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LES FONCTIONS HYPERBOLIQUES

DANS L'ENSEIGNEMENT MOYEN

Comme appendice à la leçon sur les propriétés de la fonction

exy bien des professeurs proposent en exercice a leurs élèves

de démontrer les principales formules relatives aux transcen
dantes

X —X X | —X X —X
e — e e ^ — *

sh.r 55 cIlx" tnx — x —
e -f~ e

appelées communément sinus, cosinus, et tangente hyperboliques

de. l'argument réel x ; ils signalent les analogies et

différences que ces fonctions présentent avec les fonctions circulaires
du même nom, et expliquent leur qualificatif d'hyperboliques
en remarquant que X ch.r, Y sh x sont les coordonnées
d'un point de l'hyperbole équilatère

X2 — T2 i.

Mais là se bornent la plupart du temps les indications qu'ils
donnent, et dans aucune partie du cours, les élèves ne sont

appelés à en tirer profit. Nous croyons que c'est là une regrettable

lacune, et nous sommes persuadé que si les étudiants de

nos cours de mathématiques spéciales et de facultés étaient
familiarisés avec le maniement des sinus et cosinus hyperboliques
comme ils le sont avec celui des sinus et cosinus circulaires, ils
sauraient apporter à bien des calculs de notables simplifications ;

il est aisé de le prouver par des exemples simples empruntés à

des questions élémentaires.

I. — Tiiéoa le de l'hyperbole

On peut écrire ainsi les coordonnées d'un point M de l'hyperbole

:

âF a cli o y — h ch o.
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et les propriétés de la courbe donnent lieu à des développements
identiques à ceux qui servent pour l'ellipse ;

x' — a sh cp, y' — b ch cp

représentent l'extrémité M' du rayon oM7 conjugué a oM.

II. — Calcul d'une dérivée

Soit la fonction y L (x -\-\J1 + En posant .cr shcp, on
a immédiatement

x -f- SJ i -f- x1 — shcp -|- chcû zn eri

donc ?/ cp, ou .u sh?/; par suite

y' — —-— =Z
1

ch y sj\ xi

III. — Résolution de l'équation a x2 -f- bx + c — o.

Quand les racines sont réelles et de même signe, on définit un

argument circulaire cp par l'égalité

4cic
——— — sirr o

b'-*

et les formules

b
n cp b

COS" ~—1 X ~ SUT
a a a

font connaître les deux racines ; on peut suivre une marche en

tout semblable si le produit ac est négatif, à condition de définir
cette fois un argument hyperbolique cp par l'égalité

4ac 2

les racines, réelles et de signes contraires, sont

Jl 8hS ±
a % a S
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IV. — Résolution de l'équation p:v -f- (l

Quand l'équation 11'a qu'une seule racine réelle, la formule de

Cardan qui la fait connaître par une somme de deux radicaux

cubiques, est très désavantageuse dans la pratique ; or, si l'emploi
des fonctions circulaires est tout indiqué quand les trois racines
sont réelles, nous allons voir que celui des fonctions hyperboliques

est aussi absolument naturel dans le cas contraire. Qu'on
nous permette d'entrer a cet égard dans quelques détails ; nous
résoudrons d'abord la question que voici : Etant donne shw on

eh a, calculer sh EL ou ch EL. Les formules de multiplication
S 3

sont
sli3 x — 3 s hx -f- 4 slrtr
ch 3 x — 4 elvhr — 3 ch.r

donc, étant donné she, sh EL. — - est racine de l'équation

\ 3 she
vi) — o

-! • \

qui a pour résolvante

vi'j u* - -sl4- r
On tire de cette dernière

64

u' ~T' '1-"1T
dans les trois racines de (1) sont

-, : - sh

1 1
1 a • AT" a

: — 1 s h — h i y 3 ch ——
2 3 r 3

1 1

sh VL ~ i V/3 cli 4-
3 3

De mèmc} che étant donné, les trois racines de l'équation

O) =»—-, ^L=o
4 4

Enseignement math. 9A)
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sont
1

a
=*=cl1 -3-

' [ch \ : ;sh
•

I

v|'" v 'Vr*'' t ]

Ceci posé, dans l'équation du troisième degré générale, admettons

que 4//! -f- 27</2 s°it positif; deux cas se présentent suivant
le signe de p.

i° p positif. En déterminant un coefficient h et un argument
hyperbolique a par les relations

X=, JjL, si_ J2L,
V > VPpA

si on fait .r A r, on est ramené à Eéquation (1) ; donc les trois
racines demandées sont

a
.**! Ash ——

>

1 I sl' V*' M r°h V J

; I sl' T ' \ i rl'
;

I

2° p négatif. Cette fois on fait

x±2 \J— -f-- cU"

en choisissant pour A le signe contraire à celui de qy en sorte

que cha soit positif; par x A~, on est ramené à l'équation (2),
et les racines en x sont

xl — X ch ~
[ch -T + (V^h4-J

X'i — ' ^
Pour appliquer la méthode à un calcul numérique, il suffit
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d'avoir a sa disposition une table de logarithmes des fonctions

hyperboliques suffisamment étendue, et d'un maniement
commode ; le calcul ci-dessous est fait à l'aide d'une table à 5

décimales, de disposition très pratique, mais qui n'est point encore

publiée.

Résoudre Véquation x3 + yx-f- y — o.

X 2 y/ -y- log X o,485o2

slia y, log (—shrt) =: 1,99210, a — —0,86857

ÉÉ— — — 0,28952 log sh ^ 1,46772 log ch ^ —^ 0,0179s

log — xd — 1,95274

log
'y^ 'J

— — logX -f log ^3 -f- log cli ^0,74153
— 0,8969

«*2 + ^3 °'8969

~ 5,5x48

.Ti — — 0,8969

,r.2 — o,44845 — 2,7574 i

x.j — o,44845 + 2?774 i •

P. Barbarin (Bordeaux).

DEMONSTRATION SIMPLIFIEE

DE LA FORMULE DE TAYLOR

i. Parmi les différentes démonstrations de cette formule qui
s'appuient sur le théorème de Rolle, la suivante est peut-être k
plus facile, puisqu'elle n'exige que des differentiations extrêmement

simples. Elle n'est pas, à ce que nous croyons, connue
jusqu'à présent.
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