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M. LE LIEU VRE

les systèmes de logique algorithmique ; les uns et les autres sont
d'ailleurs parfaitement compatibles, attendu qu'ils sont radicalement

différents en principe et ne sauraient en aucune manière se

l'eniplacer. L. C.

SUR LES POLYGONES DE PON CE LET

La recherche des conditions que doivent remplir deux coniques

pour qu'on puisse inscrire dans l'une un polygone circonscrit à

Lautre, est une question bien connue : elle se résume dans le
théorème suivant, énoncé par Poncelet : s il existe an polygone
de m côtés inscrit dans une conique 0 et circonscrit cl une autre L,
il en existe une infinité d'autres du môme nombre de côtés. Beaucoup

de problèmes qui se rattachent à cette proposition ont été
résolus par des méthodes variées et il est par conséquent utile,
et d'un incontestable intérêt, au point de vue de renseignement
surtout, d'envisager la question dans son ensemble : c'est ce que je
me suis proposé de faire, en suivant 1111 beau chapitre d'Halphen
sur le sujet (1). Je diviserai cet exposé en deux parties : l'une,
toute élémentaire qui ramène en somme le problème à ses

éléments les plus simples, la seconde qui le rattache à la théorie
des fonctions elliptiques, et qui suppose la connaisssncc des

fondements de cette théorie.

I

Relation biquadralique symétrique entre deux variables. — Les
deux sommets situés sur un côté d'un polygone inscrit dans une

conique C et circonscrit à une autre conique Y sont deux points
M et M7 de la conique C qui se correspondent sur cette ligne par
la condition que la droite qui les joint soit tangente aL. On peut
de cette manière faire correspondre à tout point M de C, deux

(') Ualpukx. Traité des fonctions elliptiques, t. 11. eh. x.
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autres points AL et M" de cette conique situés sur les tangentes

a Y qui sont issues de AI ; d'ailleurs, au point M' de G, correspondront

de cette manière deux points de C dont 1 un sera AI.

Supposons alors que les points de C. qui est unieursale, soient

déterminés individuellement en fonction rationnelle d'un

paramètre, de sorte que les coordonnées homogènes de chacun d'eux

sont proportionnelles a des polynômes quadratiques par rapport
a ce paramètre : les paramètres x et y de deux points correspondants

AI et Ah seront liés par une relation biquadratique symétrique

qui pourra s'écrire :

(\\ À.rV + B.ry(.r + y) + C(.rf + y2; + Dry + E(,r 4\D + ¥ o

ou encore :

r2(A,r2 + Bjr+C) + r(B.r2 + D.r+E) + Cr2+E.r + F PyH Qy+R —o,

(Les coefficients des termes semblables des polynômes entiers

en x, P, Q et il, forment un déterminant symétrique.
Réciproquement, toute relation de la forme (L peut être

interprétée comme établissant entre deux points AI et AL de G, de

paramètres x et y, une correspondance telle que la droite qui les

joint soit tangente a une conique fixe F : car cette relation revient
à une relation quadratique entre x y et xy, et par conséquent
équivaut à une relation quadratique homogène entre les coordonnées

homogènes c, m de la droite Al Al qui sont comme on
sait, proportionnelles a des fonctions linéaires de x + y et xy.
(La conique F peut, bien entendu, dégénérer en une variété

tangcntielle formée de deux points, distincts ou confondus. <

Observons d'ailleurs que cette correspondance entre AI et AI

revient a la suivante : les deux points AI et Ah sont conjugués par
rapport à la conique C1? telle que Y soit la conique coeariante de

G et de Cp enveloppe des cordes que ces deux coniques divisent

harmoniquement : il est bien facile de déduire de la relation (I
l'équation de Cr De la résulte la corrélation entre le problème
des polygones de Poncelet et celui des polygones inscrits dans

une conique G et conjugués par rapport à une autre Gi : l'étude
du premier problème équivaut a celle du second.

Remarquons enfin que la correspondance que nous établissons
entre deux points AI et AL de G peut être remplacée par celle des
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deux tangentes a Y issues d'un même point de C : dans la suite

nous emploierons seulement la première.

