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Vorwort

Öfters habe ich das Vergnügen, mit Studierenden und mit jüngeren Kollegen über
die heutigen Studienverhältnisse zu sprechen. Gerne benütze ich dabei die Gelegenheit,

ihnen einiges aus meiner Zeit als Student, Assistent und Privatdozent zu
erzählen. Dabei bemerke ich, wie völlig fremd ihnen bereits eine Zeit ist, die für
mich noch Gegenwart bedeutet. Daher möchte ich versuchen, diese Vergangenheit
festzuhalten.
Damals waren die Studierenden in Mathematik in mittleren und höheren Semestern
an den Fingern einer Hand abzuzählen, die Vorlesungen gestalteten sich daher etwa
zu einem Gespräch mit dem Dozenten. Entsprechend war die Arbeit im wöchentlichen

Seminar. Da war kein Gedränge, einen Vortrag zu erhalten, im Gegenteil
musste man dafür bedacht sein, nicht mehr als zweimal pro Semester auftreten zu
müssen. Bei einer Nachsitzung im <Östli> wurde der Kontakt mit den Dozenten
vertieft, am sommerlichen Seminarbummel und am Weihnachtsabend, an dem
auch fast alle (Ehemaligen) teilnahmen, wurde der Kontakt weiter gepflegt.
Hierdurch wurden wir bereits als Studierende unmittelbar in das mathematische
Leben von Zürich einbezogen, Besuche von Vorlesungen und Seminarien an der
Eidgenössischen Technischen Hochschule und des Zürcher mathematischen
Kolloquiums vermittelten uns die Bekanntschaft mit den bedeutendsten Forschern jener
Zeit. So war uns das Studium keine Last, sondern ein Hineinwachsen in unseren
Beruf. Die Examina, Gespräche mit den Dozenten, gaben Anregung zum weiteren
Studium oder bildeten den schönen Abschluss einer inhaltsreichen Zeit.
Nach der zu schildernden Epoche setzte eine Entwicklung ein, in der die Zahl der
Dozenten und der Studenten vervielfacht wurde. Hierdurch nahm das Studium
einen völlig anderen, unpersönlichen Charakter an und wurde dadurch viel schwieriger.

Ich frage mich oft, ob wir eine solche Belastung ertragen hätten oder einem
anderen Beruf gefolgt wären. Während wir unmittelbar die Ausstrahlung unserer
Lehrer aufnehmen konnten, bedeutet das heutige Studium vielfach ein mühsames
Erarbeiten.
Allen Kollegen und Freunden, die mich bei meiner Arbeit unterstützten, sowie
C. Einsele und dem Birkhäuser Verlag, die diesen Versuch in die Schriftenreihe
(Beihefte zu den Elementen der Mathematik) aufnehmen, danke ich bestens.
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I. Teil

Einleitung

In der Festgabe <Die Universität Zürich 1833-1933, Festgabe Zürich 1938> lesen wir

auf Seite 900, Zeile 7ff.: «Auch die philosophische Fakultät II unterlag grösseren

Änderungen, Der Umstand, dass 1915/16 beide Professuren für Mathematik fast

gleichzeitig vakant wurden, bot die Möglichkeit zu völliger Reorganisation dieses

Unterrichtes. Der zum Inhaber solcher Hauptprofessur berufene Rud. Fueter

veranlasste eine Dreiteilung des Amtes.»

Die zweite Professur für Mathematik vertrat seit 1917 Andreas Speiser.

1920 wurde eine Professur für angewandte Mathematik, speziell darstellende

Geometrie, geschaffen, samt Einführung in die Versicherungsmathematik. Diese

wurde besetzt von
Ferdinand Gonseth, PD, Universität Zürich, auf Wintersemester 1919/20, ausseror-

dentlicher Professor mit Amtsantritt 15. April 1920, Rücktritt auf 15.Oktober 1920

(Berufung an die Universität Bern).
Martin Disteli, Amtsantritt 15.Oktober 1920, starb am 26.Oktober 1923.

Eugenio Giuseppe Togliatti, Amtsantritt 15.Oktober 1924. Auf den 15.Oktober

1926 zurückgetreten wegen Berufung an die Universität Genua.

Paul Finsler, Amtsantritt 16. April 1927, auf den 15. April 1959 altershalber entlassen.

Die Mathematik an der Universität Zürich unter der Führung der Professoren

Fueter, Speiser und Finsler soll im ersten Teil beschrieben werden.

Räumliches

Bei der Planung des neuen Universitätsgebäudes wurden keine Räumlichkeiten

eigens für die Mathematik vorgesehen. Die Meinung war, dass im Neubau geeignete

Hörsäle für die mathematischen Vorlesungen vorhanden seien. Bei der Reorganisation

zeigte sich, dass dies nicht der Fall war. Es mussten daher die nötigen Hörsäle

und Arbeitsräumlichkeiten bereitgestellt werden. Im dritten Stock des Hauptgebäudes

wurde der Dachstock nach Norden hin ausgebaut, wodurch Platz für den

geräumigen Hörsaal 305 gewonnen wurde. Daneben diente ein Zimmer als Bibliothek

und Arbeitsraum für die Studierenden. Diese Bibliothek musste langsam

aufgebaut werden. Für die Anschaffung von Zeitschriften reichte der Kredit von

einigen hundert Franken nicht. Vorerst waren die nötigsten Lehrbücher zu beschaffen.

Einen ersten grösseren Zuwachs erfuhr die Bücherei durch die Übernahme der

am internationalen Mathematikerkongress 1932 ausgestellten Bücher. Ferner halfen

wertvolle Schenkungen aus Nachlässen zur Bereicherung der Sammlung. Die

Studenten erwarben ihre Kenntnisse meist in den Vorlesungen, die sorgfaltig

ausgearbeitet wurden. Eine Ergänzung wurde in Lehrbüchern gefunden, die seit den

zwanziger Jahren in vermehrtem Masse verfasst wurden. Im übrigen war man auf

die Bestände der Zentralbibliothek und der Bibliothek der ETH angewiesen. Die

Räumlichkeiten im dritten Stock wurden in den Semesterferien nicht geheizt, was

die Benützung der Seminarbibliothek und die Arbeit des Assistenten erschwerte.

Für den Aufenthalt der Dozenten wurde im Vestibül durch eine Glaswand ein
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Raum abgetrennt. Er diente ferner zur Unterbringung der Sammlung mathematischer

Modelle, später auch als Arbeitsraum des Assistenten. Insbesondere für die
Vorlesungen von Speiser wurde etwas später ebenfalls im dritten Stock im Trakt des
Turmes ein Hörsaal eingerichtet. Er diente auch den Vorlesungen in Musikwissenschaft.

Um Vorlesungen und Übungen in darstellender Geometrie zu ermöglichen,
wurde sodann im Turm im vierten Stock ein geräumiger Zeichensaal eingerichtet'
Die schlechte Akustik im Betonbau wurde durch die Ruhe und die wunderbare
Fernsicht wettgemacht. Später wurden auf dem dritten Stock nach Westen hin im
Laufe der Jahre verschiedene Zimmer hergerichtet, welche die Sekretärin, die
Assistenten und teilweise die Bibliothek bis zum Umzug an die Freiestrasse
beherbergten.

Frequenz, kurzer Überblick über die Anzahl der Studierenden: Von 1916 bis 1950
erwarben 86 Studierende das Diplom für das höhere Lehramt in Mathematik
(später auch <Diplom in Mathematik)) und 78 den Doktor mit Hauptfach Mathematik.

Das sind im Durchschnitt 2,31 bzw. 2,23 pro Jahr.
Nun zu den Persönlichkeiten, die der Mathematik von 1915 bis 1950 an der Universität

das Gepräge gaben.

1. Fueter, Karl Rudolf, geboren am 30. Juni 1880 in Basel, gestorben am 9. August
1950 in Brunnen, Kanton Schwyz. Sohn des Rudolf Fueter (1845-1901), Architekt,
und der Adele, geborene Geizer (1853-1938), verheiratet 1908 mit Amélie von
Heusinger (1881-1962).
Unter den direkten Vorfahren des aus altem Berner Burgergeschlecht stammenden
Mathematikers finden wir Gabriel, der als Pietist nach Nyon verbannt wurde und
als Prädikant in Aarburg 1729 starb. Sein Sohn Gabriel war mitbeteiligt an der
Henzi-Verschwörung von 1749, konnte der Verhaftung und Enthauptung durch
Flucht ins Ausland entgehen. Das Urteil wurde am 16. September 1749 vom
Richtstuhl abgelesen und auf dem Richtplatz am Bilde vollzogen. Später begnadigt,
kehrte er 1780 erblindet nach Bern zurück. Dessen Nachkommen waren: Christian
Emanuel (1742-1789), Spezereihandlung in Bern, Daniel Abraham (1777-1834),
Handelsmann in Bern, Emanuel Eduard (1801-1855), Professor der Medizin in
Bern, Rudolf Eduard, Architekt in Basel.
Rudolf Fueter durchlief die Basler Schulen bis zur Maturität im Herbst 1898 und
studierte zuerst ein Jahr in Basel bei Kinkelin Mathematik. Hier erhielt er den Preis
für eine Arbeit über Geschichte und Systematik der Eulerschen Gammafunktion.
Nebenbei studierte er das sehr schwierige Jugendwerk von Gauss, die <Disquisitio-
nes Arithmeticao. Um sich ganz dem Studium der Mathematik zu widmen, bezog
Fueter im Herbst 1899 die Universität Göttingen, wo er 1903 bei David Hubert
promovierte. Nach Aufenthalten in Wien, Paris und England habilitierte er sich
1905 in Marburg, wurde 1907 Professor an der Bergakademie in Clausthal und 1908
in Basel. Im Frühjahr 1913 folgte er einem Ruf an die Technische Hochschule in
Karlsruhe. Einen Ruf an die Universität Giessen sowie einen solchen im Sommer
1913 an die Eidgenössische Technische Hochschule lehnte er ab. Diese Vakanz
wurde sodann durch Hermann Weyl besetzt. Auf das Wintersemester 1916 nahm
Fueter den Lehrstuhl an der Universität Zürich an. Sein Lehrauftrag umfasste eine
vierstündige Vorlesung in höherer Mathematik und eine solche elementaren
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Charakters (Einführung in die mathematische Behandlung der Naturwissenschaften)

je im Wintersemester, im Sommersemester las er über (Analytische Geometrie

der Ebene und des Raumes). Diese Vorlesungen wurden durch Seminarübungen

ergänzt. Vom Sommersemester 1920 bis und mit Wintersemester 1921/22 versah

Fueter das Amt des Rektors der Universität.
Durch das Studium der Arbeiten von Euler und von Gauss war Fueter für die

weitere Bearbeitung zahlentheoretischer Probleme vorbereitet. Im Anschluss an den

eben erschienenen <Zahlbericht> von Hubert promovierte er mit einer Arbeit aus

der Klassenkörpertheorie. Eine Zusammenfassung seiner Untersuchungen
veröffentlichte Fueter in den Jahren 1924-1927 als (Vorlesungen über die singulären

Moduln und die komplexe Multiplikation der elliptischen Funktionen). Seine

Vorlesungen über Zahlentheorie erschienen in erster Auflage 1917 als (Synthetische

Zahlentheorie).
Bereits in den Arbeiten von Leonhard Euler schimmert durch, dass man zur Lösung
klassischer Fragen der Zahlentheorie den Bereich der reellen Zahlen verlassen muss.

Durch die Arbeiten von N.H. Abel wurde der Zusammenhang dieser Disziplin mit
der Funktionentheorie aufgedeckt. Kronecker und Hubert zeigten die Majestät
dieses Gebietes, das zu den schwierigsten Teilen der Mathematik gehört und stets

nur wenige Bearbeiter fand.
Fueter behandelt in seiner Dissertation die relativ quadratischen und relativ

kubischen Gleichungen in einem imaginär quadratischen Körper und stellte den

Zusammenhang mit der komplexen Multiplikation her. Die allgemeinen Abelschen

Gleichungen untersucht er in einem Bericht an die Deutsche Mathematiker-

Vereinigung: <Die Klassenkörper der komplexen Multiplikation und ihr Einfluss

auf die Entwicklung der Zahlentheorio, Bericht zur Feier des 100. Geburtstages
Eduard Kummers der Deutschen Mathematiker-Vereinigung, erstattet von Rudolf
Fueter.
Die Untersuchungen von Abel zeigten, dass zunächst die elliptischen Modulfunktionen

im <singulären> Fall, das heisst für quadratisch imaginäre Werte des Periodea-

verhältnisses, zu untersuchen sind. Kronecker leistete dies, und es zeigte sich, dass

dadurch die komplexe Multiplikation in den Mittelpunkt von Funktionentheorie
und Zahlentheorie rückt. Fueter gelang es 1914 zu zeigen, dass die singulären
Moduln zusammen mit den Einheitswurzeln alle in einem quadratisch imaginären

Körper Abelsche Gleichungen ergeben. Im zweiten Teil des genannten Werkes

(1924-1927) wird sodann das von Takagi (1920) gefundene abschliessende Resultat

dargestellt, dass nämlich jeder in einem quadratisch imaginären Körper relativ
abelsche Körper in einem Körper der singulären Moduln und singulären elliptischen

Funktionen enthalten ist. Speiser (1950) sagt von diesem Bericht, dass es

heute nur wenige Mathematiker geben dürfte, welche imstande wären, dieses Werk

zu verstehen. Vier Schüler haben Teilprobleme aus diesem Gebiet bearbeitet

(Bindschedler, Gut, Hagenbuch und Hauser). In einer neueren Geschichte der

Mathematik (N. Bourbaki, Elements d'histoire de mathématiques, 1960) wird

zunächst das Gebiet ausgelassen, und erst in der zweiten Auflage (1969) wird

bemerkt, dass davon abgesehen werde, die Theorie der Klassenkörper zu beschreiben.

Erst in jüngster Zeit hat André Weil in seinen (Essais historiques) (Genève
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1976, S. 27ff.) diese Lücke ausgefüllt und wird in einer glänzenden Darstellung den
Leistungen von Hubert, Takagi, Fueter und Artin gerecht.
Fueter interessierte sich nicht nur für diese erhabenen Gebiete der Arithmetik.
Seine Liebe galt auch der elementaren Zahlenlehre, er las Euler und Gauss und
kam zur Einsicht, dass die Fülle tiefer und schöner Eigenschaften der Zahlen einer
einheitlichen, synthetischen Behandlung fähig ist. Hierdurch wird die Kluft
zwischen niederer und höherer Arithmetik überbrückt. In der erwähnten <Syntheti-
schen Zahlentheorie> gibt er den Studierenden ein weit verbreitetes Lehrbuch in die
Hand. Ausgehend von den verschiedenen Zahlbereichen wird zunächst der Körper
der rationalen Zahlen und sodann derjenige der /-ten Einheitswurzeln behandelt.
Das Werk schliesst mit den Beweisen des quadratischen und des kubischen
Reziprozitätsgesetzes.

Betrachten wir ein weiteres, in drei Auflagen erschienenes Lehrbuch <Das
Mathematische Werkzeug des Chemikers, Biologen, Statistikers und Soziologen. Vorlesungen

über die höheren mathematischen Begriffe in Verbindung mit ihrer Anwendung
(1925,21930,31947)>. Diese beliebte Einführung ist aus Vorlesungen entstanden, die
Fueter seinen Anstellungsbedingungen folgend jedes Wintersemester hielt. Der
zunehmenden Bedeutung der Mathematik für die genannten Gebiete entsprechend
wurde der Stoff geformt. Es gehört zu den schwierigen Aufgaben des Mathematikers,

eine geeignete Stoffauswahl und eine Darstellung zu finden, um die stets
vermehrt verlangten Kenntnisse zu vermitteln. Fueter ist dies in hervorragender
Weise gelungen; wir wissen aus vielen Gesprächen, wie sehr seine Darlegungen
geschätzt und verwendet wurden. Jeweilen in den Sommersemestern las Fueter über
(Analytische Geometrie der Ebene und des Raumes). Diese Vorlesungen wurden
1945 herausgegeben.
Über ein weiteres Forschungsgebiet, auf dem Fueter viele Schüler zu Mitarbeitern
heranzog, schreibt A. Speiser: «In späteren Zeiten wendete er sich dem Gebiete der
nicht-kommutativen Zahlen zu und arbeitete zunächst zahlentheoretisch, bald aber
funktionentheoretisch. Er hat zum erstenmal gezeigt, wie man Quaternionenfunk-
tionen definieren muss, wenn man neue, tiefe Sätze gewinnen will; was vor ihm in
dieser Beziehung geleistet wurde, war unfruchtbar. Sein höchstes Ziel war, die
Klassenkörper für die reellen quadratischen Körper zu konstruieren, analog zur
komplexen Multiplikation. Aber er hat es nicht erreicht. Zu seiner grossen Befriedigung

ergab sich jedoch, dass die schon ziemlich weit entwickelte Funktionentheorie
von zwei komplexen Variablen als Spezialfall in seinen regulären Funktionen
enthalten war. Es handelt sich vor allem darum, vierfach periodische Funktionen zu
konstruieren, wenn man auch nur daran denken will, Klassenkörper zu finden.
Auch der grosse deutsche Mathematiker E. Hecke hatte danach gesucht. Aber man
scheiterte stets daran, weil bei den Funktionen von zwei komplexen Variablen die
Perioden nicht frei sind, sondern einer nicht sehr durchsichtigen Relation genügen
müssen. Von dieser Einschränkung sind nun Fueters Funktionen frei, und das
bestärkte ihn immer wieder in seinem Vertrauen zu dem neu entdeckten Gebiet»
(Verh. Schweiz, natf. Ges., 130. Versammlung 1950, S.401). Doktoranden halfen
mit, das Gebiet auszubauen. Leider aber war keiner der Schüler fähig und willens,
diese schwierigen Untersuchungen in Richtung der Klassenkörpertheorie weiterzuführen.
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Etwa zur gleichen Zeit, als Fueter die Funktionentheorie in Quatemionenvariablen

aufstellte, bearbeitete Heinrich Behnke mit seinen Schülern das Gebiet der Theorie

der Funktionen mehrerer komplexer Veränderlicher. Die Zielrichtungen der beiden

Forscher war nicht dieselbe, obschon die Meinung aufkam, die Lehre von den

Quaternionenfunktionen sei ein Sonderfall der Funktionentheorie mehrerer

komplexer Veränderlicher. Fueter hat darüber öfters mit Behnke gesprochen, dieser

besuchte ihn stets bei seinen Reisen in die Schweiz. Beim Kongress in Oslo 1936

erstattete Behnke einen Bericht <Der Kontinuitätssatz und die Regulärkonvexität).

