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GENERALITES

Lorsque une science progresse d'une manicre continue, on peut
juger de son développement ultérieur par 'examen des problemes
qui l'occupent actuellement.

L existence de problemes précis a une importance capitale et
pour le progres des mathématiques et pour le travail de chaque
chercheur.

A quels signes pourrons-nous reconnaitre quels sont parmi ces
problemes les plus proches a faire avancer notre science

Un probleme doit étre bien défini; sonsens et sa portée faciles
a saisiv 5 1l doit etre difficile, mais non pas iabordable.

Nous pouvons citer comme exemples, d'une part le probleme
de Fermat, par lequel Kummer a été amené a introduire les idéaux
dans la théorie des nombres algébriques, et d’autre part le pro-
bleme des trois corps.

D’oit nous piennent les problemes mathématiques

C’est 'expérience qui, dans chaque domaine, pose devant nous
les problemes primaires. (Duplication du cube, quadrature du
cercle, les premiers problemes de 'analyse infinitésimale et de
la théorie du potentiel.)

Dans le développement ultérieur de la science, c'est notre
esprit qui, par des raisonnements logiques (combinaison, géné-
alisation, spéelalisation), erée lui-méme des problemes nouveaux
et [¢conds. (Probleme des nombres premiers, problemes prove-
nant de la théorie de Galois, de la théorie des fonctions ellipti-
ques et e celle des fonctions automorphes.)

(") Résumé de Ia conférence tenue par M. HiLsert & la sixiéme section (Ensei-
gnement el mélhodes) du Congrés international des mathémaliciens, le 8 aoil 1goo.
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A quelles exigences la solution d’un probléme mathématique
doit-elle répondre ?

Nous disons qu'une question est résolue, lorsque, en nous
appuyant sur un nombre fini d’hypotheses fournies par le pro-
bleme lui-méme, nous pouvons démontrer la justesse de la solu-
tion a I'aide d’'un nombre fini de syllogismes.

La rigueur mathématique que nous exigeons ainsi n’entraine
pas nécessairement des démonstrations compliquées ; la méthode
goureuse est souvent la plus simple et la plus facile a

8
comprendre. (Introduction des intégrales abéliennes dans la

la plus 11

théorie des courbes algébriques, emploi des séries de puissances
dans la théorie des fonctions.)

Les conceptions de 'Arithmétique ou celles de I’Analyse ne sont
pas les scules qui soient susceptibles d’un traitement l‘igom*eux.v
Celles de la Géométrie et des sciences physiques le sont égale-
ment, pourva qu'au moyen d’'un systeme complet d’axiomes, elles
sotent ausst bien fixées que les conceptions de l’al'ithmétique. |

Chaque systeme de conceptions nous conduit a créer un sys-
teme de symboles destinés a servir d’instruments de démons-
tration.

Une démonstration faite au moyen des symboles géométriques

8
sera done parfaitement légitime, des que 'on se rendra un compte
exact des axiomes qui leur servent de base. (Minkowski, Geo-
metrie der Zahlen.)

Lorsqu'un probleme présente des diflicultés sérieuses, par
quelles méthodes pouyons-nous Uattaquer ?

D’abord par généralisation, en rattachant le probleme consi-
déré a un groupe de questions du méme ordre. (Introduction des
nombres idéaux dans la théorie des nombres algébriques, emplo:
des chemins complexes dans la théorie des intégrales définies.)

Ou bien par spécialisation, en approfondissant 'étude de pro-
blemes anologues plus simples déja résolus.

- L’échec des tentatives faites pour résoudre un probleme provient

souvent de ce que la question est impossible a résoudre sous la
forme donnée. Nous exigeons alors une démonstration rigourcuse
de Uimpossibilité. (Axiome des paralltles, quadrature du cercle,
résolution algébrique des équations du 5° degré.)

Mais nous avons la conviction qu’en mathématique, il sera tou-
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jours possible ou bien de résoudre le probleme, ou bien de dé-
montrer qu’il ne comporte aucune solution.
Jamais mathématicien ne sera réduit a dire : fgnorabz’mzzs.

ENONCE DE QUELQUES PROBLEMES

Nous voulons illustrer ce que nous venons de dire par quelques
problemes empruntés aux divers domaines des mathématiques,
et qui nous semblent particulierement propres a contribuer &
Pavancement de notre science.

I. PROBLEMES RELATIFS AUX NOTIONS FONDAMENTALES
1. Probléme de Cantor sur la puissance du continu.

Chaqgue ensemble de nombre est équivalent ou bien « Uensemble
des nombres entiers rationnels, ow bien au continu,

Le premier pas a faire pour trouver la démonstration de ce
théoreme serait peut-¢tre de résoudre le probleme suivant :

Mettre le continu sous la forme d'un ensemllc bien ordonné
{wohlgeordnete Menge).

9. Axiomes de Z’Ai’iz‘/znzéligue.

Trouyer un systeme d’axiomes régissant et définissant les con-
ceptions arithmétiques ;

fleaminer st ces axiomes sont indépendants les uns des autres,
et, dans le cas contraire, metire en éyidence les parties communes,
de facon & obtenir un systeme d’axiomes completement indépen-
dants ;

Enfin prouger que ces axiomes sont compatibles, ¢'est-a-dire
qu’une suite finie de déductions fogiques partant de ces axiomes,
ne peut jamais conduire & une contradiction.

Nous disons qu'une conception existe au point de vue mathé-
malique, lorsque les axiomes qui la définissent sont compatibles,
D’apres cette définition, Ia solution dua probleme préedédent ne
serait autre chose que Ia démonsiration de existence mathe-
matique dua continu., De 1, nous serions peut-éire conduils i
établir de la méme manitre Vexistence des ensembles de puis-
sance transfinie supérieure.
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