Généralisa lion. — Plus généralement, la relation fondamentale

(I) établit entre deux points M et M7 d'une courbe unicursale
quelconque U, définis individuellement, l'un par le paramètre x,
l'autre par y, une correspondance telle qu'au point M en correspond

deux autres M' et M", et qu'à M7 en correspondent deux dont
Vun est M. Il s'en suit que la relation (I) peut être regardée comme
définissant une famille de lignes polygonales inscrites dans U :

car partons d'un point M0 quelconque de U comme sommet
initial de la ligne brisée ; le sommet suivant sera un des points
que lui fait correspondre la relation (I), soit MA ; alors le troisième
sommet sera déterminé sans ambiguïté : ce sera le correspondant
de M, autre que M0, et ainsi de suite. Nous allons maintenant
adopter cette interprétation de la relation (I).

Correspondance entre les extrémités des lignes brisées de m
cotés. — Au sommet initial M0 choisi pour une ligne brisée
inscrite de m côtés, correspondront sur U deux extrémités possibles
E' et E'7 pour cette ligne, suivant le choix du second sommet.
Réciproquement, à l'extrémité E7 correspondront les deux sommets

initiaux possibles dont l'un sera M0. Donc le paramètre x
de M0 et le paramètre c de l'extrémité doivent être liés par une
relation de la forme (I), soit F (jp, .-) o, biquadratique et
symétrique en x et z.

Il est clair qu'on pourrait former cette relation de proche en

proche, car la relation (1) permet évidemment d'exprimer
rationnellement par rapport aux paramètres x et y des deux premiers
sommets, ceux de tous les sommets suivants.

Lignes brisées repliées. — La relation (I) fait correspondre
à x deux valeurs y7 et y" de ?/, généralement distinctes de x et
distinctes entre elles. Il y a exception pour les valeurs de x telles

que y' y,! ; elles sont les racines (finies ou infinies) de l'équation

(du quatrième degré en général): Q2 — /j P R o. Il y a

également exception pour les valeurs de x telles qu'une valeur
correspondante y! de y soit égale à x ; ces valeurs de x sont les
racines de l'équation du quatrième degré obtenue en faisant
dans (I) y x. Appelons S* (i — i, 2, 3, 4) les quatre points
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de U qui correspondent aux valeurs de x telles que y' y" et

r]f ceux qui correspondent aux paramètres x tels que y! — x. Si

dans le tracé d'une ligne brisée inscrite, nous arrivons en un

point S; comme sommet, la ligne ne pourra se continuer au delà

de ce point qu'en se repliant sur elle-même et le sommet qui suivra

S,- se confondra avec le précédent. Si nous arrivons en un

point, If, en supposant que le sommet précédent corresponde à

la valeur de y qui diffère du paramètre x du point T?, le sommet
suivant sera confondu avec if et le côté correspondant sera la

tangente à U au point Tf considéré ; puis la ligne ne pourra se

continuer qu'en se repliant sur elle-même.

Polygones inscrits de m cotés. —La relation (I) peut-elle
déterminer des lignes brisées fermées d'un nombre donné m de côtés,
inscrites dans U? Pour cela, il faut que le [m -|-i)eme sommet
obtenu par la construction indiqué coïncide avec le p.emier. Or
le paramètre x du premier sommet et celui c du [m -f- ijâme sont
liés par une relation biquadratique symétrique F (.r, c o.
Le paramètre .r devra donc être une des quatre racines (finies ou

non) de l'équation de fermeture : F (a*, x) o ; d'où généralement

quatre solutions. Elles sont faciles à prévoir : supposons
d'abord m pair, soit m 2 n ; partons d'un point S4 comme sommet

initial et construisons le (n -f- i)eme sommet If qui en résulte
sans ambiguïté ; une des lignes brisées inscrites de sommet initial

Pj sera formée d'abord de celle qu'on vient de construire

pour obtenir If : Sz sera son (;z-j-i)eme sommet et elle ne pourra
se continuer au delà qu'en se repliant sur elle-même pour revenir
à if comme {in -f i)ème sommet : on aura alors construit une

ligne brisée fermée répondant à la question. Soit au contraire
m impair, égal à 2 n -j- 1 : partons d'un point Tf, prenons un
premier côté non tangent à U et allons jusqu'au /Pme sommet (f :

une ligne brisée d'origine (f-, formée d'abord de celle qu'on
vient de parcourir, arrivée en If comme n''me sommet s'y repliera,
en se continuant par la tangente en If et en revenant à Q?- comme
(.m -j- i)ème sommet.