Er schreibt: «Eine leichte Spannung gibt dies Thema zu Fueters Bemühungen um

die <rechtsregulären Quaternionenfunktionen). Was wird sich als Funktionentheorie

in höher dimensionalen Räumen durchsetzen? Die Frage ist nun - da ich vierzig

Jahre später diese Zeilen schreibe - lange entschieden. Aber jetzt müsste ich sagen,

man sollte Fueter nicht ganz übersehen. Das ist Unrecht.» (Ein Leben an deutschen

Universitäten im Wandel der Zeit. Göttingen 1978, S.248.) Behnke überliefert uns

auch einige Äusserungen Fueters anlässlich seiner Besuche während der Kriegsjahre

(ebenda S. 148).

Fueters Ergebnisse wurden neuerdings von CA. Deavours dargestellt (Am. math.

Monthly 80, 995-1008, 1973). Er schreibt: "There exists an extensively developed

four dimensional calculus, little known in this country, which was developed by

R. Fueter in the decade following 1935. Some of the essential aspects of Fueter's

calculus will be discussed in this paper, using a somewhat different approach."

Ihm folgt A Sudbery mit einer Neubearbeitung des Gebietes (Quaternionic

analysis, Math. Proc. Camb. Philos. Soc. 85, 199-225, 1979): "In 1935, R. Fueter

proposed a definition of 'regular' for quaternionic functions by means of an

analogue of the Cauchy-Riemann equations. He showed that this definition led to close

analogues of Cauchy's theorem, Cauchy's integral formula, and the Laurent

expansion The theory developed by Fueter and his school is incomplete in some

ways, and many of their theorems are neither so general nor rigorously proved äs

present-day standards of exposition in complex analysis would require. The purpose

of this paper is to give a self-contained account of the main line of quaternionic

analysis which remedies these deficiencies, as well as adding a certain number of

new results. By using the exterior differential calculus we are able to give new and

simple proofs of the most of the main theorems and to clarify the relationship

between quaternionic analysis and complex analysis."

In späteren Jahren ist Fueter zu seiner früher gepflegten Zahlentheorie zurückgekehrt.

Er bearbeitete die Herausgabe von Arbeiten Leonhard Eulers für die Bände 4

und 5 der ersten Serie der Opera omnia. Fueter war seit langem mit dieser Edition

verbunden. Er wirkte von 1908 an in der Euler-Kommission der Schweizerischen

Naturforschenden Gesellschaft, wurde 1927 deren Präsident und leitete die oft

schwierigen Verhandlungen mit grosser Umsicht und Energie bis zu seinem Tod.

Wir bewundern, dass es ihm trotz bedrohter Gesundheit und der enormen

Belastung durch fast 700 Diensttage vergönnt war, uns diese Herausgabe zu schenken.

Es werden in den genannten Bänden die späteren Abhandlungen von Euler zur

Zahlentheorie gesammelt. Euler baute auf verstreuten Ergebnissen auf, welche die

Mathematiker stets in Erstaunen versetzt hatten, insbesondere auf solchen von

Diophant und Fermât. Eine immense Kenntnis numerischer Beziehungen liessen
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ihn tief in die Struktur des Gebäudes der ganzen Zahlen blicken und völlig neue
Ergebnisse finden, auf denen sodann Gauss aufbaute. Bedenken wir, dass es Euler
nicht gelang, ein geplantes Lehrbuch über dieses Gebiet herauszubringen - es
fehlten ihm die Beweise von erahnten und numerisch erprobten Gesetzen -, so
bewundern wir den Leitfaden, den uns Fueter in seinen Vorreden gibt, um Euler
folgen zu können. Eulers Arbeiten befassen sich mit diophantischen Gleichungen
quadratischen Formen, der Theorie der quadratischen Reste und Nichtreste, dem
quadratischen Reziprozitätsgesetz und den grossen Primzahlen.
Wie Euler war auch Fueter ein begnadeter Algorithmiker. Als solcher durchschaute
er die scheinbar verwirrenden Rechnungsvorgänge bei Euler und sah hinter ihnen
die Gedanken. Diese Begabung ist heute selten anzutreffen, sie wird abgelöst durch
das abstrakte oder moderne Denken. Um ein Bild zu gebrauchen: Wie ein freier
Kletterer den Weg durch die sonnendurchglühten Granitwände erahnt, findet sich
der Algorithmiker durch das scheinbare Chaos der Zahlenwelt. Der abstrakt
Denkende gleicht dem Ersteiger eisiger Nordwände, systematisch Schritt auf Schritt
setzend.
Fueter gab in dem genannten Band 1/4 der Opera omnia von Euler eine Arbeit
heraus, die sich mit dem Satz von Fermât befasst, welcher besagt, dass sich jedenatürliche Zahl als Summe von höchstens vier Quadratzahlen darstellen lässt
Jacobi führte den Ansatz von Euler mit Hilfe der elliptischen Thetafunktionen zu
Ende. Fueter ergänzte den Eulerschen Beweis mit elementaren Betrachtungen in
einer Arbeit in der Medizinischen Wochenschrift 1939, woraus wiederum klar
ersichtlich ist, wie sehr er sich in die Gedankenwelt und die Arbeitsmethode des
Vorgängers einfühlen konnte. Seine Beschäftigung mit dem grossen Basler bezeugt
ein Artikel zu dessen 200.Geburtstag in der Neuen Zürcher Zeitung vom H.April1907. Ferner sei die Biographie erwähnt, die er ihm in den Beiheften der Zeitschrift
(Elemente der Mathematik) widmete (1948,21968,31979).
Fueter stellte seine Arbeitskraft in den Dienst der Universität und der Mathematik
In die Zeit seines Rektorates 1920 bis 1922 fällt die Gründung der Schweizerischen
Zentralstelle für das Hochschulwesen, ferner die Gründung des Sanatorium Universitaire

in Leysin. Die Erinnerungen an vier in Leysin verbrachte Tage (1927) halten
seme Eindrücke fest, die er dort empfing. Eindrücklich fordert er die Studierenden
auf, sich bei beginnender Krankheit dorthin zur Kur zu begeben. Von 1923 bis 1947
gehörte er dem Kuratorium für wissenschaftliche Forschung an, das er von 1923 bis
1927 präsidierte. Fueter war seit der Gründung 1931 bis zu seinem Tod Präsident
der Stiftung des Schweizerhauses der Cité Universitaire in Paris und unterzeichnete
den Schenkungsakt. Fueter und seinem Kollegen Speiser ist es weitgehend zu
verdanken, dass dieses Haus nach den Plänen von Le Corbusier gebaut wurde.
Beide waren mit diesem Architekten eng verbunden. Le Corbusier schenkte sodann
die Pläne seines Entwurfes für ein Völkerbundgebäude in Genf der Universität
Zürich, lange Zeit zierte ein axonometrischer Plan dieses Entwurfes das nordwestliche

Treppenhaus des Universitätsgebäudes.
Fueter gründete 1910 zusammen mit Henri Fehr und Marcel Grossmann die
Schweizerische Mathematische Gesellschaft, deren erster Präsident er war und die
ihn zum Ehrenmitglied ernannte. In den Jahresversammlungen war er stets anwesend

und pflegte den Kontakt mit Kollegen und Schülern. Er wirkte massgebend bei
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der Gründung der <Stiftung zur Förderung der mathematischen Wissenschaften in

der Schweiz) mit. Ihr verdankt die mathematische Gesellschaft die Herausgabe der

Zeitschrift <Commentarii Mathematici Helvetia). Fueter war ihr Generalredaktor

bis zu seinem Tode. Er leitete das Unternehmen mit Umsicht und bot neben

Schweizern vielen Mathematikern aus allen Ländern Gelegenheit, darin ihre

Ergebnisse zu veröffentlichen, was insbesondere in den Kriegsjahren sehr wertvoll

war. Dank der Mithilfe vieler Kollegen erlangten die Commentarii einen international

beachteten Ruf.
Das Ansehen, das sich die Mathematik dank dem Einsatz von Fueter und seinen

Kollegen in der Schweiz erwarb, bewog die Versammlung des Internationalen

Mathematikerkongresses 1928 in Bologna zum Beschluss, diese Veranstaltung 1932

in Zürich abzuhalten. Fueter berichtet darüber in der Neuen Zürcher Zeitung vom

23.September: «In der Schlußsitzung in Florenz stiess die Nomination anderer

Länder auf grössere Schwierigkeiten und gab zu peinlichen Diskussionen Anlass, so

dass die Abhaltung des Kongresses überhaupt in Frage gestellt war. Die Schweizer

Delegation erklärte sich hierauf bereit, den Kongress zu übernehmen, und zwar in

Zürich.» Fueter wurde Präsident dieses im schönsten Rahmen und mit grossem

Erfolg vom 4. bis 12. September durchgeführten Treffens. In einem Artikel vom
5. September 1932 in der Neuen Zürcher Zeitung <Die Bedeutung des Internationalen

Mathematikerkongresses) begrüsst der Präsident die Teilnehmer und führt aus,

dass der Schwerpunkt einer solchen Zusammenkunft in der persönlichen Übermittlung

von Ergebnissen liege. Denn es sei insbesondere in der Mathematik schwierig,

die Gedanken in verständlicher Form schriftlich mitzuteilen. In der Zürcher

Monatschronik vom November 1932 finden wir sodann einen Bericht über den

Verlauf der Veranstaltung.
Heinrich Tietze hebt in seinem Nachruf auf Fueter die grossen Verdienste hervor,

die sich dieser um die Pflege internationaler Beziehungen in schwierigen Zeiten

erworben hat. Auch hiervon zeugt wiederum der Bericht über den folgenden

Kongress in Oslo in der Neuen Zürcher Zeitung vom 9. August 1936.

Fueters mathematische Forschung war eng verbunden mit seiner militärischen

Laufbahn in der Schweizerischen Milizarmee. Er erläutert den Einfluss der
mathematischen Disziplinen auf die Kriegswissenschaft in einem Beitrag zu der Festschrift

für Max Huber (1944). Zunächst der psychologische Einfluss: Hier ist die rasche

Entschlusskraft eine Charaktereigenschaft, rasches und richtiges Schliessen werden

ergänzt durch klares Denken, dem Zwillingsbruder der Einfachheit. Kartenkenntnis,

Einschätzung der eigenen Mittel und der Lage des Gegners werden zusammen-

gefasst unter dem Begriff der Beurteilung der Lage. Weitgehend analoge Verhältnisse

liegen in der mathematischen Forschung vor, wo geometrische Vorstellungskraft
und unbegrenzte Phantasie im abstrakten Denken verlangt werden. In beiden

Bereichen spielt die Organisation eine fundamentale Rolle, wir wissen um die

beneidenswerte Begabung von Fueter in dieser Sparte, die er vielen Unternehmungen

hat zugute kommen lassen. Sodann wird der Einfluss der mathematischen

Disziplinen auf die Kriegswissenschaft an ausgewählten Beispielen erläutert: Eulers

Werk <Neue Grundsätze der Artillerie) (1744) diente noch Napoleon I. als Lehrbuch.

Anlässlich von Kartierungen entwickelte Gauss die Methode der kleinsten
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Quadrate, und die von Jakob Bernoulli entwickelte Wahrscheinlichkeitstheorie
bildet die Grundlage für die Interpretation von Trefferbildern.
Fueter trat mutig für die Belange der Armee ein. In einem bemerkenswerten Artikel
<Wehrwille> in der Neuen Zürcher Zeitung vom 19. Februar 1935, verfasst im
Hinblick auf die zur Abstimmung am 24. Februar 1935 gelangende Wehrvorlage,
ruft er zur Verteidigung der ideellen und kulturellen Werte der Schweiz auf.
Nicht nur durch seine Schriften, sondern insbesondere durch seinen persönlichen
Einsatz erwarb sich Fueter unvergessliche Verdienste für seine Heimat. Während
des zweiten Weltkrieges leistete er als Oberst vom Januar bis März 1940 als
Vertreter des Chefs in der Abteilung für Presse und Funkspruch Dienst, nachher
war er Artilleriechef einer Division. Bereits am 6. Januar stellte er in acht Paragraphen

die Grundsätze der Pressekontrolle auf, die sich aus dem Grunderlass vom
8. September 1939 ergaben (siehe G. Kreis, Zensur und Selbstzensur S 432 1973)
Diese zeigen aufs deutlichste, dass Fueter gleich zu Beginn seiner Tätigkeit die
zuverlässige Meinungsäusserung der Presse und ihre disziplinierte und massvolle
Kritik zuliess. Die Presse soll dem Weltgeschehen vom schweizerischen Standpunkt
aus gerecht werden. Beeinflussung vom Ausland ist dabei abzulehnen. Verächtlichmachung

abweichender Ansichten und Schulmeistereien gegenüber dem Ausland
sind zu unterlassen.
Der militärischen Abteilung Presse und Funkspruch lag die Kontrolle der zivilen
Presse ob. Dies musste natürlicherweise zu Spannungen führen, sie lagen nicht bei
den Persönlichkeiten, sondern in den Verschiedenartigkeiten der einander zugeordneten

Instanzen. Fueter hat nach meinen Nachfragen nie darüber gesprochen. Das
folgende habe ich erst durch das Buch <Spying for peace; General Guisan and Swiss
neutrality) 1961 von Jon Kimche erfahren. Die deutsche Ausgabe <General Gui-
sans Zweifrontenkrieg) (Berlin 1962) enthält auf Seite 71 den Beitrag:
«Alle diese Männer brandmarkten den Mangel an Zurückhaltung in der schweizerischen

Öffentlichkeit, wie er in der deutschsprachigen Presse zum Ausdruck kam, als
die Hauptursache der drohenden Haltung Deutschlands gegenüber der Schweiz.'
Zum Glück für die Schweizer Presse und die Erhaltung der demokratischen Rechte
der Schweiz blieb aber diese Auffassung nicht unangefochten. In einer Antwort an
Oberst Masson und anschliessend in einem Bericht an den Generalstabschef
verteidigte Oberst Rudolf Fueter, der Chef der Abteilung Presse und Funkspruch
im Armeekommando, die demokratischen Rechte der Presse in beinahe klassischer
Form; dieses Schriftstück sollte zum Glaubensbekenntnis der freien Presse und zu
einem wichtigen Faktor des schweizerischen Willens zum Durchhalten werden.
Oberst Fueter antwortete Oberst Masson: <Wir müssen nicht nur unsere
geographischen Grenzen verteidigen, sondern auch unsere demokratischen Grundsätze.
Ersteres ist die Pflicht der Armee, letzteres gehört in den Aufgabenbereich der
Presse Unsere geistige Freiheit mit unserem Blute zu verteidigen ist ebenso
wichtig wie die Verteidigung der Unabhängigkeit des Landes.) In seinem Bericht
den Oberst Fueter am 10. April an den Generalstabschef richtete, entwickelt er seine
Ansichten noch eingehender, ohne das Hauptargument einzuschränken. (Unsere
Presse hat die Pflicht, die Innen- und Aussenpolitik des Nationalsozialismus zu
verwerfen und dies klar und eindeutig zu tun. Eines der Ziele der nationalsozialistischen

Aussenpolitik ist es, diese Auffassung zu unterdrücken.)
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Oberst Fueters mutiges Memorandum scheint den General beeindruckt zu haben,

nicht aber Oberst Masson und jene Bundesräte - einschliesslich Bundespräsident
Pilet-Golaz - und hohen Offiziere, die Massons Auffassung von der Schuld der

Schweizer Presse teilten.»
Ähnliches vernehmen wir von Walo von Greyerz (Politische Rundschau, 48.

Jahrgang, Biel 1969, <Die Meinungspresse in gefahrvoller Zeit>) auf Seite 123:

«Ausgezeichnete, für die Aufgabe der Presse verständnisvolle Worte fand der Chef der

Abteilung Presse und Funkspruch, Oberst Rud. Fueter, der die Bedenken Massons

zwar weitgehend teilte, aber folgendes zu erwägen gab: <Wir haben nicht nur unsere

geographischen Grenzen, sondern auch unsere freiheitliche Gesinnung heute zu

verteidigen. Während das erste Sache der Armee ist, ist das zweite Aufgabe der

Presse (ebenso bei Edgar Bonjour, Geschichte der Schweizerischen Neutralität,
Band V, S. 168, Basel 1970). Wir können sie uns nicht nehmen lassen, ohne unsere

Selbständigkeit aufzugeben. Dass dies sachlich und vorsichtig geschehen soll, ist

klar. Das Problem ist, hier den richtigen Schritt zu finden Unsere geistige

Unabhängigkeit ist ebensoviel wert, mit unserm Blut bezahlt zu werden, als die
Unversehrtheit unseres Landes zu erhalten.) »

Wer jene gefahrvollen Zeiten miterlebte, weiss, welchen Mut und welche Standfestigkeit

solche Haltung bedeutete. Er wird für immer Rudolf Fueter bewundern und

ihm zutiefst dankbar sein.

Fueter war stets bestrebt, weitere Kreise über das Geschehen in den mathematischen

Wissenschaften zu orientieren und mit deren Gedanken vertraut zu machen.

