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reproduire. C'est en effet la partie la plus essentielle, et nous

partageons complètement ses opinions sur ce sujet. Mais, quant
au développement ultérieur de l'instruction géométrique, il y

aurait encore beaucoup de remarques à faire et beaucoup de

critiques à exercer. Soit par la méthode suivie (et dont beaucoup
d'auteurs et de professeurs tentent visiblement de se dégager),
soit par le choix souvent absurde des innombrables propositions
entassées sous le nom de théorèmes, soit par l'omission de
notions essentielles qui sont systématiquement passées sous silence,
on paralyse les élèves, on anéantit à l'avance les résultats, on se

donne beaucoup de peine pour en retirer peu de profit. C'est un

sujet sur lequel j'espère pouvoir revenir, non pas dans un article,
mais dans vingt peut-être, car le sujet est vaste, sinon inépuisable.

Mais ce sujet, je ne veux pas même l'effleurer ici, et je
préfère livrer simplement à la méditation des professeurs les
réflexions du savant dont j'ai essayé ci-dessus de me faire
l'interprète.

C.-A. Laisant.

SUR QUELQUES RAPPORTS

DtJ CALCUL INTÉGRAL KT DE LA GÉOMÉTRIE «

Les applications du calcul intégral élémentaire, à la Géométrie

des courbes et des surfaces sont bien connues. Cependant
la Géométrie peut être utilisée directement et avec avantage
comme principe heuristique et quelquefois comme moyen de
démonstration d'anciennes et de nouvelles formules d'intégration:o '

ces dernières en acquièrent une signification immédiatement sai-
sissable, ce qui, au point de vue pédagogique, n'est pas sans
importance. Quelques relations de ce genre vont être développées

plus bas. Dans la plupart des cas, la preuve en est tellement
évidente, qu'elle peut être négligée.

é) Conférence faite le 9 décembre 1898, à ia Section des Sciences Mathématiques
et Physiques de la Physikal-Oekonom. Gesellschaft à Königsberg-.
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Nous commençons par les form oie s fonda m en ta les de la théorie

des quantités irrationnelles quadratiques :

J j -± Ii — x~ — -x 1 — -f- ave sut x,

(2a) -i j \JX1 — i (fx — x y i3 — I — l (x 4" Vm'2 — éb

Lb) -i j\/x- -f-1 dx — x y x1 + i -f- / (y + \Jx2 -f- i).

La formule i) est géométriquement évidente. Considérons un

point (,r, tf dans le premier quadrant, sur la eirconférenee du

cercle

{1) ,r2+v2:=i.

Traçons le rayon vecteur r, désignons par 1 le secteur de

cercle compris entre r et la partie positive de l'axe des //, par .1 la

surface comprise entre .r, //, l'axe positif des y et l'arc de cercle,
enfin par A le triangle rectangle de cotés .r, y, la formule (i dit
assurément que

(0 -1 S-A.

Dans le cas d une ellipse, il ne se présente pas de transformation

importante ; des facteurs constants s'introduisent dans les

deux membres de (L mais n'en altèrent pas la signification
géométrique. — La formule [ia) ou son équivalente (n/r) se rapporte
d'une manière analogue à la figure d'une hyperbole équiîeière ou

aussi d'une hyperbole quelconque.
Soit

l'équation de l'hyperbole, O le centre, S le sommet \l\ L (<xy//d

un point de l'hyperbole que nous pouvons supposer dans le prend

er quadrant; soient X, Y les pieds de j\ y sur les axes. Le

rayon vecteur limite avec 0 S et l'arc d'hyperbole PS s un

secteur S; ,r, y sont les cotés d'un triangle rectangle A. L'arc x

(r) Au lieu de l'abscisse a du sommet, qui n'est choisie que par raison de commodité,

on peut prendre, dans toutes les formules d'intégral, l'abscisse d'un peint
quelconque de l'hyperbole.
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limite avec les coordonnées ,r et y, et les deux axes, deux
surfaces Ji?; et Jy/.

fuifln soient ai et a± les asymptotes dans le premier et le
quatrième quadrant ; construisons par Pet S des parallèles à a.,

jusqu'à leurs points d'intersection PA et S.L avec a{ ; appelons la surface

(c A » liudtée par ,v et les segments PP1? SS1, P1 S1 la sucface
asymptotique f de 6% Les formules (2/7) et fib) expriment comme
le montre un calcul simple que

(m)' — A, — A, (%hf J„ A + A.