Comme il y a quatre points S,- et quatre points If, on a donc
ainsi les seules solutions de la question dans le cas général, et
ce ne sont pas des polygones proprement dits.

Enseignement math. 27
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Théorème de Poncelet. — Il résulte de là que si la relation (I)
détermine un polygone proprement dit de m côtés inscrit dans V,
elle en détermine une infinité de ce même nombre de côtés, et Von

peut prendre un sommet de Vun déentre eux en nn point quelconque

de la courbe. En effet l'équation F (.r, x) o doit être vérifiée

identiquement.

dication aux coniques. — Supposons que la courbe unicur-
sale U soit une conique G: les lignes brisées correspondantes à (I)
et inscrites dans G seront, comme on l'a vu, circonscrites à une
conique fixe F Les points S/; seront les points de G d'où les

tangentes menées à F seront confondues : ce sont donc les points
communs aux deux coniques C et F. Les points Tf seront les points
de C d'où une des tangentes menées à T sera aussi tangente à C:
ce seront donc les points de contact avec G des tangentes
communes à G et à F. S il existe un polygone de ni côtés inscrit dans

G, circonscrit à F, et autre que les quatre solutions repliées du cas

général, il y en aura une infinité. Lorsque m ne dépasse

pas 5, on peut toujours construire une conique F inscrite dans

un polygone quelconque de m côtés inscrit dans C ; d'une
manière générale, quel que soit m, pour que le théorème de

Poncelet soit applicable aux coniques G et F, il faut et il suffit
qu'on puisse inscrire dans G et circonscrire à F une ligue brisée
fermée de m côtés commençant en un point de C autre (pue les

points P, ou Q, trouvés ci-dessus, par exemple en l'un des points
S; ou T,-. Exemple : je joins deux points À et B de G et je mène
la tangente BT à G au point B. Si je construis une conique F

tangente à AB en A et à BT en un point arbitraire, il y aura une
infinité de triangles inscrits dans G et circonscrits à F, à cause
de l'existence du triangle particulier dont les côtés sont AB, BT,
BA, suivis successivement en partant de A.

II

Equation d'Etiler — Les variables x et y liées par la relation

(I) satisfont à l'équation différentielle obtenue de la façon

suivante :

(]) Voir Lvcouk, N. A. de Mathématiques, 1899, p. 29')..
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On a en différentiant (I) et en désignant par P1# Qx, I-q les

polynômes obtenus en remplaçant x par y dans P, Q, R :

OPy-f- Q)dy + (üP^-f- Qfjdx —o;

Mais en vertu de (I) on a :

aPy +Q=±i/Q2 — 4P P =t \/x~

en désignant par X le polynôme biquadratique Q2 -— é\ Pli (qui
peut s'abaisser a un degré moindre, une de ses racines au moins
devenant infinie). Si j'appelle Y ce que devient X par la permutation

de y et de x, je vois que x et y variant, ils demeurent liés

par l'équation :

d.r ày(ll) IX "' fc
\ V

•

On appelle équation différentielle ddEitler toute equation de

cette forme; dans laquelle X est le polynôme général du
quatrième degré en ,c, et Y le même polynôme en Y, soit par
exemple :

X r= a()x% -)~ -f- a.yr3 -f- <?rr +

Réeiproquement, toute équation (TEiiler (II) s'intégre a l'aide
ddune relation algébrique (1) entre x et y. — 11 suffit de choisir
les polynômes P, Q, R de la relation (I) de sorte que l'on ait
identiquement: O3 — 4PR — X. Or, interprétons l'équation 1)

comme une correspondance entre deux points d'une conique O

situés sur la même tangente à une autre conique P :

Si je me donne C arbitrairement, je devrai choisir P de telle
sorte que les quatre point S; communs à P et C soient précisément

ceux dont les paramètres ,v sont les racines de X o.
La question se réduit alors a construire une conique particulière

D passant par ces quatre points, que le polynôme X détermine

sur C.