Davon zeugen die 35 Artikel, die teils in Tageszeitungen, teils in Zeitschriften

erschienen sind und die in der Vierteljahrsschrift der Naturforschenden Gesellschaft

in Zürich XCV (1950), Seiten 286f., aufgezählt sind. Ihre Lektüre trägt reichen

Gewinn ein. Ich erwähne in Ergänzung zu bereits Angeführtem die beiden Artikel,
die er seinem Lehrer David Hubert widmet (1932 und 1943), Nachrufe an seine

Kollegen Walter Ritz, Ferdinand Rudio, Emile Piccard, Constantin Carathéodory

und Gedenkartikel an die Wegbereiter der heutigen Mathematik, Niels Henrik Abel

(1929) und Evariste Galois (1932).
Fueter war um den Nachlass des grossen Schweizer Geometers Jakob Steiner

bemüht und gab unter Mitwirkung von Ferdinand Gonseth das nachgelassene

Werk Allgemeine Theorie über das Berühren und Schneiden der Kreise und

Kugeln) (1931) heraus. Auch seien zwei Kurzbiographien über den grossen Berner

aus seiner Feder erwähnt.
Fueter trat 1917 der Naturforschenden Gesellschaft in Zürich bei. Er hielt dort im

Jahre 1930 einen Vortrag über <Die mathematisch-statistische Methode in den

Naturwissenschaften). Als Beiblatt 32 zur Vierteljahrsschrift dieser Gesellschaft

erschien 1940 eine Festschrift (232 Seiten), mit welcher Kollegen und Schüler ihre

Verehrung und Dankbarkeit auszudrücken versuchten.
1924 wurde Fueter korrespondierendes Mitglied des Institutes von Coimbra (nach

dem Lebenslauf vom 7. Januar 1933, an die Leopoldina zu Halle gesandt), am
17.November 1932 ernannte ihn die deutsche Akademie der Naturforscher Leopoldina

in Halle zum Mitglied.
Anlässlich der Feier des hundertsten Todestages von N.H. Abel am 6. April 1929

wurde Fueter zum Ehrendoktor der Universität Oslo ernannt, die Urkunde lautet:
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Comilitones!
Sicut proposuit ordo mathematico physicus in nomine Collegii academici Universi-
tatis nostrae summos in philosophia honores confero in hos viros et philosophiae
doctores eos rite creates pronuncio.
L. Egbert J. Brouwer
Friedrich Engel
Rudolf Fueter
Jacques Hadamard
Godfrey Harold Hardy
Kurt Hensel
Christian Juel
Edmund Landau
Ernst Leonard Lindelöf
Paul Painlevé
Lars Edvard Phragmén
Salvatore Pincherle
Teiji Takagi
Charles Jean Gustave Nicolas
de la Vallée Poussin
Oswald Veblen
Hermann Weyl

2. Speiser, Andreas, geboren am lO.Juni 1885 in Basel, gestorben am 12.Oktober
1970 in Basel. Sohn des Paul Speiser (1846-1935) und der Elisabeth, geborene
Sarasin (1861-1938), verheiratet 1916 mit Emmy La Roche (1891-1980).
Die Familie Speiser stammt aus Wintersingen BL. Jakob Speiser-Buser (1743-1827)
liess sich 1779 dauernd in Basel nieder. Sein Sohn Johann Jakob Speiser-Baumgart-
ner (1777-1856) erwarb dort 1816 das Bürgerrecht. Dessen Sohn Johann Jakob
Speiser-Hauser (1813-1856) war eine bemerkenswerte Gestalt der aufstrebenden
Handelsstadt Basel. Er gründete eine der ersten Handelsbanken des aufblühenden
Handels- und Industriezentrums, er wurde dank seinen monetären Kenntnissen der
Reformator des schweizerischen Münzwesens (1848-1852) und war Mitbegründer
und erster Direktor der Centralbahn (1852), wahrlich eine grossartige Dienstleistung
um das Gemeinwesen in seinem kurzen Leben. Sein Sohn Paul Speiser-Sarasin
(1846-1935) war eine nicht weniger profilierte Persönlichkeit Basels: Professor an
der juristischen Fakultät, Regierungsrat und zeitweise Nationalrat. In einer grossenFamilie verbrachte der Sohn Andreas eine glückliche Jugendzeit.
Nach seinen handschriftlichen Aufzeichnungen verdankte er dem Spiel auf zwei
Klavieren mit seiner Mutter die Grundlagen für seine profunden Musikkenntnisse
und für sein späteres Spiel, er zählte zu den besten Amateuren. Ohne Schwierigkeiten

und ohne Auszeichnungen, wie er schreibt, durchlief er die Basler Schulen mit
dem Abschluss am Gymnasium auf dem Münsterplatz.
Auf Anraten des Mathematikers Karl Von der Mühll bezog er 1904 die Universität
Göttingen. Nach einem zweisemestrigen Aufenthalt in Berlin begann er seine
Dissertation unter der Leitung von Hermann Minkowski und beendigte im
Wintersemester 1908/09 das Studium mit der Dissertation <Theorie der binären quadrati-
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sehen Formen mit Koeffizienten und Unbestimmten in einem beliebigen Zahlkör-

per>. Minkowski starb kurz vor der mündlichen Prüfung, die sodann von dessen

Freund David Hubert am 3.März 1909 abgenommen wurde.

Wanderjahre führten Speiser nach Schottland, London und Paris. Schon damals

wurde er auf die Beziehungen der Mathematik mit der Kunst aufmerksam, die ihn

das ganze Leben hindurch fesselten. Algebra, Zahlentheorie und Gruppentheorie

wurden zu seinen Forschungsgebieten. Heinrich Weber und die Nähe der Heimatstadt

trugen dazu bei, dass sich Speiser 1911 in Strassburg habilitierte. Im Sommersemester

1915 vertrat er Rudolf Fueter an der Technischen Hochschule in Karlsruhe.

Auf das Sommersemester 1917 wurde Speiser zum ausserordentlichen Professor für

reine Mathematik an die Universität Zürich berufen, 1919 wurde er Ordinarius. In

den Jahren 1932 bis 1934 diente er als Dekan der philosophischen Fakultät II und

versah dieses Amt vertretungsweise nochmals im Winter 1935/36. Auf das

Wintersemester 1944 trat er wegen Berufung an die Universität Basel zurück. Sein Nachfolger

wurde Lars Ahlfors (geboren am 18. April 1907 in Helsingfors), der im Herbst

1946 die Universität verliess, um einem Ruf an die Harvard-Universität in

Cambridge, Mass., zu folgen. Zu dessen Nachfolger wurde Rolf Nevanlinna (geboren am

22. Oktober 1895 in Joenem, Finnland) gewählt. Er wurde im Herbst 1949 unter

Ernennung zum Honorarprofessor entlassen, versah aber seine Lehrtätigkeit bis

zum Herbst 1963.

Speiser bearbeitete in seiner Dissertation (Sp. 1) Probleme aus dem Gebiet der

quadratischen Formen mit zwei Variablen. Durch Arbeiten Leonhard Eulers

angeregt, schuf C.F. Gauss in seinem Jugendwerk <Disquisitiones Arithmeticao
1801 das schwer zugängliche, reich mit neuen Ergebnissen befrachtete Lehrbuch

des beginnenden 19. Jahrhunderts. Den Darstellungen von Dirichlet und von

Dedekind verdanken wir den leichteren Zugang zu den schönen Ergebnissen,

David Hubert und Hermann Minkowski deren Ausbau und Weiterführung. Hubert

übertrug die Ideen von Gauss auf die Betrachtung der Ideale in relativquadratischen

bzw. relativ-abelschen Zahlkörpern. Die Erweiterung auf Formen mit
Koeffizienten und Unbestimmten in beliebigen Zahlkörpern wurde der Inhalt der

Dissertation von Speiser. Zunächst wird die Darstellung einer Zahl im Körper

K{\Tö) behandelt mit dem Ergebnis: Jede zu 3 prime Zahl, die in diesem Körper

zerfällt, wird durch Formen der Diskriminante ô dargestellt, und zwar nur durch

eine endliche Anzahl verschiedener Formenklassen mit derselben Primitivdiskri-

minante. Aus der Reduktionstheorie folgt, dass es zu gegebener Primitivdiskri-

minante nur endlich viele Formenklassen gibt. Im zweiten Kapitel wird die Anzahl

der Klassen untersucht und mit der Anzahl der Modulklassen verglichen.

In der Festschrift für Heinrich Weber ergänzt Speiser Lücken in den Artikeln 234

bis 251 der <Disquisitiones Arithmeticao. Er zeigt, dass sich zwei beliebige Formen

mit derselben Diskriminante, aber relativ primen Teilern durch unendlich viele

bilineare Substitutionen komponieren lassen. Durch ihre Komposition entstehen

sämtliche Formen einer bestimmten Formenklasse. Übergehend zu den Geschlechtern

wird gezeigt, dass jede Form des Hauptgeschlechtes durch Duplikation
entsteht.

In seiner dritten Arbeit (Sp.3) wendet sich Speiser der Theorie der Substitu-
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tionsgruppen zu. Sei N die Ordnung einer irreduziblen Substitutionsgruppe A
eines ihrer Elemente, X (A) die Summe der charakteristischen Wurzeln insbesondere

für die Einheit E sei Xl x(E), ferner sei h{A) die Anzahl der Elemente in
der Klasse von A. Es werden Beziehungen zwischen diesen Grossen hergestellt
und Teilbarkeitseigenschaften bezüglich einer Primzahl untersucht. Ist der Grad
eines Elementes A relativ prim zum Grad der Gruppe, so ist der kleinste Exponent ifür den A in das Zentrum der Gruppe fallt, ein Teiler des Grades der Gruppe.
Bis in die neueste Zeit haben drei weitere Abhandlungen von Speiser Beachtung
gefunden (Sp.4-6). In (Sp.4) werden Ergebnisse über die Lagrangeschen
Resolventen eines zyklischen Körpers auf Galoissche Körper übertragen. In jedem
Zahlkörper gibt es Zahlen, die ein beliebiges zur Gruppe gehöriges Gleichungssystem

befriedigen. Es wird die Gesamtheit der zu einem Gleichungssystem (Klein-
sches Formenproblem) gehörigen Lösungen angegeben und daraus die Formeln
aus der Theorie der Gleichungen fünften Grades hergeleitet. Der Zusammenhang

mit der Gruppendeterminante wird aufgedeckt, und für den Fall der Normalbasis
wird gezeigt, wie sich die Diskriminantenteiler auf die Determinanten der

verschiedenen Darstellungen der Gruppe verteilen (siehe auch Sp.4a). Die von
Speiser eingeführten verallgemeinerten Resolventen sind von A. Fröhlich (1966) als
Homomorphismen gewisser Moduln erkannt worden. Unter Heranziehung der
von Hubert eingeführten Begriffe des Trägheitskörpers und des Verzweigungskörpers

wird ein Ergebnis über die Verzweigungsgruppe erhalten. S. Ullom (1969)
nimmt das Resultat von (Sp.4) auf: k/F sei eine Galoissche Erweiterung eines
Zahlkörpers, damit der Ring OK der ganzen Zahlen von K eine Normalbasis
besitzt, muss K/F schwach verzweigt sein.
Viel Beachtung fand die Arbeit Nr. 5 <Die Zerlegungsgruppe). Sie schliesst an
den <Zahlbericht> von D. Hubert an (Jber. Deutsch. Math.-Verein. IV, 1897).
Speiser geht davon aus, dass die Reste nach den Potenzen eines Primideals eines
algebraischen Zahlkörpers ein System von ^-adischen Zahlen bilden, und untersucht

die Gruppe der Automorphismen eines solchen Systems.
Die Substitutionen des Körpers, welche das Primideal «ß unverändert lassen,
bilden die Zerlegungsgruppe 3. Diejenigen, welche die Reste modulo 5ß nicht
vertauschen, bilden einen Normalteiler St der Zerlegungsgruppe, welcher Trägheitsgruppe

heisst. Ferner bilden die Substitutionen von 3, welche die Reste modulo «ß2

nicht vertauschen, einen Normalteiler % der Verzweigungsgruppe heisst.
Zunächst wird in §1 die Faktorgruppe 3/95 untersucht: Sie enthält als zyklischen
Normalteiler die Gruppe Z/% die näher untersucht wird. In der Reihe der
Verzweigungsgruppen % SB,,... ist jede ein Normalteiler von 3, und die Faktorgruppe
zweier aufeinanderfolgender ist eine abelsche Gruppe, deren Ordnung und Typusbestimmt werden. Daraus ergibt sich in §2 der Satz von Kronecker, wonach
jeder abelsche Körper ein Kreiskörper ist. Ist 3$ die /-te Verzweigungsgruppe so
liegt nach Satz 3 von §3 die Gruppe 5B,/®r+i ™ Zentrum der Gruppe Si/4+i-
Es stellte sich heraus, dass dies ein Nebenresultat eines Hilfssatzes von E. Artin
ist (Artin, J. Reine Angew. Math. 164, 25, 1931). Siehe ferner die Arbeiten von
Casson-Nogues, Ribenboim und Serre, die auf die Ergebnisse von Speiser
hinweisen.

Die Arbeit Nr. 6 schliesst wiederum an Huberts Zahlbericht an, insbesondere an
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den berühmten Satz 90. Sei der Körper K relativ zyklisch bezüglich des Körpers k.

Die Substitutionen der zyklischen Relativgruppe seien durch S erzeugt. Jede Zahl

a von k, deren Relativnorm in bezug auf k gleich 1 ist, wird die symbolische

(l-S)-te Potenz einer gewissen Zahl b von K. Anstatt die Zahlen eines Körpers

zu betrachten, untersucht Speiser Matrizen ME,MA,..., die einer Gruppe mit den

Elementen E,A,... zugeordnet sind und deren Koeffizienten im Körper K liegen.

MS,M%¦¦¦ (S=E,A,...) seien die konjugierten Matrizen, und für die Multiplikation

gelte Ml MT=MST. Speisers Satz besagt dann, dass es in K eine Matrix M gibt

mit Ms=(Msyl M. Als Folgerung ergibt sich hieraus eine wichtige Aussage über

die Koeffizienten der Matrizen einer irreduziblen Gruppe von ungeradem Grad.

Besitzt diese reelle Charaktere, so lässt sie sich so transformieren, dass ihre

Koeffizienten in dem durch die Charaktere bestimmten Körper liegen. Ist hingegen der

Grad gerade, ferner das Charakterensystem reell und enthält die Gruppe eine

Substitution, welche die Wurzeln + 1 und - 1 in ungerader Vielfachheit besitzt, so

lässt auch sie sich so transformieren, dass ihre Koeffizienten im Körper der

Charaktere liegen. Dieses Ergebnis ist von Hall-Weber (1968) verwendet und von

Takahashi (1968) und von Ritter (1977) verallgemeinert worden. Im Anschluss an

Speisers Arbeit behandelte I. Schur den Fall, in welchem die Matrizen der

Gleichung MTsMT=rStTMST genügen. Das System rs>rmuss einer Bedingung genügen

und liefert dann genau eine irreduzible Darstellung der Gruppe.

Das Problem der Zerlegung einer rationalen Primzahl p in einem Galoisschen

Zahlkörper wird in Nr. 8 bzw. 8a zurückgeführt auf die Untersuchung der Ordnung

einer gewissen Matrix modulo p. Für Kreiskörper und relativ-zyklische Körper

ergeben sich die aus anderen Untersuchungen bekannten Zerlegungsgesetze, für

beliebige Körper ein Algorithmus zur Ermittlung des Grades seiner Primideale.

Von der ganzen Betrachtung sind die Diskriminantenteiler ausgenommen.

Bleiben wir noch bei der Zahlentheorie. 1932 befasste sich Speiser in der

Abhandlung Nr. 17 mit den Minima der Formen von Hermite. Im Anschluss an die

Dissertation seines Schülers J. Züllig werden durch die Betrachtung von

Kugelpackungen Approximationen von komplexen Zahlen { durch gekürzte Brüche p/q
betrachtet und die Existenz unendlich vieler Paare (p,q) mit \£,-p/q\<
\/[VJN(q)] bewiesen. Ein ähnlicher Satz ergibt sich für die Approximation einer

reellen Quaternion £, durch ganzzahlige Quaternionen p und q^O. Er besagt,

dass die Ungleichung \^-p/q\<\/[(5/2)^N(q)] unendlich viele Lösungen in

ganzzahligen Quaternionen p und q?0 besitzt. Ob (5/2)1/2 die bestmögliche

Konstante ist, beantwortete A.L. Schmidt (1969) dahin, dass sie dies in gewissem

Sinn tatsächlich ist.
1923 erschien das Lehrbuch <Die Theorie der Gruppen von endlicher Ordnung).

Bisher wurde die Gruppentheorie nur in englischer Sprache von W. Burnside

(21911) dargestellt, das Werk enthielt viele eigene Forschungen, welche diejenigen

von G Frobenius, L. Sylow, C. Jordan u.a. ergänzten. In deutscher Sprache lagen

die (Algebra von H. Weber (2. Bd. 21899)> und <Gruppen- und Substitutionstheorie

von E. Netto (1908)> vor, die nur in Teilgebiete einführten.

Speisers Gruppentheorie ist sein Jugendwerk, das über viele Jahrzehnte führend

blieb. Bereits beim Erscheinen bemerkt ein Referent: «Es ist erstaunlich, was der

Verfasser in dem wertvollen Buch auf dem engen Raum von 194 Seiten von elemen-
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taren Sachen ausgehend zur Darstellung bringt. Die vom künstlerischen Standpunkt

aus m ihrer Knappheit reizvolle Darstellung dürfte das Eindringen etwas
muhvoll machen.» B.L. van der Waerden (1950) charakterisiert das Werk mit den
Worten: «Andreas Speiser war einer der Pioniere der modernen Algebra Sein Buch
ist immer noch die schönste Einführung in die Gruppentheorie.» In beiden Zitatenwird also die Schönheit des Werkes betont, dieser verdankt es viele begeisterte
Leser, welche die Mühe des Studiums nicht scheuten. Nachdem im Laufe der
zwanziger Jahre durch die Vorlesungen von Emil Artin und Emmy Noether das
neuartige abstrakte Denken in die Algebra und die Gruppentheorie eindrang und
dort die Methoden völlig neu gestaltete und eine Zusammenfassung im Lehrbuch
<Moderne Algebra) (»1930) fand, ist es erstaunlich zu sehen, dass bereits Speiser in
diesen Kategorien dachte. Seine Denkweise wurde richtungweisend er darf als einerihrer Vorläufer und Väter bezeichnet werden. Ähnliche Züge werden wir später in
seinem philosophischen Denken antreffen. Die zweite Auflage enthält wertvolle
Erweiterungen. Auf vier Seiten wird die Vorgeschichte der Gruppentheorie dargestellt

und dabei auf die Ornamentik und die regelmässigen Körper sowie auf die
Bedeutung der Symmetrie in der Musik hingewiesen. Im eingefügten sechsten
Kapitel werden auf zwanzig Seiten die Streifen- und Flächenornamente hergeleitet
Speiser unternahm 1928 eine Reise nach Ägypten, um die dortigen Ornamente
kennenzulernen. Wolfgang Graeser begleitete ihn und verfertigte die photographischen

Aufnahmen.
Speisers Darstellung übte tiefe Wirkung auf Künstler aus und regte die zur Rarität
gewordene Dissertation von Edith Müller über die Ornamentik in der Alhambra an
(Gruppentheoretische und strukturanalytische Untersuchungen der maurischen
Ornamente aus der Alhambra in Granada, S. 1-128, 43 Tafeln, Rüschlikon 1944
Auf sechs einleitenden Seiten geht Speiser der Herleitung des Gruppenbegriffes
nach und zeigt, wie er aus dem erst 1926 von Heinrich Brandt entdeckten Begriff des
Gruppoides entwickelt werden kann. Brandt, ein Schüler von Speiser aus dessen
Strassburger Zeit, fand diesen Begriff bei der Untersuchung der Komposition
quadratischer Formen, die er auf Anregung Speisers unternahm. Die dritte Auflageenthalt wiederum wertvolle Ergänzungen: Die Lehre von den symmetrischen
Gruppen wurde im Hinblick auf die Physik ausführlicher dargestellt, und für den
Fundamentalsatz von M. Wedderburn wurde der elegante Beweis von E Witt
eingefügt. Eine ganz besondere Freude bereitet es Speiser, dass der Birkhäuser
Verlag die vierte Auflage mit einer Farbtafel der Modul- oder Kreisfigur von FelixKlein schmückte. Dieses Titelbild erläutert Speiser in einem Anhang. Stets wieder
hat er, besonders in Gesprächen mit Schülern und mit Künstlern, seiner Begeisterung

über diese Figur Ausdruck gegeben. Speiser legte bereits in der ersten AuflageWert darauf, die Zusammenhänge der Gruppentheorie mit der Kristallographie zubetonen. Diese war damals in Zürich unter Paul Niggli und seinen Schülern in
voller Entfaltung, sie empfing reiche Anregung durch das Erscheinen der <Gruppen-
theone>. Speiser hat den enormen Aufschwung der Theorie der Raumgruppen bis
zur Herleitung aller dieser Gruppen im Räume von vier Dimensionen nicht mehr
erlebt, auch nicht mehr das Eindringen des Gruppoidbegriffes in die Strukturlehre
der Kristalle, aber was er gesät hat, trug reiche Früchte.
In den Nrn. 12 und 12a wird die Bedeutung des Gruppoids für die Bildung von
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Teilbarkeit und Multiplikation zweier Ideale im Integritätsbereich einer Algebra

untersucht. In Nr. 13, die teilweise an Nr.6 anschliesst, wird das Problem der

Erweiterung von Gruppen durch Hinzufügung eines Zentrums erläutert.

