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LES FONCTIONS HYPERBOLIQUES

DANS IENSEIGNEMENT MOYEN

Comme appendice a la lecon sur les propriétés de la fonc-
tion e, bien des professeurs proposent en exercice a leurs éleves
de démontrer les principales (ormules relatives aux transcen
dantes

appelées communément sinus, cosinus, et tangente hyperbo-
ligues de I'argument réel x; ils signalent les analogies et diffé-
rences que ces fonctions présentent avec les fonctions circulaires
da méme nom, et expliquent leur qualificatif d’hyperboliques
en remarquant que X==chz, Y ==sha sont les coordonnées
d’un point de ’hyperbole équilatere

X2 — Y2 — 1.

Mais la se bornent la plupart du temps les indications qu’ils
donnent, et dans aucune partie du cours, les éleves ne sont
appelés a en tirer profit. Nous croyons que c'est la une regret-
table lacune, et nous sommes persuadé que si les étudiants de
nos cours de mathématiques spéciales et de facultés étaient fami-
liarisés avec le maniement des sinus et cosinus hyperboliques
comme 1ls le sont avec celui des sinus et cosinus circulaires, 1ils
sauraient apporter a bien des calculs de notables simplifications ;
il est aisé de le prouver par des exemples simples empruntés &
des questions ¢lémentaires.

I. — Tuottoriz pE L'UYPERBOLE

On peut écrire ainsi les coordonnées d'un point M de 'hyper-
bole :

x=acho, y=10,cho.
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et les propriétés de la courbe donnent lieu a des dévcloppements
identiques a ceux qui servent pour lellipse ;

¥ =asho, y=bcho

représentent 'extrémité M’ du rayon oM’ conjugué a oM.

Il. — CaArcuL D'UNE DERIVEE

Soit la fonction y =1L (@ —4—\/1——]—1,’_) En posant 2 =shv, on

a immeédiatement
x4V at = she + cho = e¢
donc y =0, ou x==shy ; par suite

I I

T chy :\/I_ 22

I1I. — Ri#soruvrron pr v'EouaTioN a2 —bx—+c¢=o.

Quand les racines sont réelles et de méme signe, on définit un

. . Y, . ’
argument circulaire ¢ par 1 egahte

4ac o
— sin? o
b2 :
et les formules
b o ., ©
r = — —— cog2 -, ' —— — sin? -
(.z 2 a 2

font connaitre les deux racines; on peut suivre une marche en
tout semblable si le produit ac est négatif, a condition de définir

cette fois un argument hyperbolique © par ]A’égulité

-

b ‘
= —ch? - | = — s
a 2 0 2

-G
>~
e
Y
o
-
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LES FONCTIONS HYPERBOLIQUES

[V. — Resoruriox pe v’EQuatioN 2%+ pa -+ ¢ ==o.

Quand 'équation n’a qu'une seule racine réelle, la formule de
Cardan qui la fait connaitre par une somme de deux radicaux
cubiques, est trés désavantageuse dans la pratique ; or, si 'emplol
des fonctions circulaires est tout indiqué quand les trois racines
sont réelles, nous allons voir que celui des fonctions hyperbo-
liques est aussi absolument naturel dans le cas contraire. Qu'on
nous permette d’entrer a cet égard dans quelques détails ; nous

résoudrons d'abord la question que voict : Lltant donné sha ou

a ; . . . .
cha, calculer sh - ou ch -T;i Les formules de multiplication

sont
sh3 x = 3 she 4§ sh’x
ch3x = 4 chdx — 3 chr
, ., « . s, .
done, étant donné sha, sh —- = = est racine de 'équation
) .
, : 3 sha
1) T e g e— |
A 3 4 ‘
(u1l a pour résolvante
, . sha . I
) U2— ——— U — e = 1
i 64
On tire de cette derntere
i 1« . 1 —a
Uy=—c, Uy=——
dans les trois racines de (1) sont
a
z, == sh —
D
I « P Ao {4
z, = — —10 sh — V3 ch —
2 2 gﬂ 3 + V 3 j
I 1% Ry a
T, = — — E sh — —1 \'/3 ch ——
o 3 3
De méme, cha étant donné, les {vois vacines de I'épuation
. . 3 cha
(2) e S —— = 0
4 4

Enseignement math. 24)
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sont

a
5, =l —

3
Y on 2% e
. [(,h 3 ~+ 14/ 3 sh 0 ]

I a — a
— Iy e & M
. [Cl 3 lVB sh 3]

Ceel posé, dans équation du troisieme degré générale, admet-
tons que 4p° 4 27¢* soit positil ; deux cas se présentent suivant
le signe de p.

(A

re
(
!

|

1° p positif. En déterminant un coelficient 2 et un argument
lwperbolique a par les relations

N

L =2 \/g, shae = — j};

st on fait v =2 =z, on est ramené a I'équation (1); done les trois
racines demandées sont

. a
Xy == Ash ——
3
A n@ ny /7 oh
r,— — —Q1sh — 4+i{3 ch—
E o 3 v 3
A ﬂ e a
x, = —— | sh — —1y/3 ch —
N 2 3 3

2° p négatif. Cette fois on fait

3q

- ) .
L= — JJ, chin =

9

3 P A

b4

en choisissant pour A le signe contraire a celuil de ¢, en sorte
que cha soit positif ; par 2 =2z, on est ramené a I’équation (2

1y

et les racines en 2 sont

J"l::)\ch-;—(-
A a . g a —
Xy — — ——2——[011 5 —|—L‘/o shTJ
)} _ ‘
Xy =— —2—[01] ———iy/3sh = ]

Pour appliquer la méthode a un calcul numérique, il suffit




DEMONSTRATION SIMPLIFIEE DE LA FORMULE DE TAYLOR BET

d’avoir i sa disposition une table de logarithmes des fonctions
hyperboliques suffisamment étendue, et d’'un maniement com-
mode ; le calcul ci-dessous est fait & I'aide d’une table a 5 déck
males, de disposition trés pratique, mais qui n’est point encore
publiée.

Résoudre Uéquation X* 4~ 77X~ 7==o0.

A =2 \/—%— , log A = 0,48502

J

sha— — > log (—sha) = 1,99210, a—=-—0,86857
-7a— — — 0,28g52 , log sh| — —[—L— = 1,46772 , log ch ———a— == 0,017g%
3 ; 5 3
log (— ) = 1,95274
log Sk B B log A + log \/? -+ log ch <:_)ﬁ¢>: 0,74153

: ] ' 3
— x, — 0,8969
x, -+ a; = 0,8969
“377‘2 — 5 5148

x, — — 0,8969
2, == 0,44845 — 2,75741

a, == 0,44845 -+ 2,75741¢.

P. Barsarix (Bordeaux).

DEMONSTRATION SIMPLIFILE

DE LA FORMULE DE TAYLOR

1. Parmi les différentes démonstrations de cette formule qu
s'appuient sur le théoreme de Rolle, la suivante est peut-étre la
plus facile, puisqu’elle n’exige que des différentiations extréme-
ment simples. Elle n’est pas, a ce que nous croyons, connue
jusqu’a présent,
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