Si je représente par C — o et D o les équations des coniques

G et D, la conique P sera une quelconque de celles du faisceau

linéaire ponctuel :

D+aC-o
et 1 arbitraire A jouera le rôle de la constante d'intégration, dans



M. LELIEUVRE

l'intégrale générale obtenue en écrivant la condition qui exprime
que la corde MM7 joignant les points de paramètres x et y surf],
est tangente à T.

D'ailleurs il est facile d'avoir une conique particulière D du
laisceau linéaire : car je puis rapporter la conique G a un triangle
de référence a — o [3 — o y o tel que son équation par rapport
à ce triangle soit :

C 355 ß2 — ay o

Les coordonnées homogènes a, 3, y d'un point courant M de G

seront alors définies en fonction du paramètre x par :

Par suite si l'on considère la conique d'équation :

D ~ a0a2 -f- a,rR -f- a.fiy +e-y2 o

il est évident que les paramètres x de ses points communs avec G

seront les racines de X o : d'où immédiatement l'intégrale
générale algébrique de l'équation d'Euler.

Représentation elliptique de la correspondance (I]b — Dans

l'équation (II), les variables étant séparées, on peut aussi intégrer

directement par quadrature des deux membres. Pour cela

on devra (dans le cas général), recourir aux fonctions elliptiques :

on saitf1) construire une fonction elliptique bipolaire F (.u) d'une
variable u vérifiant l'équation différentielle :

^ M 1 — c0F » -f- a y
F3 -f- a.,F2 -f- a:iF + a4

du I

l
en supprimant, pour simplifier l'écriture, l'argument u au second

membre). Les périodes 2to et 2to7 de F (//) seront déterminées en

fonction des coefficients a du polynôme X. Si dans l'équation (Fi

on pose alors
x — F (?/), y — F (F),

elle deviendra :

du If: dv — o d où uzhv ~ constante.

(') Voir par exemple Appell et Lagour, Traité élémentaire des fonctions ellip-
t/(/nés, p. 201.
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D'ailleurs 011 sait qu'en appelant s la somme des poles deF(?/i

011 a, quel que soit e : F (5 — e] F (e) ; par suite un seul signe

suffit devant ç dans l'intégrale générale, qu'on peut dès lors

écrire :

Is u + Lb

$ désignant une constante arbitraire- Ainsi, en posant .i-wl u)

dans toute relation (F) engendrant l'équation (II), les deux valeurs

correspondantes de y seront de la lorme y' F [u -f- (d'j et

y" — F [u -f- cbf!), cbf et Sd" désignant deux quantités indépendantes

de u et convenablement choisies ; d'ailleurs si l'on
remplace u par u + Fr, les valeurs correspndantes à y' seront par
suite F (u-f-A£F) et F [u + co/'); l'une d'elles doit être ,r : en

général ce sera la seconde en sorte que l'on peut toujours supposer

cb' -j~ cblf o.

Ainsi à toute relation (1) correspondent une fonction elliptique
F (u) et une constante %, telles que si Von y pose : x— F (u), les

deux valeurs correspondantes de y sont F (u-|-l5) et F (u -—D).
Remarquons que ce théorème revient au théorème d'addition de

la fonction elliptique F (e).

Application aux lignes brisées inscrites dans une uniciursale. —
Si nous inscrivons dans une ligne unicursale U une ligne brisée
déterminée par la relation (I), quand nous aurons construit la
fonction F (V) et calculé la constante S3 correspondante, nous

pourrons déterminer les paramètres x des sommets successifs

par des arguments u en progression arithmétique de raison cO,

soit e, u -j- uA-tndd... Par suite, la corde qui ferme
la ligne brisés inscrite de m côtés joindra les points d'argument u

et fèH-(/.n— 1) dj : quand u varie, c'est-à-dire quand on change
de ligne brisée, les extrémités seront liées par la relation biqua-
dratique symétrique entre F (//) et F [m [m — 1 j co]? qui
correspondra par conséquent à la même équation d'Eulcr [obtenue par
élimination de la constante (/il— RàFjque la relation (I) : elle 11e

différera donc de cette relation (I) que parla constante d'intégration.

