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THÉORIE DE L'ÉQUATION QUADRATIQUE

La théorie courante de l'équation quadratique peut être

établie comme il suit :

Une équation quadratique à coefficients réels a, soit deux

racines réelles, soit deux racines imaginaires, le cas de séparation

ayant lieu lorsque les racines sont égales. Si l'équation est

représentée par :

x~ -j- 'ici X —|— b — o

les deux racines sont :

ay — — a-\- s/ — b

et

x±— — a — \/a2 — b

Si cr est plus grand que le radical se prête a une simple
addition algébrique avec — o-, et les deux racines sont réelles.

Les deux termes peuvent être représentés par des segments
d'une seule et même ligne droite et leur somme est aussi un

simple segment. Mais quand a2 est plus petit que b% c'est

y'/,_a1 qui est réel et les deux racines sont représentées par :

Xi — —- a + sj—i sjb — a2 x2 — — a — — i \/b — a2,

On sait que, comme le terme radical est affecté du symbole

y— j, il ne peut être combiné avec — a par simple addition. On
sait que les deux termes ne peuvent être représentés par des

segments d'une seule et même ligue droite, mais que le terme
radical doit être représenté suivant nue ligne formant un angle
droit avec celle sur laquelle —a est représenté. Pour cette
raison, la racine est dite complexe et on sait que le plan est nécessaire

pour sa représentation adéquate. Gomme conséquence, on
sait que \/—i indique que l'axe pour le terme imaginaire est à
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angle droit sur l'axe pour le terme réel, autrement dit, cela

démontre que l'axe réel tourne d'un angle droit.
Le point de vue auquel je me place est le suivant :

Dans tous les cas, la signification de sj— i est scalaire ; ce

symbole ne signifie rien de plus que l'indication qu'il doit donner,

c'est-à-dire que le carré du terme affecté est négatif. Il ne
s'en suit pas que deux segments d'une ligne dont l'un est affecté
de et l'autre ne l'est pas, ne se composent pas en quelque
chose de réel ; je montrerai que leur simple addition correspond
à une réalité géométrique. De cette manière de voir, on déduit

que les racines ont toujours une signification scalaire.
Mais dans les deux cas, les racines se prêtent aussi à ce que

nous pouvons appeler une signification planaire. Soit que [3

représente un axe de longueur égale à l'unité, et soit [32 égal à + i ;

alors dans le dernier cas, lorsque a1 est plus petit que

xl — — a -f- \/' b ~ a2 ^— i ß

représente une quantité complexe circulaire, tandis que dans le

premier cas

xL — — a -}~ S/ a2 — b ß

représente une quantité complexe hyperbolique.
La preuve que cette quantité hyperbolique satisfait à l'équation

est la suivante :

.ri2 =x a2 -j- à'1 — b — 2a\/a1 — b ß

-f- 2axl — —• 2a2 + 2as/a2 — b ß

+ b =r b

X |
2

—J— 2, (IX^ —{— b o —\- o.

Le tout est égal à o, parce qu'il se décompose en une partie
scalaire et une partie vectorielle qui sont séparément égales à o.

La môme preuve s'applique à la quantité complexe circulaire.
Conformément à cette théorie, le symbole i est caractéristique

de la quantité complexe circulaire, tandis qu'il est absent
dans la quantité complexe hyperbolique ; et ceci s'accorde avec

ce fait algébrique, que

^2 _ f. — (x. y) (x _ j)
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tandis que
_]_ j2 -- (,x _j_ 1 y, ~v/= ty.

La signification de la quantité complexe scalaire résultera de

la considération de la Trigonométrie d'un angle complexe
Soit (fig. i) que AOP représente un angle circulaire, et

POQ un angle hyperbolique; OA et OB

sont les demi-axes du cercle, OP et OD

ceux de l'hyperbole équilatère. Menons

PM et QK parallèles à la tangente en A,
et par suite perpendiculaires a OA ; puis
QX parallèle à la tangente commune
en P, et par suite perpendiculaire à

OP. De N, menons NL et NR parallèles

à PM et OA, respectivement.
Représentons par u et e, respectivement,

les angles circulaire et hyberbolique ; alors, comme
M. Laisa ni l'a montré dans son Essai sur les foliotions
hyperboliques, les définitions premières des fonctions trigonométriques
de ces angles sont

O

cos u
OM
OA

M?
~OB cosh v

OA
OP

s inh v
NQ
OD

D'après ces définitions, les fonctions sont entièrement scalaires,

parce que la direction des deux termes dans chaque rapport^est
la même. Si nous réduisions les relations ci-dessus a

OM
OA

MP
"OA" cosh

ON
OP

sinh NQ
OP

alors, dans le cas de sin?/, ce sont seulement les longueurs de

MP et de OA que l'on considère, sans avoir égard à leur
différence de direction ; et de même pour sin hv.

On a coutume de définir les fonctions de l'angle complexe
analytiquement ; mais elles ont une définition géométrique. Les
définitions de l'angle complexe ci-dessus sont

OK
ÔÀ

et

[u + V7—10 —

(u +(/—It')= 0B
KQ

Enseignement math. 24
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TOCC11C
OA

7 KO
expression qui peut s écrire dans le cas ci-dessus -^-r •

Considérons maintenant l'addition de ces angles d'un point de

vue géométrique. Nous avons

OA MP
OK OL — LK OM — AQ -

OP ' ^ OP

OK OM OA MP AQ

De pli

OA OA OP OA OP

— cos a cosh f — sin u sinli v.

KQ LX -I- RQ AJ- MR + XQ iA
(loi

KQ MP OA OM AQ
OA OA OP

1 OA OP

zzz sin u cosh c -f- cos u sinh r.

