... n portions égales et nous verrons si le nom-
ire N contient un nombre entier de ses parties or, yb est le nombre

qui ajouté n fois à lui-même donne b (au nouveau sens de

l'addition), le nombre formé des n,èmes de l'unité sera donc de la forme

3 L Enseignement mathématique, ire année, p. 384-419.
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\~b et sera représenté par Enfin si le nombre N ne peut

pas s'obtenir en ajoutant des parties aliquotes de l'unité, il sera

compris entre y bm et bm+i et sera représenté par la limite com¬

mune aux nombres et ^—7f~)*

Le représentant (/;) d'un nombre N est ce que l'on appelle son

logarithme dans la base b.

Voilà donc l'existence des logarithmes démontrée et basée sur
leur propriété fondamentale log a + log b — log ab.

II. Laurent (Paris).

SUR LE THÉORÈME DES FONCTIONS COMPOSÉES

i. Il peut y avoir intérêt à exposer sur une figure la démonstration

du théorème des fonctions composées pour le cas de deux
fonctions u et e, cas important à cause de la fonction implicite.
Soit y=f {a, u), u et e étant des fonctions de x continues et
admettant une dérivée ; soit Y—/* (U, Y), U et Y étant deux
variables indépendantes^ et supposons que cette dernière fonction
admette des dérivées partielles du premier ordre, fonctions, continues

des deux variables U et Y. Prenons trois axes de coordonnées,
0u, Oc, Oy, ou OU, OY, OY ; considérons la surface Y=»=/,(U,V)>
et la courbe y—/ (a, v) tracée sur cette surface. Soit M un point
de la courbe, W un point voisin ; 011 peut aller de M en M par
le chemin M A M7 tracé sur la surface, l'élément de courbe MA
étant dans le plan V —c, l'élément de courbe ÀM; étant dans le

plan U=^-|-Aw. Les ordonnées étant mM, «A, /AM\ menons Ma

parallèle et égale à ma, menons a Y et AT' parallèles et égales à

am' ; nous aurons

Ar u'M' au" + u"M' m ocN -f- a"M'

A u Ar

(Y'ü + e) Am + (Y'v + s') Ar,
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