Mais inversement, l'existence de cette relation peut être rendue
visible au moyen de la Géométrie élémentaire pure. Car d'après
une propriété fondamentale de l'hyperbole (qui peut aussi

passer pour une définition) les triangles OSS( et 0PP1S possèdent

la même surface, qui est la moitié du ce parallélogramme
asymptotique » Il de surface constante dans l'hyperbole et égale
v a I>

Mais la surface limitée par .s- et les segments SO, OPJ, P P

est décomposée d'abord par r en deux parties 1] et OPP15 puis
d'un autre coié par SS1 en deux parties A et OSS1 de sorte qu'on
en déduit

0) A — A.

D'ailleurs la figure montre au premier coup d'uni que

(G 'T.v + J,, aA, A -f- .1, — A.

donc aussi que

fi) J, — J,- 2A, Jv—A—A,

Relations vraies pour tout arc de courbe PS (11011 seulement
pour un arc d'hyperbole).

Au moyen de (6), (7), on reconnaît que la relation (5) est
équivalente à (2a)1 ou aussi à (ib)' et peut enfin prendre la forme

(8) J?/ — J-,= 2A.

(') Si l'on exéeule la même construction, en intervertissant les asymptotes onobtient une deuxième « surface asymptotique » qui a la même surlace que A
comme le montre la figure. '
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Nous avons donc ce résultat :

« Le théorème de la constance du parallélogramme asympto-
tique dans l'hyperbole est équivalent (*) aux relations (ia)', (pby
(5), (8) et représente en même temps la valeur des formules

intégrantes (2a)1 (ib) « Y ».
La même figure, ainsi que le calcul permettent de vérifier

que l'une quelconque des quatre propriétés (2A/, (plié (5), (8) est

une caractéristique de l'hyperbole. En effet la différentielle de

J(/ — —-2 A par rapport à .v est égale, à un facteur constant
y2 y 2

près, a la différentielle de —^ —, 1 par rapport à ,r,

comme on s'en aperçoit si on utilise les asymptotes comme axes
de coordonnées obliques.

Ce théorème se laisse généraliser.
Soit un système d'axes rectangulaires 0r,0(/ ainsi que deux

droites at, ua également inclinées sur l'axe des x. Si l'on cons-1 ' 2 o
truit d'après l'indication donnée plus haut, la surface A pour tout
arc de courbe P S et si l'on cherche toutes les courbes PS pour
lesquelles J7, J(/, A sont liées par une relation linéaire à coefficients

constants :

(9) »h/ + »Ar — M,

on obtient une équation différentielle de la forme :

10) ^—,7r + °J

qui est intégrable par une méthode connue, et inversement la

signification géométrique d'une équation différentielle (10) pour
des valeurs quelconques de a, 3, y, S (les signes étant convena-

(') D'autre part, le théorème dont il s'agit est aussi équivalent aux théorèmes,
soit sur l'égalité des deux surfaces asymptotiques, soit sur la propriété dont jouit
le segment de tangente compris entre les asymptotes, d'être divisé en deux parties
égales, au point de contact, ainsi qu'à ce théorème sur la proportionnalité de la
sous-normale à l'abscisse (les signes étant choisis convenablement), puis au théorème

qui dit que IT est la moitié du triangle D, que forme la tangente avec les
asymptotes, enfin (dans le cas où les droites sont repoussées comme solution non
satisfaisante) au fait que D a, en tous cas, une surface constante. Car toutes ces
suppositions conduisent de la même manière, à l'équation différentielle yy k*x.
On se rend compte, comment on peut employer le principe fondamental dans les
propriétés des courbes.
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blement choisis) est une relation (9) dans laquelle les rapports
de n, m, k sont déterminés. On remarquera qu'au moyen des

formules générales ((S), (7) la relation (9) peut être transformée
en six formes d'apparence différente, mais équivalentes quant
au fond(?).