D'où ce théorème particulier au cas où U est une conique G :

Si un polygone de 111 côtés est inscrit dans une cojiique C et si
m— 1 de ses côtés restent tangents à une conique fixe F, le m1'""
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coté enveloppe une conique appartenant au même faisceau linéaire
ponctuel que C et F.

Enfin la condition de fermeture cle la ligne brisée inscrite de m
côtés sera : F (u ~fm CU) — F [u), d'où, en appelants la somme
des pôles de F [u) :

u + nê(j u ou niL0 $ — u (mod. ito, 210').

La première équation est vérifiée, quel (jue soit u, pourvu que
/«Ie=o : le théorème de Poncelet est alors applicable.

[/a seconde au contraire détermine le sommet d'argument uo
par la relation :

1 u — s — mdS -f- 2/1W -f-

K et K étant deux entiers arbitraires ; 011 peut dès lors réduire
tout argument u qui y satisfait à l'une des quatre valeurs :

.s — mdj s — Jiéô s — inü s — mL(j

~o + "J f g + W, —— + co -fco'.

Ce sont les arguments des sommets initiaux des quatre lignes
brisées repliées qui sont, en général, les seules solutions de la

question.
Ainsi la condition de fermeture de toute ligne brisée inscrite de 111

cotés est :

7)lCÖ =s= o.

Réduction éi une forme canonique. — Il est commode de

ramener la relation (I) à une forme telle que le polygone X
correspondant, dans l'équation d'Euler (II), ait une des formes

canoniques de Weierstrass ou de Legendre. On sait que la réduction
de X aune telle forme peut se faire par une substitution
Pornographique, qu'on effectuera à la fois sur x et sur y. Mais on peut
y arriver plus simplement ainsi :

Interprétons la relation (I) comme une correspondance entre
deux points d'une conique C situés sur une même tangente êt une

autre conique F : il suffit, pour obtenir le résultat demandé, d'un
choix convenable du triangle de référence auquel 011 rapporte
C et F, et de la réprésentation paramétrique de C.

Choisissons en effet, comme ci-dessus, un triangle de référence
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iormé (le deux tangentes à G : a= o, y o et de leur corde de

contact |j — o en sorte que l'équation de C soit : C 32 — ay o.

Représentons de plus un point de C en fonction du paramètre x
par les équations :

Pour que le polynôme X soit réduit par exemple a la forme de

Weierstrass :

X 4-r3— —

il faut d'abord que l'un des points communs aux deux coniques
C et F, déterminés par X —o, corresponde à x infini sur la

conique C : on prendra donc un des quatre points communs à C

et a F, soit S, pour sommet 3 y o du triangle de référence,
d'où le côté y=o qui sera la tangente à C en ce point; puis, un
choix convenable de l'orientation du côté [3 0 permettra de

faire que X soit privé de termes en x2. L'équation de la conique F

sera dès lors, d'après ce qu'on a vu, ramenée a la forme :

Y as 4aß — g£y — ggfi + 4M?2 ~~ aï) ° •

La fonction F [u) sera maintenant réduite à p fiug.^gfi (que

j'écrirai simplement : pu), et les paramètres des sommets
successifs d'une ligne brisée considérée seront : pu, p u -R cb)...

p c<j) En particulier, au point S, x est infini : si l'on pose
alors x=pu, on pourra prendre en ce point u — o : donc pL~o

sera la valeur de x au sommet suivant, c'est-à-dire au point de

rencontre de G avec la tangente à F en S. Gomme cette tangente<r> O

a pour équation : [3 — 4:y o on voit que l'on aura :

pLb — k

ce (pii fixe Lb (au signe près). Il résulte aussi de là que les valeurs
de k pour lesquelles F dégénère en deux droites doivent être
celles des paramètres x des points communs à C et à F autres

que S, c'est-à-dire les racines de l'équation ZjX3 —g.fi—g 3 o ;

d'où on déduit immédiatement l'équation en A discriminante du
faisceau linéaire (C, F), par rapport au triangle de reference de

réduction ; prenons l'équation du faisceau sous la forme :

