Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 1 (1899)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES FONDEMENTS DE L'ARITHMÉTIQUE MODERNE

Autor: Montessus, R. de

Kapitel:

DOI: https://doi.org/10.5169/seals-1228

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les définitions fondamentales données, les axiomes posés, viendra la numération, puis les opérations ordinaires, addition et soustraction, multiplication et division, élévation aux puissances et extractions des racines, en se bornant aux cas où ces opérations sont possibles; je veux dire qu'on supposera le nombre à soustraire plus petit que le nombre dont on veut le retrancher, le dividende multiple du diviseur, etc.

On pourra, d'ailleurs, traiter en un chapitre supplémentaire les opérations approchées à une unité près.

Ce faisant, nous aurons terminé la première partie de l'Arithmétique, étude des opérations fondamentales.

H

C'est ici le lieu d'observer que l'Arithmétique, l'Algèbre, l'Analyse sont les branches d'une science unique, branches faciles à distinguer. L'Algèbre en particulier n'est plus, pour nous, une Arithmétique supérieure, caractérisée par l'emploi des symboles littéraux et des nombres négatifs, mais la science des groupes de nombres (¹); or, il ne serait pas nécessaire, en Algèbre, de revenir sur ses pas à propos de l'introduction des incommensurables et des imaginaires, si l'on étudiait ces nombres en Arithmétique, où leur place semble marquée, ou au moins si on les présentait d'un bloc, comme introduction à l'Algèbre (²). On me l'accordera pour les incommensurables. Mais les imaginaires? Mais les nombres négatifs?

Or, pourquoi ceux-ci et non les autres?

⁽¹) Par exemple, l'addition algébrique peut être définie : étant donnés plusieurs groupes de nombres — polynômes —, A, B,... déterminer un autre groupe R, tel que la somme numérique des résultats de la substitution de valeurs numériques déterminées aux quantités littérales dans A, B,... soit identique au résultat de cette même substitution dans R, quelles que soient ces valeurs numériques. En général, les opérations algébriques élémentaires ne sont que l'étude des transformations de groupes donnés.

Dans le cas particulier où l'on attribue à toutes les lettres, sauf une, des valeurs numériques, si l'on se propose de déterminer la valeur numérique de la dernière lettre de manière que le groupe prenne une valeur donnée à l'avance, on a une équation numérique. L'extension aux équations littérales, aux équations simultanées, est immédiate.

^(*) Cf. par exemple Netto, Vorlesungen über Algebra. Teübner, Leipsig, 1896.

Les nombres négatifs ne sont-ils pas destinés à suppléer aux soustractions impossibles et les imaginaires aux extractions de racines qu'on ne peut effectuer?

Comprenons donc les nombres négatifs, fractionnaires, incommensurables, imaginaires, sous la dénomination de nombres conventionnels, formons-en la deuxième partie de l'Arithmétique, ou l'introduction à l'Algèbre, et l'Algèbre pourra être ordonnée logiquement.

J'ai parlé de nombres conventionnels. Bien qu'il soit contraire à mes principes de préférer les mots les uns aux autres, ce terme me semble résumer de longs discours, et je vais expliquer pourquoi je l'ai choisi.

Aucun des nombres que nous étudiions jusqu'ici n'est le résultat de l'opération a-b, si a est plus petit que b; de même pour la division, si a n'est pas multiple de b, et aussi pour l'extraction des racines, si a n'est pas une puissance exacte, et même positive, dans le cas d'indice pair.

Nous voulons suppléer à ces opérations impossibles en créant de nouveaux nombres, des nombres « fictifs » (¹) d'où l'on puisse revenir sans peine à la réalité (²), mais qui conservent aux formules leur généralité. Que seront ces nombres s'ils ne sont pas conventionnels (³)? Aussi bien nous les regarderons comme tels, et je vais essayer de résumer le plus brièvement possible les théories modernes qui s'y rapportent.

