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DEMONSTRATION SIMPLIFIEE DE LA FORMULE DE TAYLOR BET

d’avoir i sa disposition une table de logarithmes des fonctions
hyperboliques suffisamment étendue, et d’'un maniement com-
mode ; le calcul ci-dessous est fait & I'aide d’une table a 5 déck
males, de disposition trés pratique, mais qui n’est point encore
publiée.

Résoudre Uéquation X* 4~ 77X~ 7==o0.

A =2 \/—%— , log A = 0,48502

J

sha— — > log (—sha) = 1,99210, a—=-—0,86857
-7a— — — 0,28g52 , log sh| — —[—L— = 1,46772 , log ch ———a— == 0,017g%
3 ; 5 3
log (— ) = 1,95274
log Sk B B log A + log \/? -+ log ch <:_)ﬁ¢>: 0,74153

: ] ' 3
— x, — 0,8969
x, -+ a; = 0,8969
“377‘2 — 5 5148

x, — — 0,8969
2, == 0,44845 — 2,75741

a, == 0,44845 -+ 2,75741¢.

P. Barsarix (Bordeaux).

DEMONSTRATION SIMPLIFILE

DE LA FORMULE DE TAYLOR

1. Parmi les différentes démonstrations de cette formule qu
s'appuient sur le théoreme de Rolle, la suivante est peut-étre la
plus facile, puisqu’elle n’exige que des différentiations extréme-
ment simples. Elle n’est pas, a ce que nous croyons, connue
jusqu’a présent,
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2. Considérons d'abord la différence
g{x4z:)—a(x) —za ()=T

entre 'accroissement de la fonetion et sa différentielle. Si, dans
Pexpression
s(x—+z)—z5(x) —ed' (x) —T,

¥

nous remplacons ¢ par une variable v et que nous multipliions I

9
W\ ? ;o : : :
par <—;~> nous aurons la fonction suivante de o

)

w?
379

g4 w —35(x) —ws(r)—T

qui, par la maniere méme dontelle a été construite, s’annule pour

w==0et w==z; sa dérivée

3 (o 4 w) =9 (1) — 2l —

s‘annule donec pour une valeur ¢ de (o<sl<s: ; mals, comme

: . .
clle s’annule aussi pour v =o, sa dérivée

I
3 (x +w)—a2l—

s“annulera, elle aussi, pour une valeur ¢, de o (0 <& <¢ ', ¢’est-a-

(,lil‘(j (,[U’()Il aura
)

| Al— g" (r+

2

)

(O}
1=
B

d’ou

2

m
m

e +4z)—73(x)=—5"(x -+

I

7" (x4 2,).

3. Considérons maintenant, en général, la différence

2 3

s(x -4z —7ux)— 5 7 (x)— N g’ (x) ——a»%—,—c”’(.r)——...
-7
RS g (x) =T

Nous pouvons, de la méme maniere qu auparavant, lormer la
fonction suivante de
D) w* w’ w" +1

1) st w)—a(x) —— (x) — — & (&) —...— — o (x) =T

r! 2!
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dont les dérivées successives jusqu’a Vordre 7 -1 sont les sui-
vantes

2 I
@ (1 + ) = & (&) =~ o (%) — 2 (1) oo — (P 1) &
T T W, . . apt — 1 I
ok ) = (1) — 2o (1) — o ()T = s
m e 11 Wy . s g Y o — 2 r
" (v +w)—g (70)-——-1—- ") — . — () (r—1) P
4 ]\‘
0 ) =z} — 2.3 (b 1) 0 g
"+
fp l“
gl e 4 w) =" Ur—r12. (74 1) —

Ces dérivées s'annulent toutes (excepté la derniere) pour
w=0 et, comme la fonction (1) s’annule pour les deux valeurs
de v : w=0, w=2¢, sa dérivée premitre s'annulera pour v =z

N . ; ) . Pt

(0 <z, < g); mais elle slannule aussi pour © == o, donce sa dérivie.
c'est-a-dive la dévivée seconde de (1), s‘annulera pour w ==z
(0<Cs, << ¢, )5 or, elle sTannule ausst pour o == o, done sa déri-
vée (ou bien la dérivée troisieme de (1)) doit s’annuler pow
w ==z, (0 <z, <g,), et ainsi de suite; la derniere dérivée (celle de
Vordre r7—-1) s’annulera pour o=z, (o<<z , <, <........ <z
On a done :

2 =3

—a’ (x) + —;—G’” (x)

FEret e <)

c. q. f. d.

J. N. Harzipaxis (Athénes).

Traduit en franc¢ais par N.-J. Hatzidakis (Berlin).
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