Zeitschrift: Energeia : Newsletter de l'Office fédéral de l'énergie

Herausgeber: Office fédéral de l'énergie

Band: - (2008)

Heft: 6

Artikel: Un petit coin de soleil sur la terre

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-643946

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La Suisse participe au projet de réacteur expérimental à fusion nucléaire ITER, dont la construction (voir photomontage) vient de débuter à Cadarache en Provence. L'objectif est de développer une nouvelle filière de production d'électricité quasiment inépuisable.

Reproduire sur terre la réaction qui permet au soleil de briller depuis plus de cinq milliards d'années: tel est l'objectif de la recherche internationale menée actuellement dans le domaine de la fusion nucléaire. Le principe est simple. Il s'agit de faire se rapprocher suffisamment deux noyaux atomiques légers pour qu'ils fusionnent. Le processus dégage une énergie thermique considérable.

Dans la mise en œuvre, c'est un peu plus compliqué. La probabilité que deux noyaux d'hydrogène se rencontrent – comme dans le soleil – est si faible qu'elle ne peut pas être exploitée à l'échelle d'une centrale. Un réacteur à fusion va devoir faire se rencontrer des isotopes plus lourds de l'hydrogène: le deutérium et le tritium. Mais même dans ce cas, le mélange devra être porté à la température de 100 millions de degrés, soit près de dix fois celle régnant au centre du soleil, pour que la probabilité de collision soit maximale. Dans ces conditions extrêmes, le mélange gazeux devient un plasma, une sorte de 4e état de la matière.

INTERNET

Centre de recherches en physique des plasmas: http://crpp.epfl.ch

ITER:

www.iter.org

Euratom, communauté européenne de l'énergie atomique:

www.euratom.org

Confiné par un champ magnétique

Aucun matériau disponible sur terre n'est capable de supporter de telles températures et le plasma doit donc être confiné dans un espace fermé, entouré de vide. Les technologies les plus prometteuses à l'heure actuelle font appel au champ magnétique. Ce dernier possède en effet la particularité de pouvoir dévier les particules chargées qui constituent le plasma, et de le maintenir dans un volume de la forme d'un tore, sans contact avec les parois.

Dans le plasma, la réaction entre les noyaux de deutérium et de tritium produit un noyau d'hélium ainsi qu'un neutron rapide. De charge neutre, le neutron n'est pas retenu par le champ magnétique. Il s'échappe du plasma et vient frapper la «couverture» du réacteur. Cette collision produit de la chaleur qui est ensuite transférée à un liquide caloporteur qui sera transformé en vapeur servant à actionner des turbines. Ainsi sera produite de l'électricité.

Ressources surabondantes

Selon les experts, les ressources en combustibles sont importantes. Isotope stable de l'hydrogène, le deutérium se trouve en abondance dans l'eau de mer: 33 grammes par mètre cube. Cela équivaut à plusieurs milliards d'années de consommation mondiale. Le tritium en revanche, dont la demivie est de 13 ans, n'est pas disponible dans la nature. Il sera généré dans la partie du réacteur appelée «couverture» par la réaction entre un neutron – issu de la réaction dans le plasma – et du lithium. Ce dernier se trouve en suffisance dans la croûte terrestre

(20 grammes par tonne) ainsi que dans les océans (0,18 gramme par mètre cube).

Par rapport à la réaction de fission, la fusion ne produit pas de déchets nucléaires directs. L'hélium est un gaz inerte et le neutron est utilisé pour produire le tritium. Ce dernier, bien que radioactif, est entièrement destiné à réalimenter le plasma. Seule l'enceinte du réacteur sera activée par les neutrons rapides. Selon les experts, la radioactivité sera toutefois faible et ne devrait pas nécessiter de stockage de plus d'une centaine d'années.

Faisabilité en quête de démonstration

La faisabilité scientifique et technique de la fusion nucléaire pour la production d'énergie n'est pas encore démontrée. C'est l'objectif du réacteur expérimental ITER, dont la construction vient de débuter sur le site de Cadarache en Provence. L'Europe (avec la Suisse), la Russie, la Chine, le Japon, la République de Corée, l'Inde et les Etats-Unis participent à ce projet. Le CRPP est le centre suisse de compétences en matière de physique des plasmas et de technologie de fusion. Il est localisé à l'EPFL et au PSI. Les apports scientifiques du CRPP se font essentiellement dans les domaines du façonnage et du chauffage du plasma, de la supraconductivité et des matériaux.

(bum)