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jours possible ou bien de résoudre le problème, ou bien de

démontrer qu'il ne comporte aucune solution.
Jamais mathématicien ne sera réduit à dire : Ignorabimus.

ÉNONCÉ DE QUELQUES PROBLÈMES

Nous voulons illustrer ce que nous venons de dire par quelques
problèmes empruntés aux divers domaines des mathématiques,
et qui nous semblent particulièrement propres à contribuer à

l'avancement de notre science.

I. Problèmes relatifs aux notions fondamentales

i. Problème de Cantor sur la puissance du continu.

Chaque ensemble de nombre est équivalent ou bien à Vensemble
des nombres entiers rationnels, ou bien au continu.

Le premier pas à faire pour trouver la démonstration de ce

théorème serait peut-être de résoudre le problème suivant :

Mettre le continu sous la forme d'un ensemble bien ordonne
{wohlgeordnete Menge).

2. Axiomes cle VArithmétique.

Trouver un système d'axiomes régissant et définissant les

conceptions arithmétiques ;
Examiner si ces axiomes sont indépendants les uns des autres,

et, dans le cas contraire, mettre en évidence les parties communes,
de façon à obtenir un système d'axiomes complètement indépendants

;

Enfin prouver que ces axiomes sont compatibles, c'est-à-dire
qu'une suite finie de déductions logiques partant de ces axiomes,
ne peut jamais conduire à une contradiction.

Nous disons qu'une conception existe au point de vue
mathématique, lorsque les axiomes qui lu définissent sont compatibles.
13 apiès cetcc définition, la solution du problème précédent ne
serait autre chose que la demonstration de I existence ma
thématique du continu. 13e la, nous serions peut-être conduits à

établir de la même manière l'existence des ensembles de
puissance transfinie supérieure.
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;î. Axiomes de la Physique.

Etablir les systèmes d'axiomes du Caleul des probabilités, de

la Mécanique rationnelle et des différentes branches de la Physique,

puis fonder sur ces axiomes Vétude rigoureuse de ces sciences.

II. Problèmes empruntés a l'arithmétique et a l'algèbre

4. Problème de Riemann sur les nombres premiers.

Démontrer dans tonte leur étendue les propositions formulées

par Riemann sur la fonction Ç (s), en particulier la suivante :

La différence entre le nombre des nombres premiers inférieurs
à une quantité x et le logarithme intégral de cette quantité devient

infinie avec x cïun ordre égal ou inférieur à fix.
Etendre les propositions de Riemann à la fonction analogue

Çk(s) correspondant à un corps algébrique k ;

(nffi désigne la norme de l'idéal j ; la somme s'étend a tous les
idéaux j du corps).

5. Certains nombres sont-ils transcendants ou du moins irrationnels

Démontrer que la fonction a une valeur transcendantef
lorsque la variable z est algébrique irrationnelle.

Examiner si les puissances a3 ont toujours des valeurs
transcendantes ou du moins irrationnelles, lorsque la base est un
nombre algébrique et /'exposant un nombre algébrique irrationnel.
(Exemples : 2È2 e* i~tl)>

6. Les solutions cle féquation clu 7e degré ne peuvent pas sobtenir

par la Nomographic.

La Nomographic permet de résoudre une équation lorsque les
racines peuvent être obtenues par une suite finie d'opérations ne

portant que sur deux paramètres. Il s'agit de démontrer que
Véquation générale du 7° degré ne rentre pas dans cette

catégorie.
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