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158 G. FONTENIFE

Dans deux systemes alliés, ou en affinité, deux figares homo-
logues sont dans un rapport constant. Or le lieu du point d’'in-
tersection de deux tangentes du cerele 4 [aisant avec la corde
de contact un triangle d’aire constante, est un cercie concen-
trique au premier. Done nous trouvons semblablement que le
lien du point d'intersection de deux tangentes de Pellipse 4
laisant avee la corde de contact un triangle d’aire constante, est

une ellipse concentrique homothétique a la premiere.

D" G. Kitsixcer (Mulhouse).

: A - : R AN y o e -
REPRESENTATION GEOMETRIQULE
DES DIFFERENTIELLES SUCCESSIVES ‘})’UI(Ji FONCTION

D'UNE VARIABLE

1. — I peut étre utile, pour ceux qui abordent I'étude du
Caleul diftérentiel, de représenter géomdétriquement les différen-
tielles successives d'une fonction d'une variable v ¢ ¢’est un
moyen de fixer dans esprit hypothese essentielle ue da est
constant a partir de la diflférentietie seconde. On peut procéder
comme 1l suit.

La fonetion y == / (r) étant représentée par une courbe €,

. \
menons au point M la tangente MM, et tracons MA parallele &
L . - . )

Ox, M A, parallele a Oy ; M variant, st 'on suppose

MA, = consl. = «,
M, déerit une courbe €. Au point M, de la courbe €, menons la
tangente MM, et tracons M A, parallele a O, M A, pavallele &
Oy, en prenant

My Ay =MA; = «;

M variant, M, déerit une courbe C,. On obtient de méme les
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courbes successives C,, C,,... On a alors au point M, dr étant «,

< dy = A M,
\ A2y = AN — AN,
dy = A,M, — 2 AN, -+ AN,

dy = A DM, — 3 AN, + 3 AN — A M,

Pour le voir, on prend un point M’ voisin de M sur la courbe
~ L B . ! / : L A/ A/
C; on considere les points M/, M/, M,..., et les points AN,
A...; ondésigne par I, le point ot la parallele a Oy menée par
M’ est coupée par la paralelle a O menée par M, et I'on a les
points I, 1, 1, I,... La formule dy = A, étant évidente, on
procede de proche en proche. Si 'on suppose par exemple (a
formule exacte pour d'y, cette fonction de @ a une dérivée, limite
; N W
du rapport

(AN, — ANM,) — o (DI — AT 4 (A — AN
MI

le numérateur est égal a
(AL, — T — o (IO, — L) (TM — 1T

ou

LA, — 3 I,My 4= 3 T My — IM;

Te mpport pcut s’écrire

N, TN, LM I

YA PR VI PRI VO PR VYO

et la limite, ou la dérivée de ®y, est
my — 3 my = 3 my — m,

ne,, m étant les coefficients angulaires des tangentes MM,

0 Myseee
MM,... ; on a done la formule ci-dessus pour d'y, qui est par
définition la différentielle de d’y, ou le produit par a de la

dérvivée de cette fonction.

2. — A propos de représentations géométriques, on peut
observer ceci. Dans la démonstration du théoreme des fonctions
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composdées, pour le cas ot l'on a y :f(u, ¢), wet ¢ étant des
lonetions de la variable a, il est utile de considérer la surface
Y = /U, V', UetV étant ici deux variables indépendantes,
avec trois axes OU, OV, OY. On interprete les dérivées partielles
par les sections V = ¢, U = «. La fonction y de la variable «

est représentée par une courbe gauche, intersection de la sur-
face précédente et du evlindre « = <'x), ¢ = JY(a). On suit

bien ia démonstration sur la figure.

3. — Puisque je parle de Caleul différentiel, jindiquerai en
terminant un moyven d’alléger un peu dans la forme la démonstra-
tion de la formule de Taylor. Apres avoir éerit 1’égzdité

]171—0-1

‘ ]l /l”’
i \ oy N2y IR THPA —_—
fla+ 1) =[{a) + : f(a) + .. 4 ) /ria) + (n 4 1)! K,

qui définit le nombre R, on peut dive : considérons deux varvia-
bles & et y liées par la relation

x -y = a-+h,

et soit la fonction de la variable x

o (x) = fla) + L [y + ... 2 [Mx) + e R ;

: Y 1 00 gt b (n+ 1)/ ’
cette fonction est égale a /' {a 4 &) pour v = a, d'ou résulte
y = h, et elle prend la meéme valeur pour x = a - £, d'ou
résulte y == o ; done, dans les conditions connues, sa dérivée est
nulle pour @ = a - 0/h. Or cette dérivée est, a cause de

?’/, _ — I,
s i . ki
Pl [t (L) — R}

R = /4t (a 4 0h).

donec on a

. G. Foxtext (Paris).
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