Zeitschrift: Energeia : Newsletter des Bundesamtes für Energie

Herausgeber: Bundesamt für Energie

Band: - (2007)

Heft: 5

Artikel: Neutronen, die Hase und Schildkröte spielen

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-640663

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

und Schildkröte spielen

INTERNET

Paul Scherrer Institut (PSI): www.psi.ch

Quelle:

Jean-Marc Cavedon, Qu'y a-t-il dans un réacteur nucléaire?, Editions Le Pommier, Collection Les Petites Pommes du savoir, Paris, 2004.

Bild: Zusammenfügen des nuklearen Brennstoffs im Forschungsreaktor Proteus am Paul Scherrer Institut.

Die Energie der Neutronen, welche die Spaltreaktion auslösen, hat einen grossen Einfluss auf die Funktionsweise von Kernreaktoren. Man unterscheidet zwischen niederenergetischen – langsamen oder thermischen – Neutronen, die in den heutigen Reaktoren verwendet werden, und hochenergetischen - schnellen - Neutronen. Solche schnellen Neutronen werden in den meisten Reaktoren der vierten Generation Anwendung finden. Einige Erläuterungen.

Die Spaltreaktion in einem Kernkraftwerk ist eine Kettenreaktion. Sie wird durch ein Neutron ausgelöst und setzt Neutronen frei, die weitere Spaltungen erzeugen. Bevor die aus der Spaltung entstandenen Neutronen durch Kollisionen gebremst werden, weisen sie eine Energie von 2 bis 3 MeV (Mega-Elektronenvolt) auf. Da die Energie direkt mit der Geschwindigkeit zusammenhängt, sind diese Neutronen auch schnell. Ihre Geschwindigkeit beträgt rund 20000 km/s, d.h. sie würden die Strecke von der Erde bis zum Mond in weniger als 20 Sekunden zurücklegen.

Die schnellen Neutronen besitzen eine herausragende Eigenschaft: Durch ihre grosse Energie können sie eine Vielzahl verschiedener Kerne spalten. Nicht nur Uran-235 wie in den heutigen Reaktoren, sondern auch schwerere Kerne wie Uran-238, verschiedene Plutonium-Isotope sowie die höheren Actinide - noch schwerere Kerne –, die heute als Abfall betrachtet werden.

Zu schnelle Neutronen

Die schnellen Neutronen weisen aber auch einen Nachteil auf. Die Wahrscheinlichkeit, dass sie von einem Kern eingefangen werden können – der sich anschliessend spalten kann -, ist deutlich geringer als bei langsamen Neutronen. Es ist, als ob das Neutron mit seiner grossen Geschwindigkeit den spaltbaren Kern viel kleiner sehen würde, als er wirklich ist.

In den Reaktoren der zweiten und dritten Generation wurde dieses Problem dadurch behoben, dass die Geschwindigkeit der Neutronen herabgesetzt wurde, damit sie leichter eingefangen werden können. Technisch betrachtet ist der Brennstoff durch einen Moderator umgeben, der die schnellen Neutronen durch Stösse abbremsen, aber nicht absorbieren soll. Wie beim Boulespiel ist die Bremswirkung am stärksten, wenn die beiden Stosspartner dieselbe Masse besitzen. (Schauen Sie einmal, was geschieht, wenn Sie die Kugel zu bremsen versuchen, indem Sie sie gegen die Zielkugel oder die Einfassung der Bahn rollen.) Wasser mit seinen Molekülen aus zwei Wasserstoffkernen mit je einem Proton ist deshalb ein sehr guter Moderator.

Vierte Generation: den Vorteil nutzen

Für die Reaktoren der vierten Generation wird das gegenteilige Vorgehen vorgeschlagen. Weshalb nicht die hohe Energie der Neutronen aus der Spaltreaktion verwenden? Weshalb nicht diese Neutronen nutzen, welche den Kernbrennstoff viel effizienter «verbrennen»? Die technische Lösung, um dem schwachen Neutroneneinfang durch die Kerne entgegenzuwirken, besteht darin, einen an spaltbarem Material stärker angereicherten Reaktorkern und hohe Neutronenflüsse einzusetzen.

(bum)