Considérons maintenant le signe d'un point de vue géométrique.

L'angle complexe ci-dessus est exprimé par u \/—i e, et

cos (u \/—i rj sss cos u cosh v — |/—i sin u sinh c,

sin lu Q- y —1 Q vv sin u cosh r -j- \J—i cos u sinh c.

Ainsi l'Analvse conduit au symbole comme affectant le

second terme, tandis que la Géométrie donne les mômes formules

sans \!~\. Nous en concluons que les parties sont ajoutées
linéairement comme résultat final, mais que le symbole \/^ï doit
être conservé dans une période intermédiaire du calcul. De toutes

façons, 'clans cette quantité scalaire complexe, le symbole

pA_ j n'a aucune signification directionnelle, il signifie simplement

que le carré de la quantité a laquelle il est attaché doit être prise
avec le signe négatif. Les deux termes de la quantité sont
représentés par des segments d'une seule et môme droite. La justification

complète de cette théorie se trouve clans les développements

auxquels elle conduit ; mais je puis incliquer ici le chemin

par lequel j y arrive.

L'application, à la décharge d'un condensateur électrique, du
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principe de la conservation de l'énergie, conduit a l'équation
d il1er en ti elle :

d2q R d(i i
UT + ~T rfT + 17c 0

où q représente la charge au temps R la résistance, h la
puissance d'induction du circuit et C la capacité du condensateur.

Si q Acml est supposé être la solution de l'équation, alors

ni doit être tel que

A c'"1 (m'1 4- il 711 -|-—1— ;

\ L ^ LG

relation qui se réduit a nu ~\~ 2 am b o, si par abréviation
_R
2 téa est écrit a la place de la quantité positive et b a la place

de la quantité positive
La théorie courante de l'équation quadratique conduit aux solutions

suivantes de l'équation différentielle.
Dans le cas des racines réelles,

7; c,e
—AßrtN^u'2— ?>) S

+ 4« ;

Dans le cas des racines imaginaires,O s

1 vG-ftfi —fa+\J— i b —a- h

</=*,<? d- r,c

et dans le cas de transition,

q — e~al (ci + cR).

Dans le cas imaginaire, la solution apparemment impossible se

réduit, après beaucoup de travail, à la forme :

(j — Ae~~at sin \ \/b — a2 t -J- o j

La reduction peut être e fie c tuée d'une façon très claire et très
directe en traitant les racines imaginaires comme des quantités
co m [ilexes planaires de la (orme

— n 4- sj — i sjb — c2 ß et —a— \J— 1 sjb — u2~ ß ;

et une réduction analogue est possible dans le cas des racines
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réelles, en les traitant comme des quantités complexes hyperboliques

de la forme :

— a al— b ß ct — a —sja1 — /> ß.

Supposons que la quantité réelle a2— b soit désignée par n,
Dans le cas imaginaire,

7 — — « + V// — 1 "ß 7)h — — a — V/ — 1 "ß

de la
—al-rc +\/—i[nt+v)!£

(j i e

et

__ -nt+c-V~i[nt + <t) p-
72 — L

oii un terme arbitraire a été ajouté aux parties scalaires et
vectorielle de m.

Maintenant^, et m dénotent des spirales convergentes équian-
guiaires diHeranL seulement en ce que l'une est la réflexion de

Tautre par rapport à la ligne initiale. De là, si nous ajoutons les

deux, nous avons deux fois la projection horizontale, et si nous
retranchons, nous avons deux fois la projection verticale.
Suivant les conditions initiales du problème, nous aurons à ajouter
ou a retrancher ; dans le cas du problème ci-dessus, nous devons

retrancher,
De Ol

(j uz '2CC e~al sin [at -j- cp).

Dans le cas réel nous avons :

mx r:r — a + cß m± ~— a— /?ß

(j e~

q ;
— ß—at -hr~~ (nt + s) ^

et
(j — iee~~at sin h [nt -f- cp).

La première équation représente la décharge d'un condensateur

quand il ose il le"; la dernière, quand il n'oscille pas. L'analyse

ici donnée correspond à la méthode graphique dont se

servent actuellement les électriciens dans l'étude des courants
al ici natifs.
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Nous nous trouvons ainsi conduit à la conception d'une spirale

hyperbolique équiangulaire convergente, laquelle est

précisément l'analogue de la spirale circulaire équiangulaire
convergente.o

Je crois que cette courbe est nouvelle, car je ne la trouve pas
dans la très complète Bibliographie des courbes géométriques, de

M. Brocard.
Les spirales correspondantes sont représentées par les

figures 2 et 3.

La fonction Ae at sin hit -f- :p) représente la projection verticale

/
—^ R

O)1 V 0

Fig. 2. Fig. 3.

d'un mouvement uniforme circulaire d'amplitude A, de vitesse

angulaire n et d'époque o. De même la fonction

Ae — at sin [nt -(- o)

représente la projection verticale du mouvement spiral circulaire
du point P ayant pour vitesse angulaire n, pour ép.oque o et

pour amplitude décroissante logarithmique Ac ~at.
De la même manière, la fonction

Ae ~~ at sin h (ni -f- o)

représente la projection verticale du mouvement spiral hyperbolique

du point P, ayant pour vitesse angulaire hyperbolique n,
pour époque l'angle hyperbolique o et pour amplitude Ac at.

Cette spirale est convergente, car n est pas nécessairement
moindre que a.

Le point R décrit le mouvement uniforme primaire ; le
point P décrit le mouvement spiral et le point Q décrit le
mouvement harmonique correspondant.

Al. Macfarlane South-Bethleem. Penn. U. S.A.)
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