Mehrmals ist Speiser auf die Bedeutung der Gruppen théorie für die Kunst zu

sprechen gekommen. Er fand in Basel einen Künstler, Karl Gerstner, der diese

Anregungen aufnahm und dies in seinem Werk <Color Lines> (Edition Stähli,

Zürich 1978) zum Ausdruck brachte. Darüber hinaus skizzierte er mit künstlerischer

Feder den Menschen: «So unkonventionell Speiser war, so konventionell war seine

Bildung: klassisch-universal, der Humus, auf dem er seine Kürbisse zog. Die

farbigsten gediehen aus einer Kreuzung von Mathematik und Kunst.» Und in

einem Brief schreibt er: «Jetzt, wo er tot ist, vermissen ihn alle, die ihn kannten, weil

er doch eine ganz aussergewöhnliche Persönlichkeit war.»
In der Malerei interessierten ihn nicht nur die Ornamente, sondern auch die Farben.

In Nr. 42 wird der Farbraum untersucht. Sind A und B zwei hinreichend benachbarte

Farben, so gibt es stets eine Farbe C, die mit A vermischt die Farbe B ergibt.

Hieraus folgt, dass jede Farbe als Zentrum einer Involution aufgefasst werden kann.

Nach G. Thomsen besitzt diese Ebene eine euklidische Metrik, wenn das Produkt

dreier Involutionen wieder eine solche ist. Speiser zeigt, dass die Farben diesem

Gesetz genügen. Von der Ebene gelangt man durch Hinzunahme von Hell und

Dunkel in den Farbraum.
Das schmale Bändchen <Algebras and their arithmetics) (1923) von L.E. Dickson

bildet den Ausgangspunkt der Arbeiten Nr. 9 und Nr. 22. Speiser regte eine Übertragung

des Buches ins Deutsche an, worauf uns Dickson eine vollständig neu geschriebene

und stark erweiterte Fassung zur Übersetzung zusandte. Diese erschien 1927

bei Orell Füssli unter dem Titel <Algebren und ihre Zahlentheorio und enthält als

13.Kapitel eine leichte Überarbeitung von Speisers Abhandlung Nr.9, die inzwischen

als Sonderdruck zur Rarität geworden war. Das Buch wurde sehr freundlich

aufgenommen, es war «die erste deutschsprachige Darstellung einer neu entstandenen,

hochbedeutenden Theorie, die in wachsendem Masse das Interesse der Alge-
brai'ker und Zahlentheoretiker auf sich zieht. Es ist durchweg klar und elegant

geschrieben, fast überall auch leicht fasslich und durch Beispiele belebt.» Der Teil

von Dickson ist in der Hauptsache algebraischer Natur, während Speiser die

Zahlentheorie entwickelt und eine Übersicht über alle Ideale einer rationalen,

halbeinfachen Algebra sowie eine Einsicht in ihre multiplikativen Beziehungen

anstrebt. Es gelang ihm zehn Jahre später, seine Entdeckungen in vereinfachter

Form in der Arbeit Nr. 22 darzustellen. Diese grundlegende Arbeit hat die Entwicklung

der Zahlentheorie hyperkomplexer Systeme nachhaltig beeinflusst. Ihren

Inhalt fasst H. Brandt zusammen:
«In einer einfachen Algebra im Gebiet der rationalen Zahlen wird das Restsystem

einer Ordnung, die zwar höchsten Rang hat, sonst aber beliebig ist, nach einer

Primzahlpotenz als Modul betrachtet. In diesem Restsystem auftretende Unregel-

mässigkeiten werden schrittweise durch Aufsteigen zu umfassenderen Ordnungen

beseitigt, bis man schliesslich für maximale Ordnungen klare Gesetzmässigkeiten

erhält. Diese Methode liefert zwar auch Erkenntnisse über nicht maximale Ordnungen,

bringt aber naturgemäss Komplikationen mit sich, die vermieden werden,

wenn man, so wie es in der Abhandlung geschieht, gleich von vornherein Bedingun-
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gen zugrunde legt, wie sie maximalen Ordnungen entsprechen. Darin bestehen die
Vereinfachungen dieser Abhandlung zur früheren. Die Ergänzungen bestehen
darin, dass der Anschluss hergestellt wird zu Begriffsbildungen, die von H. Brandt
aufgestellt worden sind (Gruppoid der Ideale). Das war zwar schon teilweise von
Artin und vollständig von Hasse geschehen, aber nur unter Heranziehung neuer
Hilfsmittel. Hier wird gezeigt, dass die ursprünglichen Methoden zu diesem Ziel
vollständig ausreichen. Sie ermöglichen die Konstruktion aller maximalen Ordnungen

und ihrer Ideale und geben Auskunft über die zwischen ihnen bestehenden
Beziehungen.»
Ende der zwanziger Jahre dozierte Rolf Nevanlinna als Gastprofessor an der ETH.
Er befreundete sich mit Speiser, der durch ihn die Anregung zu einigen Arbeiten
aus dem Gebiet der ganzen transzendenten Funktionen erhielt. Anschliessend an
Sätze von W. Gross und I. Iversen betrachtet Speiser in Nr. 14 jene Riemannschen
Flächen, die zu den inversen Funktionen ganzer transzendenter Funktionen gehören

und deren endliche Singularitäten isoliert liegen. Seien u g(z) und w h(u)
zwei eindeutige Funktionen, die entweder ganze transzendente Funktionen der z-
bzw. w-Ebene sind oder einen Grenzkreis haben. Beide sollen ihre Gebiete auf
gewisse, näher beschriebene Riemannsche Flächen abbilden. Dann ist die Funktion
h(g(z)) dann und nur dann ganz transzendent, wenn g(z) und h(u) es sind. Mittels
der durch Julia gegebenen Verschärfung des Lemmas von Schwarz werden
Abbildungseigenschaften der genannten inversen Funktionen hergeleitet. Am Schluss
werden einige Probleme formuliert, die entscheiden sollen, ob eine gegebene Fläche
zu einer ganzen transzendenten Funktion oder zu einer Funktion des Grenzkreistypus

gehört.
Die in Nr. 15 betrachteten Riemannschen Flächen sind aus drei Sorten von Blättern
aufgebaut. Sorte I: Die volle Ebene, die von +l->oo und von -l-»-oo längs
der reellen Achse aufgeschlitzt ist. Sorten II und III: Volle Ebene mit je nur einem
dieser beiden Schlitze. Einer Veranschaulichung solcher Riemannschen Flächen
dienen topologische Bäume. Endfolge eines Baumes ist ein Streckenzug ohne
Gabelung. Auf zwei Wegen wird bewiesen, dass die Anzahl der Endfolgen eines
Baumes entweder endlich oder abzählbar oder von der Mächtigkeit des Konti-
nuums ist. Alle jene Riemannschen Flächen sind entweder auf die volle Ebene
(erste Art) oder auf eine endliche Kreisscheibe (zweite Art) konform abbildbar.
Es wird vermutet, dass die Riemannschen Flächen zur ersten Art dann und
nur dann gehören, wenn die Zahl der Endfolgen endlich oder abzählbar unendlich
ist. Bewiesen werden die folgenden Ergebnisse: Zerschneidet man eine Fläche
längs einer Verzweigungslinie, so zerfällt sie in zwei Teile A und B. Durch
Spiegelung an der Verzweigungslinie mögen Ä und B entstehen. Gehört dann A+Ä
zur zweiten Art, so auch A+B. Man kann annehmen, dass bei der Abbildung von
A+A die Hälfte von A in einen Halbkreis H übergeht, während A bei der
Abbildung von A+B in einen Bereich G übergeht. Die so gestiftete Abbildung
von H auf G ist auf den Randbögen von H regulär. Ein Weg auf A, der bei der
Abbildung von A + B in einen Weg übergeht, der in einem bestimmten von den
Halbkreisenden verschiedenen Peripheriepunkt endigt, behält diese Eigenschaft,
wenn statt B an A ein anderes Riemannsches Flächenstück der betrachteten
Bauart angefügt wird. Eine besondere Betrachtung gilt den Halbkreisenden. Sind
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A +Ä und B + B von der ersten Art, aber A + B von der zweiten Art, so besteht der

Häufungsbereich der Bildkurve von A und B aus der ganzen Peripherie des

Bildkreises.
In Nr. 24 betrachtet Speiser eine einfach zusammenhängende Riemannscne Mache,

die bei oo in allen Blättern logarithmisch verzweigt ist und die sonst nur an den

Stellen +1 logarithmische Windungspunkte aufweist. Kennt man die linearen

Substitutionen, die zu der durch diese Fläche bestimmten Untergruppe der modu-

laren Gruppe gehören, so lässt sich ein genaues Kriterium für den Typus der

Fläche aufstellen. Die Fläche wird nun längs einer Verbindungsgeraden zwischen

zwei Windungspunkten in die Hälften A und B zerlegt. Spiegelt man ähnlich wie

oben so erhält man die Halbflächen Ä und B. Wenn A+Ä und B + B

hyperbolisch sind (rein hyperbolischer Fall), dann ist auch A + B hyperbolisch. Wenn

dagegen A+Ä und B + B parabolisch sind und A + B trotzdem hyperbolisch

ausfällt, so spricht man vom gemischt hyperbolischen Typ. Speiser findet eine

Bedingung für den rein hyperbolischen Typ.

In Nr. 16 wird eine einfach zusammenhängende Riemannsche Fläche F betrachtet,

deren Windungspunkte über den Punkten w=0,l,co der w-Ebene liegen. Eine

notwendige und hinreichende Bedingung dafür, dass die Fläche F zum

hyperbolischen Typus gehört, besteht in der Konvergenz der Reihe £ l/(a + b + c +d),
erstreckt über alle unimodular geschriebenen Substitutionen z'={az + b)/(cz + d)

der zu F gehörenden Gruppe G.

Endlich beschreibt Nr. 37 die Gruppe der Abbildungen einer einfach zusammenhängenden

Fläche auf sich selbst und bestimmt die zu dieser Funktion gehörende

Riemannsche Fläche.

Mit der Zetafunktion befasst sich Speiser in der Arbeit Nr. 20. Für eine mero-

morphe Funktion w=f(z) mögen die wesentlich singulären Stellen der Umkehrfunktion

z=q>{u) an reellen Stellen der w-Ebene liegen. Dann liefern die <reellen>

Züge eine gute Übersicht über die Werteverteilung und damit über die

Riemannsche Fläche. Speisers Schüler A.A. Utzinger wendete diese <Methode der

reellen Züge> in seiner Dissertation (Die reellen Zweige der Zetafunktion, Zürich

1934) zur Untersuchung der Gamma- und der Zetafunktion an. Speiser betrachtet

die verwandte Etafunktion r,{z) r (2/2)tT^C(z). Über diese Eta- und Zeta-

funktionen werden geometrische Aussagen bewiesen, die mit der Riemannschen

Vermutung über die Nullstellen der Zetafunktion äquivalent sind. In beiden

Fällen handelt es sich um das Verhalten der reellen Züge in der Nähe der

kritischen Geraden. Die Behauptung, dass die Nullstellen der Ableitung der

Zetafunktion rechts von der kritischen Geraden oder auf ihr liegen, ist mit der

Riemannschen Vermutung äquivalent.

Gruppentheorie und Funktionentheorie werden in Nr. 28 verbunden. Zunächst wird

ein Ergebnis über zyklische Gruppen verallgemeinert auf die Darstellung abelscher

Gruppen und deren Charaktere. Dies ermöglicht sodann die Herleitung der

Funktionalgleichung der L-Funktionen mit relativ einfachen Mitteln.

In zwei Arbeiten ist Speiser auf das Gebiet der Geometrie vorgestossen, das ihn

später bei der Herausgabe von Eulers Werken so intensiv beschäftigen wird. In Nr. 7

bzw. 7a geben die berühmten Sätze von H. Poincaré und D. Birkhoff Anlass zur

Betrachtung geodätischer Linien auf geschlossenen konvexen Flächen. Es wird die
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Existenz unendlich vieler geschlossener Geodätischer auf gewissen Flächen bewiesen.

In Nr. 29 wendet sich Speiser der Himmelsmechanik zu. Die Gesamtheit der ebenen
Kepler-Bewegungen einschliesslich der Stossbewegungen ist einer stetigen stationären

Strömung im projektiven Raum homöomorph. Der Beweis erfolgt mittels der
Transformation z w2 und geeigneter Berührungstransformation, wodurch die
Kepler-Bewegung in die Simultanbewegung zweier harmonischer Oszillatoren
übergeführt wird.
Als einen Beitrag zur Feier des hundertsten Geburtstages von B. Riemann und
zugleich des Crelleschen Journals veröffentlichte Speiser (Sp. 11) in dessen
Jubiläumsband den Aufsatz <Naturphilosophische Untersuchungen von Euler und
Riemann>. Euler hatte im Rahmen der Newtonschen Raumauffassung einen
Versuch zur Erklärung der Gravitation unternommen, der jedoch noch gewisse
unbehobene Schwierigkeiten enthielt. Riemann hat in einem der <Fragmente
philosophischen Inhalts) eine Antwort auf eine der verbleibenden Fragen zu geben
versucht. Doch folgte er im übrigen keineswegs der Newton-Eulerschen Raumauffassung,

schliesst sich vielmehr mit Herbarth der von Leibniz an. Seine diesbezüglichen
Untersuchungen, denen er selbst grosses Gewicht beigemessen zu haben

scheint, stehen in engem Zusammenhang mit seinem Habilitationsvortrag.
Die Beschäftigung mit Euler ist das zweite Thema im Leben Speisers, auf das dritte,
die Philosophie, treten wir am Schluss ein. Die unter Ferdinand Rudio ins Leben
gerufene Herausgabe der gesammelten Werke von Leonhard Euler erlitt nach
einem hoffnungsvollen Beginn durch die Ereignisse des ersten Weltkrieges einen
schweren Schlag. Die Redaktion verlor Mitarbeiter, der Verlag Teubner geriet in
Schwierigkeiten, und in den zwanziger Jahren erlitt der Euler-Fonds schwere
finanzielle Verluste. 1919: Speiser trat in die Redaktion ein, und Fueter wurde deren
Präsident. Mit Hilfe des Orell-Füssli-Verlages gelang es, das Unternehmen
weiterzuführen. Bevor ich hierauf näher eintrete, mögen einige Arbeiten über Euler
erwähnt werden.
Im Aulavortrag Nr. 21 befasst sich Speiser mit <Euler und die deutsche Philosophie).
Zur Zeit Eulers war es in Deutschland die sogenannte Leibniz-Wolffsche Philosophie,

die das philosophische Denken beherrschte. Euler zeigte, dass diese nicht
imstande war, die Gesetze der mathematischen Physik zu begründen. Er stellte
hierauf die gedanklichen Grundlagen für die Herleitung der physikalischen Gesetze
auf. In seinen (Briefen an eine deutsche Prinzessin) legt er dies in meisterhafter
Weise dar. Speiser weist nach, welche Bedeutung sie auf Kant ausübten.
Im Atlantisband <Grosse Schweizer), der im Hinblick auf die Landesausstellung
herausgegeben wurde, gibt Speiser in Nr. 27 ein abgerundetes Lebensbild des
grossen Schweizers. Mit einem Holzschnitt zu vergleichen sind die kräftigen Sätze
«Es ist Euler vorbehalten gewesen, der Mathematik eine völlig veränderte Gestalt
zu geben und sie zu dem mächtigen Gebäude auszugestalten, welche sie heute ist».
Mit Nachdruck wird darauf verwiesen, wie Euler sich früh mit der Zahlentheorie
beschäftigte und sein ganzes Leben nicht davon gelassen hat. «Seine Entdeckungen
auf diesem Gebiete sind vielleicht das Schönste und Tiefste, was in der Mathematik
gefunden wurde», und wir fühlen bei diesen Worten das innere Mitschwingen von
Speiser. Nach der Beschreibung von Eulers Charakter und seiner Tätigkeit in
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Petersburg und Berlin schliesst Speiser mit dem Verhältnis von Euler zur Theologie,

er ist dem protestantischen Christentum sein Leben lang treu geblieben.