F -f- A G o : l'invariance des racines de l'équation en X donnera
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immédiatement les relations entre k (ouL6), £>>^3 et ^cs invariants
simultanés des deux coniques C et F rapportées à un triangle de

référence quelconque. Si par rapport à un tel triangle, l'équation
en A du faisceau, F + L G — o est :

AA3 -f- 0â~ + 0p. + \ o,

on trouve les formules suivantes, dans lesquelles p désigne un
facteur arbitraire tenant à ce que le choix du triangle de

référence 11e suffit pas à fixer complètement les formules de la
transformation de coordonnées :

4p3 t ip~pc(j 2 p//,c5 p'L6
A 0 — "

&~L
~~ ~ '

Conditions analytiques de fermeture. — Pour que la relation (I)
définisse des polygones inscrits fermés de m cotés il faut et il
siiffit que la constante c6 correspondante satisfasse à : mbs— o

c'est-à-dire à : pnCb 00. D'où une première méthode évidente

pour exprimer cette condition : chercher à exprimer pm$ en fonction

de pdd, g-,, ; on pourra ensuite revenir de la aux invariants
simultanés A, 0, 0A, A1 ; on est ainsi conduit au problème de la

multiplication de Vargument.

Multiplication de Vargument (*). — La fonction doublement

périodique paire pmu doit être une fonction rationnelle de pu.
Cherchons cette fonction rationnelle a l'aide de la formule :

1 Hi -j- 1 ; ui'm — 1 )a
1 pmu—pu —— — :\ / Il r-l //rpi //

On a d'autre part :

- 1 T à1 t dl r/ ^
>1

pmu — pu — I ——r Leymu r— h(ia)m- [r 1 m2 I du1 du' v 1 J

c'est-à-dire :

i cl2 imu
pmu — pu zz — — j—r L -—-—3-1 1 m2 du- (iu)m-

Ceci conduit à considérer la fonction auxiliaire 0/)

On voit immédiatement qu'elle est doublement périodique aux

<7 mu
mm'1

(4) Voir Lévy, Précis sur les fonctions elliptiques, p. 191, — Grre^hill, Traité,

p. 454. La méthode suivie ici est plus simple que celles de ces deux ouvrages.
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périodes 2co et 210', et n'a d'autres pôles que « =0 a la multipli-
oité ur — 1 ; elle est donc une fonction entière de pu et :

d'ailleurs, sa parité est celle de msi m est pair, elle sera done

une fonction entière de pu, et si m est impair, le produit de

par une telle fonction. Le calcul de se ramène alors facilement

à celui des fonctions •}, car la formule (il donne immédia-

tement :

_ 1 d~ t..} plHU -pu - - -,ÏÏV " [l':

(Toil la relation de récurrence (où je supprime l'écriture de

l'argument 11) :

(3) 7??-'X*//î_pi î — ù//z X rn ô in.

Il suffit donc de connaître ôy et ô2 pour déduire de la les

suivantes ; or 011 a : 6, r et i, J~U, d'ordre 3 ; d'où aussitôt :

— p'u. On en déduit facilement par la formule 3) :

y3 :)pp'1 — — p'"- ô. — p\p'f —lJ"'rb etc.

On aura ensuite pmu par (rj i

D'ailleurs, une fois les deux termes exprimés en fonction
rationnelle de pu, la fraction est irréductible : car y;/? sera un

polvnône entier en pu de degré ur — i, puisque u= o est pôle
d'ordre 2 u?r — i) de la fonction ; orpmu doit précisément devenir
infini par ur— i valeurs finies de pu, correspondantes à 7777/ o,
u o étant excepté.

