Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 2 (1900)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROBLÈMES MATHÉMATIQUES

Autor: Hilbert, D.

Kapitel: III. Problèmes empruntés a la théorie des fonctions

DOI: https://doi.org/10.5169/seals-3575

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

7. Géométrie de situation des courbes et des surfaces algébriques.

Harnack a déterminé le nombre maximum de traits de courbe fermés et séparés les uns des autres dont peut se composer une courbe algébrique d'ordre m. On demande d'étudier la situation réciproque de ces traits; d'établir un théorème analogue à celui de Harnack pour les surfaces algébriques et d'examiner ensuite la situation réciproque des diverses nappes.

III. Problèmes empruntés a la théorie des fonctions

La notion de fonction est tellement générale, que, dans une étude approfondie, il faut se borner à n'en considérer que certaines classes particulièrement importantes.

Si l'on choisissait la classe des fonctions définies par des équations différentielles algébriques, un certain nombre de fonctions intéressantes échapperaient à nos recherches (ainsi la fonction $\zeta(s)$ de Riemann).

Si, d'autre part, nous considérions toutes les fonctions continues ayant des dérivées de tous les ordres, nous ne pourrions pas employer la méthode si souple des séries de puissances.

Il paraît donc légitime de vouer une attention toute spéciale aux fonctions analytiques; les fonctions importantes étudiées jusqu'à présent rentrent du reste toutes dans cette catégorie.

8. Caractère analytique de certaines fonctions rencontrées dans le calcul des variations.

Un problème du calcul des variations

$$\iint F(z, p, q; x, y) dx dy = \min. \qquad \left[\frac{\partial z}{\partial x} = p, \frac{\partial z}{\partial y} = q \right]$$

sera dit $r\acute{e}gulier$, lorsque la fonction F est analytique et lorsqu'elle satisfait à l'inégalité

$$\frac{\partial^2 F}{\partial p^2} \cdot \frac{\partial^2 F}{\partial q^2} - \left(\frac{\partial^2 F}{\partial p \partial q}\right)^2 > o.$$

Démontrer que la solution z d'un problème régulier est nécessairement une fonction analytique des variables x et y.

Voici encore un problème analogue plus spécial:

Examiner si les surfaces à courbure de Gauss constante et positive ne seraient pas toutes des surfaces analytiques.

9. Existence d'équations différentielles linéaires ayant un groupe donné.

Prenons dans le plan de la variable un nombre fini de points et fixons pour chacun d'eux un système de substitutions linéaires. Démontrer qu'il existe une équation différentielle linéaire de la classe régulière admettant ces points comme points singuliers et ayant comme groupe le groupe de substitutions défini par les systèmes donnés.

10. Deux variables liées par une relation analytique quelconque peuvent être exprimées en fonction uniforme d'un paramètre z.

Le beau théorème de M. Poincaré sur ce sujet, publié dans le Bulletin de la Société mathématique de France (t. XI, 1883), est encore astreint à quelques restrictions. Il serait important d'établir le théorème dans toute sa généralité et surtout d'examiner si les variables sont toujours des fonctions automorphes du paramètre z.

Il s'agirait en outre d'étendre ce théorème au cas de plusieurs variables indépendantes.

Pour un plus grand choix de problèmes, nous renvoyons le lecteur à l'article que nous allons publier dans le Bulletin de la Société des Sciences de Goettingue. (Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Göttingen, 1900.)

CONCLUSION

Les problèmes précédents nous montrent la variété croissante des mathématiques. N'est-il donc pas à redouter que notre science ne se scinde en plusieurs branches n'ayant plus guère de rapports entre elles?

Nous ne le croyons mi ne voulons l'espérer.

Nous voyons du reste que la mathématique, en se développant, bien loin de perdre son caractère de science unique, le manifeste de jour en jour plus clairement.