Considérons exclusivement cette formule générale (6) ou
aussi (j).

La première des formules (6) écrite explicitement

n'est pas autre chose qu'une forme particulière de l'intégration
partielle, qui pratiquement a pour but de réunir deux par deux,
des intégrales dont les fonctions sont inverses.

Cette singularité de la forme n'est cependant qu'apparente.
Supposons :v et y fonctions d'une troisième variable t ce qui ne

change pas du tout la signification géométrique des deux membres
de (6a)f mais (6a) prend alors la forme :

et l'on reconnaît aussitôt que cela représente la règle générale
de l'intégration partielle.

La loi de l'intégration partielle reçoit ainsi un sens géométrique

commun. »

La seconde des formules générales (6) I -f- Jj; A s'écrit dans
le calcul intégralO

(6a)

(6b)

C) On déduit de (9) par un calcul facile, les cinq relations :

«b j/n + n) — 2///A -j- 20À ä. o, Jy (m -j- n) — nil — A 0,
X [ni -f- n) -j- A (jji — jCj — 2&À — 0,

J.'- {m — n) -j- 2?wS — 2?À 0, • Jj; — n) -j- — 2çA — 0,

WAT2O=0, J y

r (m -f n) -j- A [m — n)

qui restent valables dans les cas d'exception

les quantités présentées dans la remarque sur la formule (8).
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Ln eilet il est facile de démontrer analy tiquement que la
formule (6/;) apparaît, quand on introduit dans l'intégrale Ç y àl ;r
les coordonnées polaires /•, cp au lieu des rectangulaires x, y.
(air si r! représente la dilïérentielle de r par rapport à cê on a

immédiatement :

|
3.,. — jyd.Jt — I r sin cp (— r sin cp -f- E cm cp) c/cp

'f'./ — j xdy — j r cos cp (r cos cp q- /•' .s//? cp) e/cp

d'où par soustraction :

i y) Jfi — J.,. =: j'r'1do

et ainsi, à cause de (6«), on obtient la relation (60) dont il est

question. Le calcul précédent est de nouveau susceptible d'une

généralisation importante. Si l'on traite de môme manière les

intégrales jxmyndx et j.vuy'udy, on obtient de suite au moyen
de (6a)

i •>.) [m -f- i) j~ rm + n+1 (cos f)"' (sin cp)" — 1
c/cp —+ 1 yn 4- n -J-i j^xmyn d.r.

m7 il signifient ici des exposants quelconques ; excepté m ^ i — o}

el. y est une fonction quelconque de .r. La formule est susceptible
de nombreuses applications ; si, en particulier, m et n sont des

nombres entiers, J? et y liés par une équation du deuxième degré,
l'intégrale de droite se ramène par des méthodes connues aux
fonctions logarithmiques et cyclométriques. La môme méthode

régit aussi l'intégrale de gauche qui représente une classe étendue

d intégrales trigonométriques, difficiles à effectuer dirccte-
mon I.