La condition de fermeture des lignes inscrites de m côtés sera
donc : f2in )fc) =E (pcb) o, E désignant un polynôme entier de

deo'ré nr — 1.
O

On revient facilement de la aux conditions invariantes relatives
aux deux coniques C et Y : il n'y a qu'a substituer aux quantités

//les invariants simultanés par les formules ci-dessus ;
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pour m= 'S par exemple, on retrouve aussitôt la condition
connue 4 ® A — 02 o.

Théorème de Cayley. — Caylcy est arrivé autrement à la
condition de fermeture par la remarque suivante : pour (pie nèo o

il faut et il suffit (piil existe une fonction doublement pério-
ditjue (I>(4i}, entière par rapport à pu et p u, qui n ait d'autres
racines (jue la racine multiple d'ordre m ; u c5.

K\\ (diet, toute fonction entière de pu et p'u ne peut avoir d'autres

pôles que la somme de ses pôles dans un même

parallélogramme de périodes sera doue : o ; par suite, il en sera de

même de la somme de ses racines, de sorte que si elles sont
toutes égales à cO et en nombre m, on devra avoir /?icb :o ;

réciproquement^ cela suffit pour qu'on puisse construire cette fonetion

par la formule de la décomposition en produit, sous la

forme :

[ T[il LÖ)]"'
(l\u) A — — (A, constante arbitraire).

— uèo jpu/" "'[

Pour appliquer ici ce théorème je remarque que je puis
écrire (1> (jf sous la forme F [pif + p' ft ly ipu f en désignant

par F et Fi des polynômes entiers en pu ; on choisira aisément les

degrés de F et de ly suivant la parité de my de façon que u o

soit pôle multiple d'ordre m de la fonction : dans tous les cas, on
trouve que le nombre total des coefficients de F et ly est 7».

Prenons pour variable e puy il faut et il suffit qu'on puisse
choisir les coefficients de F et de Fp de sorte que la fonction

F jV) + Fl (e) —-g'1*'—g3 admette la racine c pcO il l'ordre
dé multiplicité m. Je fais alors la substitution linéaire :

e //(?-1 —, à étant la nouvelle variable.
4

lui fonction deviendra :

c 4- K, (\)sf4 fo4--A.) — fo S—f) —

F et iy étant entiers en h et respectivement des degrés de F et ly.
On reconnaît alors sous le radical précisémentle premier membre
de [ équation discriminante du faisceau r-f-A C — o, pris sous la
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forme réduite : on peut le remplacer par le premier membre

A Çt) — A, + 01 A —{— 0A2 + Aa3. On développera alors V -K'v su^"

vantles puissances entières croissantes de A ; et on égalera à oies

m premiers coefficients du développement de E Çn, + E1 a) \/a A,

qui en résulte, ce qui donnera m relations linéaires et homogènes
entre les coefficients des polynômes E et E1 : l'annulation de leur
déterminant donnera la condition cherchée sous la forme indiquée

par Salmon ^sections coniques, p. 584]-

AL Lelieuvre : Caeiy

DÉFINITION ET DÉTERMINATION ANALYTIQUE

DES FOYERS D'UXE COXIQUE

P Pv É LIMINAIRES

Pour plus de clarté nous avons divisé cet article en deux parties.

Dans la première, nous étudions au point de vue de 1

enseignement les diverses définitions qui ont été employées pour
désigner les fovers d'une conicrue. A ces définitions, nous en

avons ajouté une nouvelle, qui nous semble destinée a être
utilisée dans l'enseignement.

Dans la deuxième partie nous montrons comment cette
nouvelle définition conduit naturellement a un procédé de détermination

des loyers d'une conique, procédé bien plus élégant et

plus commode que les procédés connus. Nous v avons présenté
nos résultats sous une forme condensée en laissant de côté tous
les calculs que le lecteur peut facilement effectuer lui-même.
Afin de ne pas trop étendre notre travail, nous n'avons indiqué
ce procédé de détermination que dans le cas où la conique est

rapportée à des axes coordonnés rectangulaires : la méthode est

d'ailleurs la même dans le cas d'axes obliques.
Ce procédé possède un certain intérêt au point des résultats ;
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