In Nr.26, dem Neujahrsblatt 1939 der Gesellschaft zur Beförderung des Guten und

Gemeinnützigen, gibt der Verfasser einen für weitere Kreise bestimmten Überblick

über Basels Mathematiker. Zur Zeit der Reformation tritt Glareanus als erster '

Mathematiker in Basel auf, aber erst mit den Bernoulli wird diese Stadt Mittelpunkt
der Mathematik. Jakob, gegen den Willen seines Vaters sich ganz dieser Wissenschaft

widmend, beherrschte als erster die mächtigen Hilfsmittel der Infinitesimalrechnung

und schuf zudem, fast aus dem Nichts, die Wahrscheinlichkeitsrechnung.

Nach seinem Tod (1705) wurde sein Bruder Johann Glanz und Mittelpunkt der

Basler Universität und Lehrer von ganz Europa. Speiser widmet diesem eine

spannende geisteswissenschaftliche Analyse. Johanns Sohn Daniel, Eulers Freund,

begründete die Hydrodynamik, seine wahre Bedeutung hat erst die neueste

Forschung aufgedeckt. Auf den letzten zehn Seiten begleiten wir Euler in seinen

Wirkungsstätten Petersburg und Berlin, wobei Speiser diesmal das Gewicht auf die

Bedeutung Eulers für die Philosophie und die Theologie legt.

Als Speiser in die Redaktion der Euler-Kommission eintrat, waren 14 Bände der

Opera omnia Leonhardi Euleri erschienen. Als Generalredaktor von 1928 bis 1965

brachte er 37 Bände heraus, 11 von ihm selbst redigiert. Bei allen wirkte sein Genius

mit, und sein Auge prüfte die Korrekturen. Für seine Verdienste dankte ihm die

Universität Bern am 23.November 1957 mit der Laudatio «Die

Philosophischnaturwissenschaftliche Fakultät verleiht die Würde eines Doktors honoris causa

Herrn Andreas Speiser, der die Publikation der Opera omnia Leonhard Eulers mit

Weitblick und Hingabe geleitet und damit die Ideen eines der grössten Gelehrten

aller Zeiten zu neuer Wirkung gebracht hat». Die Schweizerische Naturforschende

Gesellschaft ernannte ihn 1964 zum Ehrenmitglied «in Würdigung seiner langjährigen

Verdienste als Präsident der Euler-Kommission und der tatkräftigen Förderung

der Euler-Ausgabe».
Wir werfen einen Blick auf die einzelnen Bände und beabsichtigen, dem Leser einen

Hinweis auf eine Menge tiefer Bemerkungen des Herausgebers zu vermitteln, wir

verfahren chronologisch. In Band 1/16, 2, auf den Seiten XCVII-CV gibt Speiser

Erläuterungen zu Eulers Arbeiten über unendliche Produkte und Kettenbrüche.

Gleich zu Beginn finden wir des Herausgebers elegante Darstellung der Kettenbrüche

mittels Matrizenschreibweise. Die Lösung der Pellschen Gleichung und der

Riccatischen Gleichung bilden Anwendungen. Sodann wird die Umwandlung von

Reihen in Kettenbrüche, und umgekehrt, betrachtet.

Nachdem 1922 Adolf Krazer und Ferdinand Rudio den ersten Teil des grundlegenden

Werkes dntroductio in analysin infmitorum> (1748) herausgegeben hatten, ein

Werk, das «keinen Vorläufer hat», ediert in Band 1/9 Speiser den zweiten Teil und

bereichert ihn mit einer Vorrede von 26 Seiten, die die beiden Teile umfasst. «Wenn

diese Inhaltsübersicht einen Hauch von dem Geist dieses leichten mathematischen

Buches vermittelt und den Leser zur Lektüre anregt, so will ich froh sein.»

Auf den Seiten XXXIH-L (Band 1/10) gibt Speiser eine Übersicht über die von

G. Kowalewski 1913 edierten dnstitutiones calculi differentialis> (1755), die auf die

<Introductio> folgten. Von besonderem Interesse dürften die Ausführungen über die

Summation von Reihen und über die unendlich kleinen Grossen sein.
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Ein besonderes Denkmal setzte sich Speiser mit der Herausgabe der Geometriebände
1/26 bis 1/29. Zu Beginn dankt Speiser in 1/26 auf Seite VII im Jahre 1953 all

denen, die die Herausgabe stets wieder unterstützt haben: Firmen der Maschinen-
und Zementindustrie, chemische Fabriken, Versicherungsgesellschaften und Ban-

'ken sowie einzelnen besonders verdienstvollen Persönlichkeiten, die nicht nur
materiell, sondern auch in besonders verdienstvoller Weise das Werk moralisch
unterstützten.
Zum Inhalt: Besonders begeistert war Speiser stets von den Möndchen-Quadratu-
ren. Anschliessend finden wir Cramers Paradoxon der Kurven dritten Grades. Der
Bestimmung der Lage und der Grosse der Hauptachsen einer Ellipse, gegeben
durch zwei konjugierte Durchmesser, gilt Eulers weiteres Interesse. Wir schreiten
fort zur berühmten Eulerschen Polyederformel, welche die Grundlage der Topolo-
gie bildet, und der Einteilung der Polyeder nach Spezies. Es folgen Arbeiten zur
sphärischen Trigonometrie, zum Ähnlichkeitszentrum ebener Figuren und zum
Kreisproblem von Apollonius. In Band 1/27 finden wir erste Arbeiten Eulers zum
Problem der reziproken Trajektorien einer ebenen Kurvenschar. Auf dieses
Problem kommt Euler in 1/28 und 1/29 zurück. Wertvoll sind die Erläuterungen des
Herausgebers zu Fragen der Katoptrik, die auf Probleme der geodätischen Linien
auf Flächen führen. Mit Vergnügen wird man Speisers historische Bemerkungen zu
den Gradmessungen auf der Erdkugel lesen, eine wahre Tragikomödie unter den
Gelehrten des 18. Jahrhunderts.
Band 1/28 enthält die grundlegenden Arbeiten zur Kurven- und Flächentheorie, es
sind nach den Worten des Herausgebers keine ausgearbeiteten Darstellungen. Drei
Abhandlungen betreffen die Abbildung der Kugel auf die Erde und die Herstellung
von Landkarten. Euler findet dabei den schönen Satz, dass diejenigen Flächen, die
durch blosse Verbiegung ohne Verzerrung in die Ebene ausgebreitet werden
können, durch die Tangenten an eine Raumkurve bestimmt werden. Beachten wir
auch Speisers Ausführungen auf den Seiten XXXVI-XXXVII über das Zitieren
wissenschaftlicher Abhandlungen im 18. Jahrhundert, Bemerkungen, die sich jeder
Wissenschafter hinters Ohr schreiben darf.
In 1/29 beachten wir auf den Seiten VIII-X besonders Speisers Ausführungen zu
Eulers Beweis des Fundamentalsatzes der Algebra: Gauss hat in seiner Kritik den
gruppentheoretischen Gehalt des Beweises und das Wesen der analytischen Methode

Eulers nicht erfasst. In diesem Band ist die dritte Sektion der <Institutionum
Calculi Differentialis>, erst 1862 postum veröffentlicht, untergebracht. Der Herausgeber

weist insbesondere auf die Ausführungen in Kapitel I, § 8, hin, wo der Begriff
des Differentials erläutert wird, «eine Erläuterung, die wohl gänzlich Eulers Eigentum

ist und seitdem kaum mehr verstanden wurde». Wer möchte sich nicht hier von
Euler und Speiser eine Kostbarkeit entgehen lassen?
Band III/6 enthält die Arbeiten zur Optik, Speiser verweist auf Eulers Kontroverse
mit Dollond über die Achromasie, bemerkt aber, dass die historische Würdigung
von Eulers Arbeiten zur Optik noch ausstehen. Zum Glück wurde dies inzwischen
nachgeholt. Mehrmals haben wir mit Speiser im mathematisch-philosophischen
Seminar Teile aus den <Lettres à une Princesse d'Allemagno (1768) besprochen, die
Speiser in den Bänden 111/11 und 12, zusammen mit der Schrift (Rettung der
göttlichen Offenbarung), veröffentlichte. Der Band 111/12 enthält sodann auf den
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Seiten XII-XVII die schöne Ansprache, die Speiser an der Euler-Feier der

Schweizerischen Mathematischen Gesellschaft am 18. Mai 1957 hielt. Er spricht dabei den

Dank an alle Mitarbeiter der Euler-Edition aus und würdigt ihre hingebungsvolle

Mitarbeit.
Wahrhaftig, Speiser gelang es, geeignete Mitarbeiter zu finden und heranzubilden.

Unermüdlich warb er für seine Edition, er hatte den Schlüssel <Sesam öffne dich) in

den Händen, wenn er in Wort und Schrift die finanziellen Mittel für das Werk

sammelte. Dazu trug wesentlich die Ausstrahlung seiner Persönlichkeit und die

Unmittelbarkeit bei, mit der er geeignete Persönlichkeiten suchte und fand. Zudem

bemühte er sich, durch Gelegenheitsartikel in der Presse für seine Ideen zu werben

und scharte dadurch ein breites Leserpublikum um sich. Ich zähle im Literaturverzeichnis

28 mir bekanntgewordene Artikel auf. Es handelt sich teilweise um Rezensionen

neuerschienener Bücher. Speiser besass das Talent, im aufmunternden Ton

die positiven Seiten der besprochenen Werke hervorzuheben, gewisse Schwächen

wurden höchstens wohlwollend angedeutet, oft nur dem Kenner bemerkbar. Es ist

zu bedauern, dass diese Artikel bisher nicht gesammelt herausgegeben wurden, sie

enthalten viele Perlen von Speisers Gedanken und Formulierungen.

Eng verbunden mit der Euler-Edition ist die Herausgabe der Mathematischen

Werke von Johann Heinrich Lambert in den Jahren 1946 und 1948. Leider ist der

Wunsch Speisers, dieser Ausgabe möge diejenige der philosophischen Werke des

grossen Mülhausers folgen, bisher nicht in Erfüllung gegangen.
Bevor ich zur Besprechung von Speisers philosophischen Arbeiten übergehe, seien

zwei Gelegenheitsartikel erwähnt. Nirgends so sehr wie in diesen ungezwungenen
Äusserungen tritt die Persönlichkeit des Verfassers derart offen zutage. In der

Festschrift Nr. 10 (1926) zum 80. Geburtstag seines Vaters schreibt er erstmals über

den Zusammenhang seiner beiden Lieblingsgebiete. Für Speiser wirkt Mathematik,

ähnlich wie für Kepler die Planetenaspekte, direkt auf die Seele, indem diese die

Proportionen wahrnimmt, die in ihr liegen. Diese Proportionen weist Speiser in der

Analyse verschiedener Musikstücke nach. Er betont: «Die Wirkung dieser Formen

lässt sich nicht erklären, ebensowenig wie die Tatsache, dass gewisse Folgen von

mathematischen Schlüssen plötzlich eine tiefe Einsicht in ein mathematisches

Gebilde gewähren, während andere nur formal bleiben und gar nicht irgendwelchen

Geist aufnehmen wollen.» So umhüllt die Formenwelt der Musik und auch

der übrigen Künste eine Sphäre, nämlich die der Mathematik.

In Nr. 36 treten Züge zutage, die Speiser sonst höchstens in persönlichen Gesprächen

durchblicken Hess, und wie er gleich zu Beginn bemerkt, wollte er sich mit

diesem Beitrag zum 80. Geburtstag von Heinrich Wölfflin «einen guten Tag machen

und frei aussprechen, was man denkt». In der Tat, hier ergiesst sich Speisers Esprit

wie ein klarer, ungezähmter Wasserfall, sprudelnd in mathematischem Gehalt.

Zunächst, wie könnte es anders sein, begibt er sich in die (musikalische Mathematik)

und studiert Fugen wie eine mathematische Abhandlung. Die Verbindung mit

der Malerei wird über Heinrich Wölfflin hergestellt. Den Höhepunkt auf seinem

Wege erreicht Speiser wohl mit der Paraphrase eines Abschnittes aus Ecce homo

von Friedrich Nietzsche. Ihr zur Seite steht die Aufdeckung der Symmetrien in

einem Satz von Jacob Burckhardt. Wer hat je, vor oder nach Speiser, Sätze derart

ins Kaleidoskop gelegt und gespiegelt, ich frage, wer?
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Diese Analyse führt zu derjenigen eines Gemäldes von Caravaggio über und zeigt,
dass auch der grosse Basler Kunsthistoriker in solchen Gemälden Symmetrien
nachwies.

Speiser war von ungewöhnlicher Belesenheit. Sein Bestreben war, Gedanken durch
den Verlauf der Geschichte zu verfolgen und ihre Auswirkung darzustellen. Zudem
versuchte er, hiermit weiteren Kreisen die von ihm erarbeitete und ihm eigene
Gesamtschau der Welt unter mathematischem Aspekt darzulegen. In diesem
Bestreben veröffentlichte er einige Bücher, auf die wir nun zu sprechen kommen.
Deren Widmungen bedeuten Dankbarkeit für empfangene Anregungen und
Freundschaft.
1925 erschienen im Orell-Füssli-Verlag <Klassische Stücke der Mathematik>, Paul
Sarasin gewidmet. Sie geben durch die verbindenden Einführungstexte und durch
die Auswahl der Stücke bereits einen Einblick in Speisers Denken. So wird etwa das

Raumproblem aufgegriffen und von der Antike über Dante, Tiepolo, Helmholtz bis
zu Einstein und Hjelmslev verfolgt, ein wunderbar kühner Wurf, wie sich
W. Blaschke zu mir äusserte. Das Buch ist zum Vorläufer verschiedener Versuche
geworden, Mathematik breiteren Kreisen zugänglich zu machen. Speiser las wiederholt

die Vorlesung für Hörer aller Fakultäten. Der hochgelegene Hörsaal im Turm
hinderte die vielen Studierenden verschiedener Richtung nicht daran, diesen
einzigartigen Stunden beizuwohnen. Speiser, ein hervorragender Pianist, setzte sich
etwa ans Klavier und erklärte die Kompositionen der Klassiker Mozart, Beethoven
oder Verdi, aber im selben Zug auch diejenigen von Kinderliedern. Oder er Hess,

unterstützt von Lichtbildern, die Symmetrien der Ornamente aufleuchten. Aus
diesen Vorlesungen ist das Buch <Die mathematische Denkweise), Zürich 1932,
entstanden, das er seinem Schwager Raoul La Roche widmete. Der Glanz jener
Stunden ist darin, soweit dies möglich ist, festgehalten und bildet für alle, die diesen
Stunden beiwohnten, ein kostbares Juwel. Unter den Bögen am Limmatquai
erzählte er uns, wie er soeben im Oberdorf eine Druckerei für das Büchlein gefunden

hätte; es war damals nicht leicht, eine solche Schrift herauszugeben. Die zweite
Auflage erschien 1945 im Birkhäuser Verlag und ist um Bilder bereichert, die
Wolfgang Graeser 1928 auf einer gemeinsamen Ägyptenreise aufgenommen hat,
ferner um Goldschmiedrisse, für die sich insbesondere Walter Überwasser interessierte.

Den Schluss des Buches bildet die Aularede, die Speiser zum Gedenken des
dreihundertsten Todestages von Johannes Kepler 1930 gehalten hat. Auch Kepler
war eine Gestalt, der sein ungeteiltes Interesse galt; auch er hatte eine der platonischen

Denkweise verhaftete Weltsicht.
Um seine Ideen darzulegen, gründete Speiser zusammen mit Karl Dürr und Paul
Finsler das mathematisch-philosophische Seminar. Unter anderm wurde hier der
Kommentar des Proklos zu den Elementen von Euklid gelesen. Speiser inspirierte
hierdurch die Herausgabe der von Leander P. Schönberger stammenden deutschen
Übersetzung durch Max Steck. Erstmals mit Wolfgang Graeser gelesen, wurde
Piatons Dialog Parmenides durchgearbeitet. Als Frucht hiervon erschien 1937 <Ein
Parmenides-Kommentan, dem Andenken an Wolfgang Graeser gewidmet. 1959
erlebte das vielbeachtete Werk eine zweite Auflage, vermehrt um einen zweiten Teil
<Fichtes Wissenschaftslehre von 1804>. Den Kommentar zu dem so sehr umstrittenen

Dialog wollte Heinrich Scholz unter diejenigen Bücher eingereiht sehen, die in
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einer Geschichte der Mathematik der heutigen Zeit nicht fehlen dürfen. Hans-

Rudolf Schwyzer schreibt in seiner Besprechung in der Neuen Zürcher Zeitung:
«Jedenfalls sind die Philologen dem Mathematiker dankbar, dass er ihnen in einer

so hoffnungslosen Aporie beispringt. Denn hier kann bloss einer weiterkommen, der

in beiden Sätteln gerecht ist.» Und Willy Theiler sprach mit Anerkennung über die

auch philologisch treffenden Interpretationen.
Aus Anregungen, die noch in die Zürcher Zeit zurückgehen, ist das 1952 im Birk-

häuser Verlag erschienene Buch (Elemente der Philosophie und der Mathematik)

entstanden. Es ist dem Andenken an Rudolf Fueter gewidmet, «meinem bewährten

Freund, mit dem ich während 55 Semestern in Zürich zusammenarbeiten durfte

und dem ich unbegrenzte Dankbarkeit schulde». Der Titel <Elemente> ist mit
Bedacht nach dem Euklidischen Werk gewählt. Wie dort für die Geometrie, so

sollen hier für das Denken nicht absolute Gesetze hergeleitet werden, sondern es soll

eine Anleitung zum Forschen gegeben werden.

Ich habe im ersten Abschnitt versucht, Speisers mathematische Leistungen zu

würdigen, und habe dabei ausgeführt, dass er ein Pionier der heutigen modernen

Algebra ist. Das bedeutet, dass er abstraktes begriffliches Denken im höchsten

Grade beherrschte. Mit dieser Fähigkeit greift er in die Grundlagen der Philosophie

ein, wer ihm in diese Gebiete folgen will, muss jenes Denken beherrschen. Wenige

sind ihm daher in der Beurteilung seiner Analysen gerecht geworden. Als eine

Ausnahme möchte ich aus dem Nachruf von J.O. Fleckenstein zitieren: «Existen-

tieller Ernst ergriff Speiser erst, wenn es um die Grundlagen der (philosophischen

gleich mathematischen Erkenntnis) ging. Um die scheinbar spielerisch und absichtlich

paradox hingeworfenen Gedankensplitter hat er selber immer wieder gerungen:
Was als brillante Facette erschien, war nur eine der vielen Seiten eines lang bearbeiteten

Diamanten seiner platonischen Dialektik. Wir dürfen von Glück reden, dass

ein Basler Mathematiker sich um Plato bemühte; Speiser nahm es in Kauf, im

Niemandsland zwischen philosophischer und naturwissenschaftlicher Fakultät unter
das Kreuzfeuer von beiden Seiten zu geraten, denn er wusste, dass er unverwundbar

war.» Und weiter: «Das scheinbar Paradoxe der Speiserschen Diktion war die

Maskerade seiner genialen Intuition in die wirklichen Probleme der (Mathesis

Perennis). Immer ging es ihm um die Qualität, nie um die Quantität der Erkenntnisse

der Wissenschaft im Sinne Piatos.»

