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PROBLEMES MATHEMATIQUES 351

jours possible ou bien de résoudre le probleme, ou bien de dé-
montrer qu’il ne comporte aucune solution.
Jamais mathématicien ne sera réduit a dire : fgnorabz’mzzs.

ENONCE DE QUELQUES PROBLEMES

Nous voulons illustrer ce que nous venons de dire par quelques
problemes empruntés aux divers domaines des mathématiques,
et qui nous semblent particulierement propres a contribuer &
Pavancement de notre science.

I. PROBLEMES RELATIFS AUX NOTIONS FONDAMENTALES
1. Probléme de Cantor sur la puissance du continu.

Chaqgue ensemble de nombre est équivalent ou bien « Uensemble
des nombres entiers rationnels, ow bien au continu,

Le premier pas a faire pour trouver la démonstration de ce
théoreme serait peut-¢tre de résoudre le probleme suivant :

Mettre le continu sous la forme d'un ensemllc bien ordonné
{wohlgeordnete Menge).

9. Axiomes de Z’Ai’iz‘/znzéligue.

Trouyer un systeme d’axiomes régissant et définissant les con-
ceptions arithmétiques ;

fleaminer st ces axiomes sont indépendants les uns des autres,
et, dans le cas contraire, metire en éyidence les parties communes,
de facon & obtenir un systeme d’axiomes completement indépen-
dants ;

Enfin prouger que ces axiomes sont compatibles, ¢'est-a-dire
qu’une suite finie de déductions fogiques partant de ces axiomes,
ne peut jamais conduire & une contradiction.

Nous disons qu'une conception existe au point de vue mathé-
malique, lorsque les axiomes qui la définissent sont compatibles,
D’apres cette définition, Ia solution dua probleme préedédent ne
serait autre chose que Ia démonsiration de existence mathe-
matique dua continu., De 1, nous serions peut-éire conduils i
établir de la méme manitre Vexistence des ensembles de puis-
sance transfinie supérieure.
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3. Axiomes de la Physique.

Itablir les systemes d’axiomes du Caleul des probabilités, de
la Mécanique rationnelle et des différentes branches de la Physi-
que, puis fonder sur ces axiomes {'étude rigoureuse de ces sciences.

I, PROBLEMES EMPRUNTES A L’ARITHMETIQUE ET A L’ALGLBRE
k. Probléme de Riemann sur les nombres premiers.,

Démontrer dans toute leur étendue les propositions formulées
par Riemann sur la fonction T (s), en particulier la suivante :

La diflérence entre le nombre des nombres premiers inféricurs
a une quantité x et le logarithme intégral de cette quantité deyient
infinie avec x d un ordre égal ou inférieur a \/;-

Ltendre les propositions de Riemann « la fonction analogue
Ui (s) correspondant a un corps algébrique k :
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[n(}) désigne la norme de U'idéal j; la somme s’étend a tous les
tdéaux j du corps).

5. Certains nombres sont-ils transcendants ou du moins irrationnels ?

Démontrer que la fonction ¢+ a une yaleur transcendante,
lorsque la variable z est algébrique irrationnelle.

Lxaminer si les puissances & ont toujours des valeurs trans-
cendantes ow duw moins irrationnelles, lorsque la base est un
nombre algébrique el lexposant un nombre algébrique irrationnel.
(Exemples : aV2, er = (—27),

6. Les solutions de Uéquation du 7° degré ne peusent pas s obtenir
par la Nomographic.

La Nomographie permet de résoudre une équation lorsque les
racines peuvent ¢tre obtenues par wne suite finie d’opérations ne
portant que sur deux parametres. Il s'agit de démontrer que
Uéquation générale du 7’ degré ne rentre pas dans celle caté-
gorie.
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