Dans le cas où m o, n — :> on obtient la formule utile aux
surfaces de révolution :

'») j r3 sin cpr/cp — xy2— >jy2dx

celle formule peut aussi se déduire de la règle de Guldin).
On se demandera si la deuxième méthode principale du calcul

intégral élémentaire, la méthode, dite de substitution, n'est pas
s i u s s i s u s e e p t i 1

> I e d ' u 11 c re p ré sentat io n g é o m é t r i [u o s imp I e.
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Il est bon cle prendre pour point cle départ la règle équivalente
du calcul différentiel, c'est-à-dire, si x, y, z sont des fonctions de

/, la formule :

dy dx dz

Le point P (.r, y, .z) parcourt une courbe gauche; si l'on projette

la tangente en P sur les plans des (xz), (.zy), et si l'on dé-

signe par y,., [iL, cq les angles de ces projections avec la direction

positive des axes des x, des y et des z, la relation (i4) dit que :

(l'3) tg^X. tgfz. tgXy — I.

Mais c'est une formule générale (jusqu'ici peu considérée,

semble-t-il) des éléments de la géométrie analytique. En effet si

une droite quelconque, dans l'espace, formant avec les axes les

angles a, [j, y, est projetée comme ci-dessus, on a immédiatement

:

cos ß cos oc cos y
(16) tgyx — tgÇs fgocj y-,v y 1

COS QC COS-Y
J cos ß

d'où l'on déduit (15); inversement il est clair que (ï 5) est la
condition nécessaire et suffisante pour que trois directions sur les

plans de coordonnées soient la projection d'une direction dans

l'espace. Remarquons, en passant, que la détermination d'une
direction dans l'espace, par les angles yx, ß, a offre plusieurs
avantages sur la méthode ordinairement employée, qui consiste
à utiliser les angles y, [3, a ; il en est de même en Géométrie
descriptive et surtout dans les cas où le sens de la direction n'importe

pas (J).
La formule (i5) peut encore avoir une autre signification. Si à

la place des angles y,, |L, cy, on introduit leurs suppléments,
c'est-à-dire les angles des projections avec les axes négatifs, ou
bien encore leurs compléments c'est-à-dire les angles des
projections avec les axes négatifs des //, des x et des -, et si l'on

l1) Ainsi par exemple dans la détermination des différents angles W dans
l'espace, quand il existe une ou plusieurs relations entre la quantité W, et les valeurs
des trois angles de projection; particulièrement quand les quatre angles sont
donnés d'une manière quelconque.

Enseignement math. 2g
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désigne les tangentes de ces six angles par t.. ta9 t\,, fe, t\,
on aura les relations :

(17) — — I, IA ^ U' — ~/
On obtient ainsi 1111e généralisation directe de la notion du

rapport anharmonique dans le cas de deux variables indépendantes.

In effet, la relation (ij) existe entre les 6 valeurs d'un rapport
anharmonique; il est vrai qu'il s'en présente une autre (fermant
avec celle-ci un rapport anharmonique) qui peut s'écrire,
symétriquement, au moyen des angles a, y, y :

(18) vos a -p vos (j -f- vos y — u.

hn d'autres termes : pour 1111 faisceau de rayons pris dans le

plan u. -f- y + .3 — o, et dont le sommet est à l'origine O, les six

quantités t, l' représentent les six valeurs du rapport anharmonique,

comme paramètres (l) du faisceau de rayons.
Si la condition (18) disparaît, les quantités /, t' deviennent les

paramètres du faisceau de rayons O.

AV. FranzMeyeh (Königsberg).

(Traduit de 1 allemand par Aiph, Beunoud.)

DE LA HOMOGRAPHIE
ET DE LA NÉCESSITÉ DE L'INTRODUIRE DANS L'ENSEIGNEMENT

Quel qu'il soit, physicien, chimiste, astronome, ingénieur, peu
importe, un homme de science qui n'est pas théoricien pur doit
très souvent rechercher les résultats numériques auxquels con¬

té Cela ressort immédiatement du l'ait que les six valeurs d'un rapport
anharmonique, quand l'une d'elles est égalée au carré de la tangente d'un angle, coïncident
avec les carrés (pris avec le signe convenable) des six fonctions trigonométriques
fondamentales. Ceci a un rapport très étroit avec la définition d'un angle dans la
géo mé trie proj active.
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