Dreizehn seiner teils unveröffentlichten Reden und Abhandlungen sind unter dem

Titel <Die geistige Arbeit) 1955 als Buch erschienen. Ganz besonders freute es den

Verfasser, dass der Verlag den Umschlag des Buches mit einer siebenfarbigen

Kreisfigur von Felix Klein schmückte.

Speiser erfreute sich einer zähen Gesundheit und einer grossen Arbeitskraft. Dies

kam ihm insbesondere während der Kriegsjahre zugute, die ihm eine starke

Belastung brachten. Finsler war zeitweise kränklich und Fueter viel im Militärdienst

abwesend, so dass die Hauptlast des mathematischen Unterrichtes auf Speisers

Schultern lag. Glücklicherweise frassen Verwaltung und Administration noch nicht

an den Kräften der Dozenten. Speiser verliess Zürich auf dem Höhepunkt seiner

Wirksamkeit, sein Denken wies vielen Schülern und Anhängern Wege. In Basel

fand er die nötige Ruhe, das Euler-Werk gewaltig zu fördern, er sah dem Abschluss

der drei ersten Serien entgegen.
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Menschen wie Speiser wirken in die Tiefe. Wir dürfen feststellen, dass er die Saat

aufgehen sah. Vieles aber harrt noch des Wachsens. Es liegt in der Natur des

Geistigen, dass oft eine oder mehrere Generationen das Erbe nicht nützen können,

spätere werden davon um so mehr zehren. Dies gilt auch für das Erbe von Speiser.
Noch hatte sich die Erde über seinem Grabe nicht gesenkt, als aus seiner Vaterstadt

zu vernehmen war: «Die Weissglut mathematischer Forschungsarbeit lag ihm
nicht» (NZZ, 21. Oktober 1970, Mittagsausgabe).

3. Paul Finsler wurde am 11. April 1894 als Sohn des Kaufmanns Julius Finsler

(1853-1905) und seiner Frau Elise-Luise, geborene Berrer (1872-1913), in
Heilbronn geboren. Er wuchs im Kreise einer Schwester und des Bruders Hans auf, der

als Photograph einen bedeutenden Namen erwarb. Die Familie Finsler, aus Stäfa

stammend, wurde 1538 in Zürich eingebürgert. Ein Urgrossvater von Paul, Hans

Jakob Finsler (1796-1863) verheiratete sich mit Louise Gessner, einer Enkelin von
Pfarrer Hans Caspar Lavater. Der Grossvater Jakob Georg Finsler (1826-1887),
verheiratet mit Susanne Amalie Ulrich, war Kaufmann im Meyershof.
Paul Finsler besuchte die Lateinschule in Urach und 1908-1912 das Realgymnasium

in Cannstatt, das er mit dem Zeugnis der Reife verliess. Nach einem Studienjahr

an der Technischen Hochschule in Stuttgart bezog er die Universität Göttingen
zum Studium der Mathematik. Im Frühjahr 1918 erwarb er dort den Doktorgrad
mit der Dissertation <Über Kurven und Flächen in allgemeinen Räumern, die er auf

Anregung von C. Carathéodory schrieb. Unter seinen Lehrern finden wir die

bedeutendsten Mathematiker jener Zeit, unter anderen E. Hecke, D. Hubert,
F. Klein, E. Landau, C. Runge. 1922 habilitierte sich Finsler an der Universität
Köln und wurde im Dezember 1926 mit Amtsantritt im April 1927 zum ausseror-
dentlichen Professor für angewandte Mathematik an der Universität seiner Vaterstadt

gewählt. Der Lehrauftrag umfasste 6-8 Semesterstunden, und zwar: in jedem
Semester eine vierstündige Vorlesung mit Übungen in darstellender Geometrie und

Vorlesungen in zwanglosem Turnus aus den übrigen Gebieten der Geometrie und
der angewandten Mathematik. Auf den Herbst 1944 wurde Finsler zum ordentlichen

Professor ernannt, mit einer Lehrverpflichtung von 8 bis 12 Vorlesungs- und

Übungsstunden, wovon jedes Semester eine vierstündige Vorlesung über Differential-

und Integralrechnung mit je einer Stunde Proseminar. Später übernahm er statt
dieser Vorlesung wieder diejenige in darstellender Geometrie. Im Frühjahr 1959 trat
er altershalber zurück, unter gleichzeitiger Ernennung zum Honorarprofessor. Eine

Reise nach dem Fernen Osten erfüllte hierauf seinen Wunsch, auch dort den

Sternenhimmel betrachten zu können. Die Teilnahme am mathematischen Leben in

Zürich, an Vorträgen und Seminarien zeigt sein fortdauerndes Interesse an der

Wissenschaft. War Finsler lange Zeit ein rüstiger Wanderer, der auf keinem

Seminarausflug fehlte, so untersagten ihm dies in späteren Jahren auftretende
Herzbeschwerden. Auf dem Gang zum Dies academicus am 29. April 1970, einem

schwülen Tag, erlag er kurz vor Erreichen der Universität einem Herzversagen.

Ausgehend von Ideen von Bernhard Riemann stellte Carathéodory Finsler die

Aufgabe, die Differentialgeometrie von Kurven und Flächen in Räumen Rn von
beliebig vielen Dimensionen n unter Zugrundelegung einer verallgemeinerten
Längenbestimmung, Metrik oder Massbestimmung zu untersuchen. Dabei wird



J. J. Burckhardt: Die Mathematik an der Universität Zürich 1916-1950 29

stets nur die Umgebung eines festen Punktes bzw. eines von P ausgehenden Linien-

elementes betrachtet. Mit der Bearbeitung dieser Frage eröffnete Finsler der

Forschung ein neues und überaus fruchtbares Gebiet.

Die Länge eines Kurvenstückes wird von Finsler als das Integral über eine im

wesentlichen willkürliche reelle Funktion definiert, die von den Koordinaten des

betrachteten Punktes P und ihren ersten Ableitungen nach der Bogenlänge abhängt.

Hiermit lässt sich eindeutig eine Kurventheorie sowie eine Theorie der Kurven und

Flächen in mehrdimensionalen Räumen aufbauen. Zum Teil erhält man dabei die

aus der klassischen Theorie der Kurven und Flächen bekannten Sätze, zum Teil

müssen diese modifiziert werden. Betrachten wir die Arbeit näher. Sie ist in drei

Abschnitte eingeteilt: A. Grundbegriffe (S. 10-51), B. Kurventheorie (S. 52-84),

C. Flächentheorie (S. 85-120).
A. Ein Punkt x=(xh...,xn) wird durch seine n Koordinaten in einem beliebigen

Koordinatensystem festgelegt, das man sich als cartesisches oder als krummliniges
vorstellen kann. Diese Punkte bilden den Rn, in ihm ist durch .x^x,(«!,...,mv)
ein v-dimensionaler Raum Rv (1 < v <; ri) festgelegt, der für v n - 1 als Hyperfläche,

für v 2 als Fläche und für v=l als Kurve bezeichnet wird. Jedem Punkt der

Kurve x=x(t) ist den Vektor x'=dx/dt zugeordnet. Alle von x ausgehenden

Vektoren erfüllen der Raum T„, diejenige Gerade von T„, die x1 enthält, heisst

Linienelement (von P ausgehend). Die Linienelemente zu P in einem R heissen

Tangentialraum. Wenn eine Kurve C einen R im Punkt P trifft, so kann sie auf

eine Kurve F in R projiziert werden. Dazu verbindet man die Punkte von C

mit denjenigen von R durch eine einparametrige Schar von Kurven C=T + pl.
Wichtig ist der Begriff der Berührung zweier Kurven C und f. Sie ist im Punkt

P von /z-ter Ordnung, wenn in diesem Punkt genau die ß ersten Ableitungen der

beiden Kurven nach dem Kurvenparameter übereinstimmen. Für dieses Berühren

werden sechs wichtige Sätze bewiesen, z.B.: «Wenn eine Kurve C auf Rv

projiziert wird, so berührt sie alle ihre Projektionen r1,f2,... von derselben

Ordnung.»
Nach dieser Vorbereitung kann die Bogenlänge einer Kurve x x(t) definiert

werden. Man bestimmt einen Parameter s, der die Bogenlänge genannt wird, so,

dassx'=(dx/ds) ¦ (ds/dt) wird.
Damit wird £ (dxjds)2 <p2 (x, jcO eine Funktion von x und x1, und Finsler definiert

Hiermit wird die Bogenlänge s(t)=^F(x,x')dt, wobei aus der Definition von

Finsler folgt: F(x,kx') kF(x,x>), und die Gleichung der Indikatrix lautet

F(x,X)=l.
Hiermit kann der Begriff der zu p transversalen Richtung q erklärt werden, dies

ist eine Verallgemeinerung des Senkrechtstehens. Die Extremalen des Variationsproblems

Ss=O sind die Integrale der Lagrangeschen Differentialgleichung und

treten an die Stelle der Geraden der gewöhnlichen Differentialgeometrie. An dieser

Stelle wird besonders deutlich, wie Finsler an die Dissertation seines Lehrers
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Carathéodory anknüpft (Über die diskontinuierlichen Lösungen in der Variationsrechnung,

1904, und Math. Ann. 62, 449-503, 1906) und auf deren Ergebnissen
aufbaut.
Wird die Kurve C auf die Kurve F transversal projiziert, so wird der Winkel <p

zwischen C und F im Punkt P folgendermassen erklärt: Man trage von P aus auf
C ein Stück a ab, seine Projektion auf F habe die Länge b. Dann sei cosq>

/
Ist C= C(t) und F F (t), so wird daraus

> lim [Tj0F(r,r')rfr/jF(C, C)*].

Im allgemeinen ist hierdurch der Winkel zwischen zwei Richtungen p und q von
der Reihenfolge der Schenkel abhängig. Finsler gibt die Bedingungen an, in
welchen Symmetrie besteht: Es muss F2=Q (V) eine quadratische Form sein.
Mittels des Winkels zwischen Vektoren kann in der üblichen Art derjenige zwischen
Ebenen definiert werden, ebenso das Senkrechtstehen von Vektoren auf Ebenen.
Hierbei ergibt sich der schöne Satz: Eine Normale / eines Raumes Rv ist
transversal zu v unabhängigen, unendlich benachbarten Richtungen in diesem Raum.

B. Mit obigen Begriffen lässt sich in der Umgebung eines Linienelementes ein~

deutig eine Kurventheorie entwickeln. Man geht von einer regulären Kurve C
aus, sie besitze im Punkt P die Richtung p. Berührt sie ihre Tangente in P nur
in erster Ordnung, so ist durch Kurve und Tangente die Schmiegungsebene T2
bestimmt. Die Extremalen, welche T2 in P berühren, bilden die Schmiegfläche S2-

So fortfahrend, erhält man Schmiegungsräume Tv und Schmiegflächen Sv. Besonders

reizvoll ist die Einführung der Kurvenkrümmung: Sei b die Länge eines
Kurvenstückes zwischen den Punkten 1 und 2 auf der Kurve C, s die Länge der
Sehne von 1 nach 2. Finsler definiert die Krümmung k von C in P, indem er
die Punkte 1 und 2 in den Punkt P zusammenrücken lässt und dort den Grenzwert
nimmt:

/ l^sk=J \im24
v r.

Diese Definition geht für die klassische Kurventheorie in den üblichen Ausdruck
über, indem Finsler zeigt, dass sie mit dem Grenzwert

k= lim —-
js=o As

übereinstimmt, wo A 5 der Winkel zwischen benachbarten Tangenten ist. Dies wird
für den zweidimensionalen Fall näher ausgeführt. Anschliessend werden auf zwei
Wegen die höheren Krümmungen einer Kurve eingeführt und diskutiert und die
natürliche Gleichung einer Kurve aufgestellt. Im Mittelpunkt der Kurventheorie
steht der Satz von der Eindeutigkeit: Bei geeigneten Anfangsbedingungen ist eine
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Kurve (in der Umgebung des Anfangspunktes) eindeutig bestimmt, wenn ihre

sämtlichen Krümmungen als Funktion der Bogenlänge vorgeschrieben sind.

C. Ebenso, wie in einem regulären n-dimensionalen Raum Rn auf jedem Linien-
element ein Vektor liegt und die Längenmessung bestimmt, ist dies auch in jedem
Rv der Fall (2<v<«). Ist die Fläche Rv durch n-v Gleichungen Gß(x) 0,

/?=l,2,...,n—v bestimmt, so ist die Länge einer auf ihr liegenden Kurve wie

früher bestimmt durch s=\\oF{x,x')dt, während die Extremalen in Rv als Lösungen
des Variationsproblems ö\F(x,x')dt 0 mit der Nebenbedingung Gß(x) 0 auftreten;

sie heissen geodätische Linien, die zugehörigen Krümmungen die geodätischen

Krümmungen. Jede Kurve, deren geodätische Krümmung identisch verschwindet,

ist geodätische Linie. Wie in der klassischen Flächentheorie gilt, dass die geodätischen

Linien mit denjenigen Flächenkurven identisch sind, deren Schmiegebenen

sämtlich die Fläche senkrecht schneiden. Ist C eine Flächenkurve und F ihre

geodätische Tangente, k die absolute und k die erste Krümmung im Berührungspunkt,

ferner y/ der Winkel zwischen den Schmiegebenen von C und von F,
dann gilt der Satz von Meusnier K2 k2cosys, und für die geodätische Krümmung
y gilt y2+ K2 k2.

Hierauf ist Finsler 1940 in der Arbeit Nr. 19 zurückgekommen. Definiert man
ferner als Asymptotenlinien einer Fläche diejenigen Kurven, deren Schmiegebenen
sämtlich die Fläche berühren, so ergibt sich aus dem Satz von Meusnier, dass

ihre Normalkrümmung verschwindet und dass ihre geodätische Krümmung gleich
ihrer absoluten Krümmung ist.
Ein folgender Abschnitt gilt den höheren Krümmungen. Sodann wird eine Hyper-
fläche G(x) 0 (Dimension n—l v) betrachtet, ihre Extremalen im Punkt P

bilden die Tangentenfläche !"„_,. Durch Betrachtung der Parallelfläche G(x) h

und ihres Schnittes mit Tn_\ gelingt es, darauf einen (n-2)-dimensionalen Raum

zu definieren, welcher die Dupinsche Indikatrix der gegebenen Fläche heisst. Ist

speziell F2 eine quadratische Form, so ist jene ein algebraisches Gebilde zweiter

Ordnung. Ihre Achsen liefern dabei die Hauptkrümmungsrichtungen. Für den

zweidimensionalen Fall werden die Krümmung von Gauss, die in der klassischen

Theorie das Produkt der Hauptkrümmungen ist, und die mittlere Krümmung M
eingeführt.
In der allgemeinen Geometrie muss man zwischen der äusseren Krümmung K,
die Finsler die Krümmung nach Gauss nennt, und der inneren Krümmung Kt
unterscheiden. Ist F2 eine quadratische Form, so wird K=-\/rlr2 und

M=(\/rl + l/V2)/2, wo \jrx und l/r2 die Hauptkrümmungen sind.

Um die innere Krümmung Kt im Punkt P zu erhalten, betrachtet man eine

Extremale durch P und ihre Parallelkurven. Eine zweite Extremale durch P

schneide diese unter dem Winkel y/. Kt wird als der negative Grenzwert

lim =0(l/y/)(d2if//ds2) definiert und stimmt mit einer Invarianten bei einem

Extremalproblem überein. Die Torsion oder die zweite Krümmung k2 einer Kurve
ist der Grenzwert \imAs=o(A02/As),wobei 02 der Winkel zwischen benachbarten

Schmiegebenen ist. Die Torsion der geodätischen Linien wird sowohl durch die

Ableitung der Normalkrümmung ausgedrückt als auch durch die Flächenkrümmungen

k, M und K. Ist F2 eine quadratische Form, so verschwindet die Torsion
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der geodätischen Linien für die Hauptkrümmungsrichtungen oder, anders
ausgedrückt: Die Torsion der geodätischen Tangente einer Krümmungslinie verschwindet

im Berührungspunkt.
Jede geodätische Krümmungslinie ist eben, und jede ebene geodätische Linie ist
Krümmungslinie oder Extremale. Für die Asymptotenlinien gilt, dass das Quadrat
ihrer Torsion gleich der negativen Gaußschen Krümmung der Fläche ist. Zum
Abschluss der Arbeit werden die abwickelbaren Flächen betrachtet. Diese definiert
Finsler als solche, die eine Schar von Asymptotenlinien tragen, deren Gaußsche
Krümmung K identisch verschwindet, sie heissen naturgemäss die Erzeugenden
der Fläche. Allerdings verliert die Bezeichnung <abwickelbar> ihre ursprüngliche
Bedeutung. In der euklidischen Geometrie sind die abwickelbaren Flächen zugleich
Regelflächen. In der Finslerschen Geometrie sind dagegen die abwickelbaren
Flächen keine Regelflächen. Ihre Erzeugenden sind ebene Kurven, deren Krümmung

angegeben wird. Die Tangenten der Erzeugenden berühren die Fläche in
mindestens dritter Ordnung.
Die Dissertation ist ausserordentlich klar geschrieben, Finsler ist 1940 in zwei
Abhandlungen darauf zurückgekommen. In Nr. 19 <Über eine Verallgemeinerung
des Satzes von Meusnieo verallgemeinert er ein in der Dissertation aufgestelltes
Ergebnis. Er lässt die dortige Bedingung, wonach der v-dimensionale Schmiegraum
zur Fläche normal steht, fallen und erhält ein entsprechendes Resultat. Die Arbeit
Nr. 20 vermittelt einen kurzen Überblick über die Dissertation und ist als eine erste
Lektüre zu empfehlen. Die Einleitung und Problemstellung erinnert an die
Betrachtungen von Grassmann und von Riemann. Als Ziel seiner eigenen
Untersuchungen wird angegeben, die Begriffe von Windung und Torsion einer Kurve
auf Räume beliebiger Dimension und Massbestimmung auszudehnen. Entsprechend

wäre die Flächentheorie zu behandeln. Im zweiten Paragraphen wird in
solchen Räumen die Krümmung definiert wie in der Dissertation auf Seite 59 und
die Länge eines Bogenstückes als Integral über F{x,x!) eingeführt (Dissertation
S. 33). Die Differenz zwischen Sehne und Bogen wird dann das Integral über
die Weierstraßsche 2?-Funktion (Dissertation S.61). Im dritten Paragraphen wird
die Winkelmessung zwischen Kurven und zwischen Flächenelementen ausgeführt.
Paragraph 4 behandelt die erste und die höheren Krümmungen kx,,..,kv einer Kurve,

wobei deren Produkt klk2---kv gleich der v-ten Ableitung des Winkels ist, den
die Projektion der Kurve auf die v-dimensionale Schmiegebene mit der sie treffenden

Feldlinien bildet.
In Paragraph 5 wird die erste Krümmung einer Fläche und insbesondere der
Satz von Meusnier behandelt, während Paragraph 6 die höheren Krümmungen
einführt.
In Paragraph 7 wird, neu gegenüber der Dissertation, die Frage aufgeworfen, ob
es natürliche Gleichungen einer Fläche gibt, analog zu den natürlichen Gleichungen

einer Kurve. Man stellt sich also die Frage, ob ein Flächenstück bestimmt
ist durch die Normalkrümmungen, die etwa längs einer Schar von geodätischen
Linien als Funktion der Bogenlänge gegeben sind. Finsler weist darauf hin, dass

die Frage in Sonderfällen von seinem Schüler S. Grünbaum in desspn Dissertation

bejahend beantwortet ist.
Im abschliessenden Paragraphen bespricht Finsler das Verhältnis seiner geometri-
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sehen mit den inzwischen sehr erfolgreich eingesetzten analytischen Methoden

des Differentialkalküls. Es stellt sich dabei die Frage, was unter geometrischer

Methode zu verstehen ist. Finsler denkt dabei etwa an ähnliche Unterschiede,

die zwischen analytischer und synthetischer Geometrie bestehen.