Considérons un nombre entier a et affectons-le soit de l'indice n, soit de l'indice p. Nous dirons que a_n est un nombre négatif, a_p un nombre positif, que a est leur valeur absolue commune et nous définirons ces deux classes en convenant :

I. De regarder deux nombres comme égaux s'ils sont de la même classe et s'ils ont même valeur absolue, comme inégaux si l'une de ces deux conditions n'est pas remplie;

II. D'ajouter deux nombres d'une même classe en faisant la somme de leurs valeurs absolues et en plaçant le résultat dans la même classe; au contraire, de faire la différence des valeurs

⁽¹⁾ MÉRAY, Traité d'analyse, t. I, G. V., 1892.

⁽²⁾ Est-il nécessaire de rappeler ici comment on interprète les solutions négatives

^{(3) «} Le seul objet de la pensée mathématique, c'est le nombre entier. » H. Poin-Caré, Revue générale des Sciences, 15 nov. 1897.

absolues, si les nombres ne sont pas de même classe, et de placer le résultat dans la classe du plus grand en valeur absolue;

III. De faire le produit de deux nombres en faisant le produit de leurs valeurs absolues, le résultat étant placé dans la classe p si les deux nombres sont de même classe; dans la classe n, s'ils sont de classes différentes.

Les propriétés dont nous venons de convenir et qui définissent les nombres positifs et les nombres négatifs sont arbitraires. Nous eussions pu les prendre tout autres. Mais il faut qu'elles soient utiles et non contradictoires; utiles, en ce sens que les entiers ordinaires doivent être un cas particulier de ces nombres; non contradictoires, c'est-à-dire que les conséquences de ces définitions ne doivent pas être la négation les unes des autres. Enfin, elles doivent permettre de retrouver les propositions fondamentales de la théorie des nombres entiers.

Cette base acquise, nous ferons l'extension des opérations simples, et nous pourrons conclure : si l'on regarde comme liés ensemble un nombre et le signe (+ ou -) dont il est précédé, en admettant que le signe + soit toujours sous-entendu quand il n'est pas exprimé, les nombres positifs ne sont autres que les entiers ordinaires et les nombres négatifs les nombres précédés du signe -, qu'ils soient isolés ou engagés dans les calculs.

Si les opérations à effectuer sont *possibles*, — sens primitif — on pourra indifféremment user des règles ordinaires ou des principes ayant trait aux nombres positifs et négatifs : c'est une vérité d'expérience.

Les considérations bien connues que nous venons de rappeler s'appliquent mot pour mot aux autres catégories de nombres conventionnels dont les premiers à venir sont maintenant les fractions (1).

Si b divise a, le résultat de l'opération $\frac{a}{b}$ est un nombre entier parfaitement déterminé ; au contraire, si b ne divise pas a, $\frac{a}{b}$ n'a

^{(&#}x27;) La théorie des nombres conventionnels est exposée en détail dans le Traité d'Analyse de M. Méray (loc. cit.); les nombres négatifs sont spécialement étudiés dans les ouvrages de MM. Padé, Bourlet, Cor et Riemann (loc. cit.), les imaginaires dans les algèbres de MM. Bourlet, Netto (loc. cit.). Toutefois les développements qu'on rencontre dans ces ouvrages paraissent exagérés. La théorie des incommensurables donnée dans l'Analyse de M. Jordan paraît remarquable.

plus de sens, ne signifie rien, et il convient, à l'exemple de ce qui a été fait pour la soustraction, de définir une nouvelle classe de nombres, dont l'emploi permette de suppléer à la non-divisibilité de a par b. Nous appellerons ces nombres fractions; nous les représenterons par le symbole $\frac{a}{b}$, a étant appelé numérateur et b dénominateur. Nous leur attribuerons les propriétés suivantes, qui appartiennent aux groupes $\frac{a}{b}$ où b divise a:

I. Toute fraction dont les deux termes sont de même signe est positive; sinon elle est négative;

II. On a

$$\frac{a}{b} = \frac{c}{d}, \ \frac{a}{b} < \frac{c}{d}$$

 $\frac{a}{b} < c$, selon que ad = bc, ad < bc, a < bc, en supposant qu'il s'agisse de fractions positives; la définition de l'égalité subsiste s'il s'agit de deux fractions négatives; mais dans ce cas, la plus grande en valeur absolue est regardée comme la plus petite; si les fractions sont de signes contraires, la négative est toujours plus petite que l'autre; en dernier lieu, si $\frac{a}{b}$ est négative et c négatif aussi, $\frac{a}{b}$ est plus petit que c si $\frac{a}{b} > -c$;

III. On ajoute deux fractions de même dénominateur en ajoutant les numérateurs;

IV. On multiplie une fraction par une autre en multiplant entre eux respectivement les numérateurs et les dénominateurs;

V. Les combinaisons de fractions et de pséudo-fractions — groupes $\frac{a}{b}$ où a est multiple de b — s'opèrent d'après les conventions précédentes. Ceci indique le procédé à suivre pour combiner les fractions et les entiers; il suffit de mettre les entiers a sous la forme $\frac{am}{m}$, m entier.

Passons aux incommensurables. Soient deux classes de nombres A et B (1) telles que tout, nombre a de A soit inférieur à tout nombre b de B et qu'il existe toujours dans ces classes deux nombres σ , β dont la différence soit plus petite que toute quan-

⁽¹⁾ Ces classes étant formées de nombres entiers et fractionnaires, positifs et négatifs. L'extension aux imaginaires se fera d'un mot dans la suite.

tité donnée ε , si petit que soit ε . Les nombres possibles pourront être répartis en trois groupes : les nombres qui sont inférieurs à quelque nombre de B, ceux qui sont supérieurs à quelque nombre de A, ceux qui sont supérieurs à tous les a et inférieurs à tous les b. On démontre aisément que ce dernier groupe comprend au plus un seul des nombres définis jusqu'ici. S'il n'en comprend pas $\binom{1}{2}$, nous ferons disparaître cette distinction, en disant qu'il existe encore un nombre plus grand que tous les a et plus petit que tous les b. Ce sera un incommensurable.

Pas n'est besoin d'autres conventions pour établir la théorie de ces nombres.

La théorie des imaginaires offre beaucoup de points communs avec la théorie des fractions; on y considère encore des groupes de deux nombres (a, b), a + b, $\sqrt{-1}$. Je ne m'y arrêterai pas, non plus qu'aux généralisations qu'on a essayé d'en faire $\binom{2}{2}$.

Remarquons, en terminant, que les conventions relatives aux nombres conventionnels tiennent lieu, et doivent tenir lieu, des définitions et des axiomes relatifs aux nombres entiers.

III

Si l'on admet la supériorité des principes nouveaux, qu'en penser au point de vue pédagogique? Sont-ils susceptibles de prendre place dans l'enseignement?

Essayons de résoudre cette importante question.

En France, dans la classe de mathématiques élémentaires, surtout en première année, le but principal du professeur doit être d'ouvrir l'esprit des élèves, de leur donner des notions générales, de développer les questions susceptibles d'applications théoriques ou pratiques, sans oublier que la majeure partie des

^{(&#}x27; Soit à extraire la racine carrée de $\frac{4}{9} = 0.444...$ Nous pourrons extraire la racine carrée de 0.444... à $\frac{1}{10}$, $\frac{1}{100}...$ près par défaut (classe A) et par excès, (classe B). Le nombre c sera $\frac{2}{3} = 0.666...$ Au contraire, le nombre $c = \sqrt{2}$ n'existe pas, au moins en tant qu'entier ou fraction, nombre négatif ou nombre positif.

⁽²⁾ O. Stolz, Vorlesungen über Allgemeine Arithmetik, t. II. — Berloty, Thèse (G.V.). — Weierstrass, Göttinger Nachrichten, 1884, p. 395; Dedekind, ibid., 1895, p. 141.