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G. F ON TE NÉ

Dans deux systèmes alliés, 011 en affinité, deux figures homologues

sont dans un rapport constant. Or le lien du point
d'intersection de deux tangentes du cercle k faisant avec la corde

o
de contact un triangle d'aire constante, est un cercle concentrique

au premier. Donc nous trouvons semblablement que le

lieu du point d'intersection de deux tangentes de l'ellipse /q
faisant avec la corde de contact un triangle d'aire constante, est

une ellipse concentrique boniotbétique à la première.

D! G. Kilbixger (Mulhouse).
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i. — Il peut être utile, pour ceux qui abordent l'étude du

Calcul différentiel, de représenter géométriquement les différentielles

successives d'une fonction d'une variable # : c'est un

moyen de fixer dans l'esprit l'hypothèse essentielle que chv est

constant à partir de la différentielle seconde. On peut procéder
comme il suit.

La fonction y f f.r) étant représentée par une courbe C,

menons au point M la tangente MM0, et traçons MA0 parallèle à

O.r, M0A0 parallèle à Oy ; M variant, si Don suppose

MA0 const. — a,

M0 décrit une courbe C(J. Au point M() de la courbe C, menons la

tangente M0M1? et traçons ^I0A1 parallèle à Or, M1A1 parallèle à

Oy, en prenant
M0 Ai MÀ0 — a ;

M variant, MA décrit une courbe Cr On obtient de même les
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courbes successives C,, C3,... On a alors au point M. cLv étant a,

cly — A0M0,
1 cEy AiMi - A0M0,

| cl'-'y — A2M2 — 2 AAb -J- ASÏI0,

j cl*y — A3M3 — 3 A2M| -f~ 3 A [ Mi AoM0,

Pour le voir, 011 prend un point M' voisin de M sur la courbe

C; 011 considère les points M0, V4, M.,..., et les points A A,,
; on désigne par \plepoint où la parallèle a 0 menée par

Mi, est coupée par la paralèlle a O.v menée par INI;,, et 1 on a les

points I, I„, 1,, I,... La formule dy A0M# étant évidente, on

procède de proche en proche. Si l'on suppose par exemple la

formule exacte pour cl3y,cette fonction de x a une dérivée, limite
du rapport

(A',M'2 — A .Ab) — 2 (A'iM'i — A Ab) -j- (A'0M'0 Abbé
Ml

"
'

le numérateur est égal a

(I ,M'2 — IiAI'i) — 2 (b^'i — b^'o) + (b^'o

ou

I2M'2 — 3 IpM'i + 3 I^I'o — IM' 5

le rapport peut s'écrire

Ub IiM'jl 0 TqAI'O nr
3177

J
Aliï 1

+ °
M0T0 Ml '

et la limite, ou la dérivée de cPy, est

m.> — 3 7112 -j- 3 m% — m0,

mv mv... étant les coefficients angulaires des tangentes MM(),

AI,7b... ; 011 a donc la formule ci-dessus pour cPy, qui est par
définition la différentielle de cPy.. ou le produit par a de la

dérivée de cette fonction.

2. — A propos de représentations géométriques, on peut
observer ceci. Dans la démonstration du théorème des fonctions
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composées, pour le cas où l'on a y =— f {11, e), u et e étant des

fonctions de la variable x, il est utile de considérer la surface
Y f (C, Y;, U et V étant ici deux variables indépendantes,
avec trois axes OC, OY, OY. On interprète les dérivées partielles
par les sections Y e, U u. La fonction y de la variable x
est représentée par une courbe gauche, intersection de la
surface précédente et du cylindre u çG"), e fYyt')» On suit
bien la démonstration sur la ligure.

3. — Puisque je parle de Calcul différentiel, j'indiquerai eu

terminant un moyen d'alléger un peu dans la forme la démonstration

de la formule de Taylor. Après avoir écrit l'égalité

h h" hn+if a + h) — fut) + - f'(a) + f»(a) -f R,

qui définit le nombre R, on peut dire : considérons deux variables

x et y liées, par la relation

x + y a + h,

et soit la fonction de la variable x

o (x) f(x)+ y /"(.r) + + x+ (,/++i)/ R ;

cette fonction est égale a f [a -f- A) pour x a, d'où résulte

y jh et elle prend la même valeur pour x a -f- h, d'où
résulte y — o ; donc, dans les conditions connues, sa dérivée est
nulle pour x — a -f- 9h. Or cette dérivée est, à cause de

y' — C

Y | "~H]'
donc on a

R — fn+L (a -f- 0h).

G. Fomexé (Paris).
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