Finsler eröffnete mit seiner Dissertation der Geometrie ein neues Forschungsgebiet.

Zunächst verbreiteten sich seine Gedanken nur langsam, dies ist wohl dem

Umstand zuzuschreiben, dass die Dissertation als Privatdruck nur eine beschränkte

Verbreitung fand. Erstmals sehe ich die Bezeichnung <general (Finsler) space>

im Jahre 1927. Durch das Buch <Les espaces de Finslen von Elie Cartan bürgerte
sich ab 1934 die Bezeichnung ein, und die Ideen fanden weltweite Anerkennung.
1951 gab sodann der Birkhäuser Verlag einen anastatischen Nachdruck heraus.

Wie weltberühmt Finsler war, zeigt eine kleine Anekdote: Ich hatte einst zwei

japanische Mathematiker durch das Institut zu begleiten. Wir kamen zur Türe des

Dozentenzimmers im dritten Stock der Universität. Bevor ich öffnete, bemerkte

ich zu den Besuchern, dass ich sie Paul Finsler vorstellen werde. Die beiden

erstarrten und sagten: «Finsler lebt?!» Es war, als hätte ich ihnen gesagt, sie

würden Euklid sehen.

Finsler beschäftigte sich ausführlich mit Fragen der algebraischen Geometrie und

legte seine Ergebnisse in den Arbeiten Nrn. 5, 6, 9, 11, 12, 16, 17, 18 und 21 dar.

1927 erschien die erste Ankündigung, 1929 in Nr. 9 ein erster Teil. Darin geht

Finsler von einer aus der Variationsrechnung entspringenden Frage aus: Unter

welchen Bedingungen enthält eine mehrparametrige lineare Schar von quadratischen

Formen eine definite Form? Diese Frage führt zur Untersuchung einer

bestimmten Klasse von algebraischen Gebilden, insbesondere der später untef^

suchten Freigebilde. Ein algebraisches Gebilde ist eine Menge von Punkten im

n-dimensionalen projektiven Raum Rn, deren Koordinaten xo:xx: ¦¦¦:x„ einem

System von homogenen algebraischen Gleichungen genügen. Es werden die

Begriffe der Vereinigung G+H und des Durchschnittes GH zweier Gebilde

definiert. Wichtig ist, wie Finsler die Reduzibilität definiert: G heisst reduzibel,

wenn es als Vereinigung zweier algebraischer Gebilde A und B dargestellt werden

kann, von denen keines mit G identisch ist: G=A + B. Anderenfalls heisst G irredu-

zibel. Nach der Einführung der linearen Gebilde wird mittels Betrachtung der

Schnittpunktzahlen, das heisst auf geometrischem Weg, die Ordnung eines Gebildes

eingeführt. Abschliessend beweist Finsler den Satz, dass ein algebraisches Gebilde G

reduzibel ist, wenn ein anderes Gebilde A derselben Dimension in ihm enthalten

ist. Dabei wird die Dimension folgendermassen eingeführt: Ein linearer Raum Lv

wird von linearen homogenen Gleichungen dargestellt, seine Dimension v ist um

eins geringer als die grösste Anzahl linear unabhängiger Punkte, die man beliebig

in ihm wählen kann. G=GV heisst v-dimensional, wenn es einen L„_v^1, aber

keinen L„_v gibt, der Gv nicht trifft. Die Dimension eines Gebildes ist von der

Dimension des umgebenden Raumes unabhängig.
Die Arbeiten Nrn. 11, 12, 16, 17, 18 und 21 handeln insbesondere von den

Freigebilden und Freisystemen. B.L. van der Waerden hat sie im Zentralblatt für
Mathematik (Zbl.) referiert und mir freundlichst erlaubt, seine Besprechungen im

folgenden wiederzugeben, wofür ich ihm auch hier bestens danke.

Nr. 11 (Zbl. 16, S.221): «Ein algebraisches Gebilde im komplexen projektiven
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Raum heisst Freigebilde, wenn es von jedem linearen Raum entweder in unendlich

vielen Punkten (d.h. in ganzen Kurven oder Flächen) oder in endlich vielen
linear unabhängigen Punkten geschnitten wird. Aufgrund einiger allgemeiner Sätze
über Freigebilde werden alle Freigebilde des dreidimensionalen Raumes L3
aufgezählt. Es sind quadratische Flächen und kubische Raumkurven sowie einige aus
Punkten, Geraden, Kegelschnitten und Ebenen zusammengesetzte Gebilde. Ist eine
Fläche 2. Grades Qa mit reeller Gleichung in L3 gegeben und ganz auf der einen
Seite von Qa ein reelles Freigebilde F, das nicht mit dem ganzen Raum zusammenfällt,

so gibt es eine Fläche 2. Grades Qb, die F enthält und Qa im Reellen nicht
trifft. Hat F Punkte mit Qa gemeinsam, aber im übrigen nur Punkte auf der
einen Seite von Qa, so gibt es auch eine Fläche 2. Grades Qb, die F enthält und
Qa nicht durchsetzt. Ist ein algebraisches Gebilde G in L3 im Reellen nicht
Freigebilde, so gibt es eine Fläche 2. Grades Qa derart, dass G auf der einen
Seite von Qa liegt, aber dass jede Fläche 2. Grades Qb, welche G enthält, Qa
trifft.»
Nr. 12 (Zbl. 16, S. 199): «In einer zweigliedrigen Schar von reellen quadratischen
Formen Qa + À Qb in n+ 1 Veränderlichen gibt es dann und nur dann eine definite
Form, wenn die Form Qa für die reellen Nullstellen von Qb stets positiv oder
stets negativ ist. Eine semidefinite Form gibt es in der Schar, wenn Qa für die
reellen Nullstellen von Qb stets 2:0 oder stets <0 ist. Sind Tj^jQj sämtliche
quadratische Formen in n+l<4 Veränderlichen, die auf einem festen reellen
Freigebilde G (siehe Nr. 11) Null werden, und ist Qa eine reelle Form, welche
für die reellen Punkte von G nur positive Werte (bzw. nur Werte > 0) annimmt,
so enthält die Schar ßa +X^ß/ eine positiv definite (bzw. halbdefmite) Form.
Wenn dagegen die gemeinsamen Punkte der Nullstellen der Formen Qj ein Gebilde
G ergeben, das im Reellen nicht Freigebilde ist, so kann man eine Form Qa finden,
die auf G nur positive Werte annimmt, jedoch so, dass die Schar Qa + Yj^jQj nur
definite Formen enthält.»
Nr. 16 (Zbl. 19, S.325): «In dieser Arbeit werden alle Freigebilde des «-dimensiona-
len Raumes, die aus endlich vielen linearen Räumen zusammengesetzt sind,
aufgestellt.»
Nr. 17 (Zbl. 22, S.78): «Ein aus linearen Räumen bestehendes Freigebilde heisst
Freisystem. Es werden nun alle Freisysteme im sechsdimensionalen Raum S6
vollständig aufgezählt, ebenso die eindimensionalen und die irreduziblen Freigebilde
im S6.»
Nr. 18 (Zbl. 23, S. 160): «Es wird eine Konstruktionsvorschrift gegeben, durch die
man alle eindimensionalen Freigebilde erhält. Ein irreduzibles eindimensionales
Freigebilde ist eine rationale Normalkurve C des Raumes L Ein zusammenhängendes

eindimensionales Freigebilde besteht aus r solchen Kurven G"',...,O,
die sich in höchstens r— 1 Punkten treffen und so liegen, dass der zugehörige
Raum die Dimension Yußi nat- Durch Zusammensetzung solcher zusammenhängender

Gebilde in Räumen freier Lage erhält man alle eindimensionalen
Freigebilde.»

Nr. 21 (Zbl. 28, S.303): «Die wichtigsten Sätze aus der Arbeit des Verfassers
über eindimensionale Freigebilde (Nr. 18) werden auf reelle Freigebilde übertragen.
Dabei heisst ein Freigebilde reell, wenn es mit dem konjugiert komplexen zusam-
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menfällt und seine reellen Punkte nicht in einem Raum geringerer Dimension

enthalten sind als die komplexen. Sodann wird bewiesen: Wird ein zum Raum

L gehöriges Freigebilde G von einer Hyperfläche 2.Grades in p+l linear

unabhängigen reellen Punkten getroffen und nicht durchsetzt, so ist es ganz in ihr
enthalten. Der wichtigste Hilfssatz heisst: Jeder nichtreelle Punkt eines reellen

Freigebildes G gehört einer in G enthaltenen reellen Freikurve an.»

Finslers Lehrauftrag umfasste die angewandte Mathematik und die Geometrie.

Zur Belebung der darstellenden Geometrie liess er verschiedene Modelle

anfertigen. Für die angewandte Mathematik schaffte er eine Rechenmaschine an

sowie ausgedehnte Primzahltabellen. Er hatte Freude am Experimentieren mit

Zahlen und der Beschäftigung mit Figuren. Davon zeugen die Arbeiten Nrn. 13,

14, 23, 24, 25, 26, 33 und 34. In Nr. 13 untersucht er teils ältere

Näherungskonstruktionen, teils neue und eigene. Er behandelt a) die Würfelverdoppelung,

b) die Konstruktion der Seite des regulären 7-, 9-, 11- und 13-Ecks, c) die

Näherungskonstruktion von Umfang und Fläche des Kreises, d) die Dreiteilung
eines Winkels und verallgemeinert dies auf die Teilung in n Teile. Besondere

Sorgfalt widmet Finsler dabei der Bestimmung des auftretenden Fehlers. Im Anhang

gibt er eine reizvolle Konstruktion einer bestimmten Ellipsentangente. Diese ist

so gelegen, dass sie sich zwischen den beiden Krümmungskreisen in den Scheiteln

befindet. Zusammen mit diesen erlaubt sie, die Ellipse mit guter Genauigkeit zu

zeichnen, und hat sich in den Übungen zur darstellenden Geometrie stets bewährt.

In der späteren Arbeit Nr.33 wird In durch 3 + VW/3 angenährt. Ferner schlägt

der Autor eine Approximation von n vor, mit einem Fehler von etwa 2,3 ¦ 10~9.

Verschiedene bekannte Approximationen werden diskutiert und eine bereits in
Nr. 13 vorgeschlagene neue Konstruktion für den Kreisumfang vereinfacht. Ein

Zusatz zu ihr liefert eine relative Genauigkeit, die kleiner als ein Milliardstel

ist. Finsler zeigt insbesondere, wie sich seine Konstruktion zum Zeichnen in einer

Gitterebene eignet, ausserdem stellt er Vergleiche mit den Näherungen anderer

Geometer an.

Finsler hat sich eingehend mit der Wahrscheinlichkeitsrechnung befasst. Seine klare

und tief durchdachte Vorlesung hierüber hat viele Studierende in dieses Gebiet

eingeführt. In der Arbeit Nr. 26 geht er von den Schwierigkeiten aus, die der

klassischen sowie der Limesdefinition der Wahrscheinlichkeit anhaften. Sodann

stellt er eine einfache axiomatische Begründung auf. Die Arbeit verdient auch

heute noch Beachtung, obschon Finsler bereits vorhandene Darstellungen in

derselben Richtung nicht berücksichtigt hat. Einen weiteren Beitrag zur

Wahrscheinlichkeitsrechnung liefern die Nrn. 24 und 34. In einer Poisson-Verteilung

mit dem Parameter Ô wird die Wahrscheinlichkeit w(ô,t,T) dafür berechnet, dass

das Zeitintervall T mindestens ein Intervall t mit 0<t< T enthält, in welches kein

Ereignis fällt.
In Nr. 23 gibt Finsler einen einfachen Beweis für das Postulat von Bertrand,

wonach zwischen n und In stets wenigstens eine Primzahl liegt. Der Beweis

beruht darauf, dass der Quotient von (2n)! und (nlnl) vollständig in
Primfaktoren zerlegt wird. Dieses Verfahren ermöglichte ihm gleichzeitig, für die Anzahl
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der Primzahlen zwischen n und In eine obere und eine untere Grenze
anzugeben.

In Nr. 25 zeigt sich einmal mehr Finslers Liebe zur elementaren Zahlentheorie.
In einem ersten Abschnitt werden mit der ihm eigenen Gründlichkeit die
Teilbarkeitsregeln durch die Zahlen 7, 11 und 13 behandelt. Sodann wird erläutert,
wie man mit Hilfe des Rechenschiebers das Produkt 1 • n=p ¦ q zerlegen kann. Die
Zunge des Schiebers wird herausgezogen und umgekehrt eingefügt, so dass die
Skalen entgegengesetzt laufen. Gegenüberliegende Zahlen haben dann ein konstantes

Produkt; steht 1 der Zahl n gegenüber, so p der Zahl q. Hiermit und mit
einigen Hilfstafeln wird unter anderem 10000007 941 • 10 627 zerlegt, während
100000007 sich als Primzahl erweist.
In einer kurzen Notiz in (Courrier du Sphinx> 7 (1937) berichtet Finsler, dass
er Anno 1934 durch eine direkte Methode, ohne die Bestimmung der quadratischen
Reste, fünf Primzahlen gefunden habe, z.B. 1308 636 140501.
In der Arbeit Nr. 14 werden einem Dreieck D über seinen Seiten nach aussen
bzw. nach innen gleichseitige Aufsatzdreiecke angelegt, man erhält eine nach
Torricelli benannte Figur. Die Schwerpunkte der angelegten Dreiecke bilden gleichseitige

Dreiecke D{ bzw. D2. Die zwischen deren Flächen F, Ft und F2 und
deren quadratischen Umfangen bestehenden Gleichungen und Ungleichungen
werden bewiesen. Anschliessend wird eine Verallgemeinerung betrachtet, in welcher
die aufgesetzten Dreiecke zueinander ähnlich sind. Auch hier gilt Fl-F2 F.
Dx und D2 sind dann zu den Aufsatzdreiecken ähnlich. Der Schwerpunkt von D
liegt in der Mitte zwischen demjenigen von Dl und D2; sind diese gleichseitig,
so fallen die drei Schwerpunkte zusammen. Ferner haben Dx und D2 denselben
Höhenschnittpunkt. Mittels des Begriffes des Spiegelpunktes eines Dreiecks werden
Sätze über die elf Spiegelpunkte eines solchen hergeleitet. Die Arbeit zeigt einmal
mehr, wie reich an neuen Beziehungen die elementare Dreiecksgeometrie ist.
Mit der Arbeit Nr. 27 betritt Finsler ein schwieriges Gebiet der Arithmetik. Es
handelt sich um Forschungen, welche die Zahlen der-höheren Zahlenklassen und
ihre Operationen betreffen. Ist co die erste auf die Reihe der natürlichen Zahlen
folgende Ordnungszahl, so kann man für sie die Addition co + co, die Multiplikation
co ¦ co und das Potenzieren einführen. Finsler beschäftigt sich mit dem Problem,
die auf das Potenzieren cow nächstfolgende Operation zu definieren. Dadurch
betritt er das Gebiet der Limeszahlen der zweiten Zahlklasse. Ein Ergebnis seiner
Untersuchungen besteht darin, dass er jeder Zahl der ersten und der zweiten
Zahlklasse eine <Hauptdarstellung> zuordnen kann. Sein Schüler H. Bachmann hat
die Ansätze weiter verfolgt und mit den Methoden von O. Veblen verglichen
(Comment. Math. Helv. 26, 55-67,1952).
In der seinem Kollegen B.L. van der Waerden gewidmeten Arbeit Nr. 35 führt
Finsler den Begriff der totalendlichen Menge ein. Er betrachtet zu diesem Zweck
nur reine Mengen, d. h. solche Mengen, deren Elemente stets wieder reine Mengen
sind. Zum Beispiel können die natürlichen Zahlen als solch reine Mengen aufgefasst
werden; wir haben es daher mit einer sinngemässen Verallgemeinerung dieser zu
tun. Über den Begriff der Stufenzahl gelangt man zu den totalendlichen Mengen,
das sind solche mit endlicher Stufenzahl. Wie die natürlichen Zahlen auf eine
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Punktreihe abgebildet werden können, vermag man den verallgemeinerten Zahlen

Figuren zuzuordnen, die aus Punkten und Strecken bestehen. Bedeutsam ist, dass

sie eine jeweilen assoziative Addition und Multiplikation besitzen, die jedoch nicht

kommutativ zu sein braucht. Es gelingt ferner, den Begriff der Primzahl einzuführen.

Das schwierige, von Finsler aufgeworfene Problem nach der Eindeutigkeit der

Primfaktorzerlegung wurde von G. Mazzola gelöst (Der Satz von der Zerlegung
Finslerscher Zahlen in Primfaktoren. Math. Ann. 195, 227-244, 1972). In der

folgenden Arbeit Nr. 37 zeigt Finsler, dass für seine verallgemeinerten Zahlen die

Vermutung von Goldbach falsch ist.

Paul Finsler widmete einen beträchtlichen Teil seiner Arbeitskraft der Frage nach

den Grundlagen der Mathematik. Anfang unseres Jahrhunderts erlangten solche

Überlegungen deshalb eine besondere Beachtung, weil gewisse Antinomien der

Mengenlehre Zweifel daran aufkommen Hessen, ob mathematisches Schliessen stets

zu eindeutigen Ergebnissen führe. Durch die Schriften bedeutender Forscher jener

Zeit, unter anderen D. Hubert, L.J. Brouwer, H. Weyl, wurden die Fragen in den

Mittelpunkt der Auseinandersetzungen von Mathematikern und Philosophen
gestellt, Diskussionen, die oft mit Härte und Verbissenheit geführt wurden. Finsler

griff in diese Auseinandersetzungen ein mit seiner Antrittsrede Nr. 2 <Gibt es

Widersprüche in der Mathematik?), gehalten 1923 in Köln. In dieser Rede umriss er

ein Programm, das er in den Arbeiten Nrn. 3, 4, 7, 8, 10, 15, 22, 30, 31 und 36

ausführte und vervollständigte. Ich möchte mich kurz an die Ausführungen der

Antrittsrede halten, um eine Skizze von Finslers Gedanken darzulegen. Die Frage:

«Gibt es unlösbare Widersprüche im exakten Denken?», oder anders ausgedrückt:

«Ist jeder Satz entweder richtig oder falsch?», oder nochmals anders gewendet:

«Kann man einen Satz zugleich mit seinem Gegenteil beweisen?» bildet den

Ausgangspunkt. Diese Fragen sind in gewissen Antinomien begründet, von denen

Finsler insbesondere zwei anführt:

1. Welches ist die kleinste natürliche Zahl, die nicht mit weniger als 100 Silben in
deutscher Sprache definiert werden kann? Vor allem: Gibt es eine solche Zahl?

2. Man bilde die Menge aller sich nicht selbst enthaltenden Mengen. Enthält sich

diese selbst oder enthält sie sich nicht selbst?

Lösungsversuche dieser Fragen von D. Hubert, H. Poincaré, B. Russell, J. König,
L.J. Brouwer werden von Finsler nicht anerkannt. Er stellt sich die Aufgabe, die

entstehenden Widersprüche aufzuklären und daraufhin zu lösen.

Um zu diesem Ziel zu gelangen, gibt er ein neues Problem:

Schreibe auf die Tafel die Zahlen 1, 2, 3 und den Satz: «Die kleinste natürliche

Zahl, die nicht auf der Tafel angegeben ist.»

Frage: Gibt es eine solche Zahl?

Mit dieser Antinomie zeigte uns Finsler den prinzipiellen Unterschied zwischen

Schreiben und Sprechen, formalisierten Aussagen und Denken. Er ist damit, wie

B.L. van der Waerden in seinem Nachruf betont, ein Vorläufer von Kurt Gödel

geworden. Sprache, als Medium des Denkens und zugleich Gegenstand des Denkens;

Denken nur zu vermitteln, soweit gesprochen werden kann, diese Antinomie

in aller menschlichen Erkenntnis und ihrer Mitteilung liegt der fruchtbaren, bis

heute nicht beendigten Auseinandersetzung jener Zeit zugrunde. Auch die berühm-
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ten (Entretiens de Zürich> von 1938 zeigten nur Trennung, konnten keine Lösung
oder Verständigung bringen; die Zeit liess die Auseinandersetzungen zur Vergangenheit

werden. Eine ausführliche Rechtfertigung seines Standpunktes, die Finsler
1964 veröffentlichte, fand kaum Beachtung. War alles vergeblich? Ich glaube nicht.
Vor allem waren es die folgenden Gedanken Finslers, die Beachtung fanden:
1. Finsler betrachtet nicht irgendwelche Zusammenfassungen als Mengen, sondern
nur solche, deren Elemente stets wieder Mengen sind. Dies hat sich als fruchtbar
erwiesen. 2. Es ist nicht selbstverständlich, ob ein System von Mengen wieder eine
Menge bildet. Man muss zwischen den beiden Begriffen unterscheiden. 3. Finslers
Begriff der zirkelhaften Definitionen stellt einen fruchtbaren Ansatz zur Untersuchung

logischer Beziehungen dar. Ich hatte versucht, Finslers Gedanken in zwei
Arbeiten verständlich darzustellen (Zur Neubegründung der Mengenlehre. Jber,
Deutsch. Math.-Verein. 48, 146-165, 1938, und 49, 146-155, 1939). Der Erfolg blieb
aus.
Für Finsler waren obige Auseinandersetzungen ein zentrales Problem. Widersprüche

in seiner Wissenschaft wären für ihn unerträglich gewesen. Und wie könnten
solche entstehen? Seine Antwort war: «Widersprüche entstehen, indem man sich
selbst widerspricht.» Auf meine Frage, ob er dies begründen könne, blieb er mir die
Antwort schuldig. Finsler glaubte an die Richtigkeit menschlichen Denkens und die
Möglichkeit der sprachlichen Verständigung; die Problematik, die hierin liegt, sah
er nicht, sie lag ausserhalb seines Daseins. Ich komme unten nochmals auf sein
Weltbild zu sprechen.
Finsler war, obwohl eher sensibler Natur, ein zäher Denker, wie die Auseinandersetzung

mit den Grundlagen der Mathematik zeigte, die sich über sein ganzes Leben
hin erstreckte. Er war sensibel, indem der Widerstand gegen seine Ansichten seine
geistige und physische Gesundheit stark angegriffen haben. Ich erinnere mich gut:
Er trug etwa 1927 seine Ansichten im mathematischen Kolloquium in Zürich vor. Sie
wurden von H. Weyl in der anschliessenden Diskussion nach Strich und Faden
zerzaust. Finsler musste daraufhin wegen Krankheit für zwei Jahre beurlaubt
werden.
Nach Abschluss obiger Ausführungen erhalte ich das Buch (Inhaltliches Denken
und formale Systeme) von Bernardo J. Gut (Verlag Rolf Kugler, Oberwil bei Zug,
1979) zugestellt. Darin wird, nach langer Pause, das Problem (Denken - Sprechen)
neu in ganzer Breite aufgerollt. Ausführlich werden Finslers Ansichten in ihren
verschiedenen Fassungen sowie seine Auseinandersetzungen mit den Kritikern
dargelegt. Durch das gründliche Studium der Originalabhandlungen liefert uns
B. Gut einen wertvollen Beitrag zur angemessenen Beurteilung von Finslers
Gedankengut und dessen Bedeutung für die Grundlagenforschung.
Paul Finsler war ein ausgezeichneter Kenner des Sternenhimmels, den er bei jeder
Gelegenheit mit dem Feldstecher beobachtete. Wenn nötig begab er sich, oft mitten
in der Nacht, auf die Sternwarte der Eidgenössischen Technischen Hochschule, um
seine Beobachtungen an grösseren Instrumenten fortzusetzen. Dabei gelang es ihm,
zwei neue Kometen zu entdecken. Bereits in Köln fand er am 15. September kurz
nach 8 h MEZ den Kometen 1924c und am frühen Morgen des 4. Juli 1937 den
Kometen 1937f im Sternbild des Perseus (Astronomische Nachrichten, Bd. 222, Kiel
1924, Nr. 5324, S.335, bzw. Bd.263, Kiel 1937, Nr. 6301, S.250). Für diese Entdek-
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kungen erhielt er 1924 und 1937 die Medaillen der Astronomical Society of the

Pacific. Ferner beobachtete er die Sternschnuppen vom 9. Oktober 1933 in der Bahn

des Kometen Giacobini-Zinner (ebenda, Bd.250, Kiel 1933, Nr.5986, S. 173f.). Er ist

Mitentdecker der sehr hellen Nova im Sternbild Puppis, die er in den frühen

Morgenstunden des 11. November 1942 als erster in Europa beobachtete (Bericht

von M. Waldmeier in <Die Sterne>, 23.Jahrgang 1943, Heft 11/12, und Beob.

Zirkular der Astronomischen Nachrichten 24,1942, Nr.25, S. 115).

Wenn ich richtig sehe, so finden wir in der Gestalt des Hans Gisler im Roman von

Jakob Humm <Ein Jahr im Leben des Daniel Seub (Tages-Anzeiger, Zürich,
3. Oktober 1977) ein treffendes Bild des jungen Finsler. Ich erlaube mir, daraus

folgendes wiederzugeben:
«Wir trafen uns gewöhnlich im Odeon und wanderten den See hinauf. Auf jener
Bank beim Hafen Riesbach fand ich fast regelmässig meinen Freund Hans Gisler

vor, einen Mathematiker, den ich von Göttingen her kannte; er war ein Semester

vor mir nach Zürich zurückgekehrt und wohnte im Seefeld bei zwei Tanten.

Gisler war ein schmächtiger Mensch, dem ein gefrorenes Lächeln die Lippen

umspielte und der nur Hochdeutsch sprach, aber schwäbelnd, weil er in Stuttgart

aufgewachsen war. Er war aber Zürcher aus alter Familie. Er lud mich einmal zum

Tee bei seinen Tanten ein; beide Damen sassen still und schüchtern auf ihren

Stühlen, hinter ihnen hingen an den Wänden grosse Brustbilder von Lavater,

Gessner, Bodmer; unser Gespräch bestand aus Hüsteln, Lächeln, Schweigen....
So war Freund Gisler, ein verträumter Mathematiker. Und er war nicht nur im

Leben ungeschickt, er war es auch in seinem Fach; mit seiner Dissertation, von der

es hiess, sie sei genial, trieb er es so verzagt, dass man sie ihm zusammenschreiben

musste. Er kam mit der Reihenfolge der Beweise nicht zu Rande!

In Zürich machte er abends seinen Erholungsspaziergang am See, er kam vom

Zürichhorn daher, und bei unserer Bank in der kleinen Riesbachanlage las er den

Barometerstand ab. Er trug ständig einen Taschenbarometer bei sich und dazu

einen Schrittmesser. Auch diesen konsultierte er bei der Bank, und es freute ihn,

dass er vom Zürichhorn bis zu dieser Bank immer die gleiche Anzahl Schritte

machte, die Abweichung betrug kein Promille. Das hatte er schon in Göttingen so

gehalten; auf kleinen Wanderungen in der hügeligen Umgebung zeigte er mir stolz,

dass er schon Höhendifferenzen von zehn Metern ablesen konnte.»

Das Bild von Finsler bliebe unvollständig, wenn ich nicht seine Schrift Nr. 32 <Vom

Leben nach dem Tode> erwähnen würde. Er verfasste sie als Mitglied der <Gelehr-

ten Gesellschaft) als 121.Neujahrsblatt auf das Jahr 1958. Sie fand viele Leser und

ist vergriffen. Im Mittelpunkt steht in Abschnitt 9 eine Erkrankung des Verfassers,

während der er in tiefe Bewusstlosigkeit verfiel. Wieder erwacht, überdeckt sich das

Erleben des Jenseits mit dem Bisherigen, insbesondere mit seiner Wissenschaft. Wir

treffen daher auf eine faszinierende Schilderung der unendlichen Sternenwelt und

des Kosmos mit der Frage nach dem Leben auf anderen Sternen, wir begegnen

natürlich auch den Auseinandersetzungen mit den Antinomien und der Frage nach

der Wahrheit. So sehen wir in Finsler einen Menschen, bei welchem sich zwei

verschiedene Ebenen der Wirklichkeit in einem Bildrahmen vereinigen: vorn die

äussere, hinten die innere Wirklichkeit. Und dies ist, nach Georg Schmidt (Edvard
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Munch), vielleicht die knappeste Definition dessen, was wir Surrealismus nennen:
Die Verbindung verschiedener Wirklichkeitsebenen im gleichen Bildraum.
Und noch eine andere Charakterisierung trifft auf Finsler zu: Die Abgeschlossenheit
und die Ichbezogenheit seines Daseins. Wie er sagt: Ich bin jeder und jeder ist ich.
Er war ein elliptischer Mensch. Sein Lebensraum erfüllte das Innere einer Ellipse,
im einen Brennpunkt stand er, im Gegenpunkt der andere, aber dieser war derselbe.
Einen Aussenraum gab es sowenig, wie es einen Zugang zu diesem Innenraum gab.
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n.Teil

1. Weitere Dozenten in Mathematik

A. Speiser trat auf den Herbst 1944 wegen Berufung an die Universität Basel

zurück. Auf das Wintersemester 1944/45 wurde Lars Ahlfors (geboren 1907) als

ausserordentlicher Professor für Mathematik, speziell für angewandte Mathematik,
berufen. Er verliess die Universität im Herbst 1946, um einem Ruf an die Harvard

University zu folgen.
In Herbst 1946 trat Rolf Nevanlinna (geboren 1895, gestorben 1980) als ordentlicher

Professor für Mathematik in den Lehrkörper ein, er wurde im Herbst 1949 zum

Honorarprofessor ernannt und versah seine Tätigkeit als regelmässiger Lehrbeauftragter

bis Herbst 1963. Als Nachfolger von R. Fueter wurde auf das Sommersemester

1951 berufen: Bartel Leendert van der Waerden (geboren 1903) für Mathematik

und als Direktor des Mathematischen Institutes. Honorarprofessor Herbst 1972.

Als Privatdozenten wirkten im betrachteten Zeitraum:
Max Gut (geboren 1898), Sommersemester 1928, PD für Mathematik. Titularpro-
fessor 1938. Zurückgetreten 1968.

Johann Jakob Burckhardt (geboren 1903), Wintersemester 1933, PD für Mathematik.

Titularprofessor 1942. Zurückgetreten 1977.

Heinrich Jecklin (geboren 1901), Wintersemester 1937, PD für Versicherungsmathematik.

Titularprofessor 1946. Zurückgetreten 1971.

Walter Nef (geboren 1919), Sommersemester 1944/45, PD für Mathematik.
Paul Mathieu (1909-1972), Sommersemester 1947-1954, PD für angewandte
Mathematik.

2. Vorlesungen in Mathematik von 1916 bis 1950

R. Fueter las regelmässig im Sommersemester <Analytische Geometrie der Ebene

und des Raumes> vierstündig mit einer Übungsstunde, im Wintersemester (Einführung

in die mathematische Behandlung der Naturwissenschaften) vierstündig mit

einer Übungsstunde.
A. Speiser hielt regelmässig den zweisemestrigen Kurs <Differential- und

Integralrechnung) vierstündig mit einer Stunde Proseminar.

P. Finsler las regelmässig vierstündig mit Übungen den zweisemestrigen Kurs

(Darstellende Geometrie).
Die Dozenten der Mathematik unterrichteten gemeinsam in einem zweistündigen

Seminar die Studierenden im Abhalten von Vorträgen, die sowohl Themen der

neueren Forschung wie auch klassische mathematische Arbeiten betrafen.

Themen von vierstündigen, sich in geeigneten Intervallen folgenden Vorlesungen

waren: Funktionentheorie, Elliptische Funktionen, Flächentheorie, Zahlentheorie,

Gruppentheorie, Algebra, Elliptische Modulfunktionen, Automorphe Funktionen,

Differentialgleichungen, Differentialgleichungen der mathematischen Physik,

Variationsrechnung, Galoissche Theorie, Wahrscheinlichkeitsrechnung, Projektive

Geometrie, Höhere Geometrie, Topologie, Mengenlehre, Quadratische Formen,

Konforme Abbildung, Algebraische Kurven und Flächen, Grundlagen der Geometrie,

Graphische Methoden, Geometrische Konstruktionen.
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Themen zweistündiger Vorlesungen waren meist von den Privatdozenten abgehandelt:

Fourier-Reihen, Integralbegriff, Algebraische Zahlkörper, Nichteuklidische
Geometrie, Geometrie der Zahlen, Integralgleichungen, Moderne Algebra,
Geschichte der Mathematik, Diophantische Gleichungen, Analytische Zahlentheorie,
Tensorrechnung.
Die Professoren A. Speiser und K. Dürr, zusammen mit PD J.J. Burkhard t hielten
regelmässig ein zweistündiges (Philosophisch-Mathematisches Seminar), in
welchem unter anderen folgende Themen besprochen wurden: Proklos, Logik,
Mengenlehre, Wahrscheinlichkeitslehre, Platonische Dialektik, Hegels Logik, Logik des

Aristoteles, Wissenschaftslogik, Logik von Leibniz, Platonische Philosophie,
Philosophie der Mathematik, Die Enneaden des Plotin, Logistik, Das Unendliche, Das
Raumproblem, Bolzano. Auf Wunsch und Anregung der Studierenden wurden in
Ergänzung der Vorlesung zwecks vermehrter Gelegenheit zu Übungen durchgeführt:

(Praktikum zur Infinitesimalrechnung) und (Praktikum für mittlere Semester).

Die Ausbildung in Versicherungsmathematik lag in den Händen von PD Prof. Hch.
Jecklin, ergänzt durch Kurse an der ETH.

3. Nachweise

R. Fueter:
Jahresbericht der Universität Zürich 1950/51, S. 83-85, mit Liste der Publikationen und Bild.
Elemente der Mathematik J, 98-104 (1950); 98-99: A. Speiser, Ansprache; 99-104: Nachgelassene
Aufzeichnungen.
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 95, 284-287 (1950); Nekrolog mit
Verzeichnis der Aufsätze allgemeineren Inhalts.
Neue Deutsche Biographie 5, 707 (Berlin 1961).

Dictionary of Scientific Biography 5, 206 (Scriber's Sons, New York 1972).
Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 130. Versammlung 1950, S. 399-404,
mit Bild und Verzeichnis der wissenschaftlichen Arbeiten.
World Biography. New York 1948, S. 1885.

Jahrbuch der Bayerischen Akademie der Wissenschaften 1951, S. 175-177, mit Bild auf S. 129.

A. Speiser:

Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 90, 145 (1945), J. Züllig, A.Sp. zum
60. Geburtstag.
Elemente der Mathematik 26, 97-102 (1971); J.O. Fleckenstein und B.L. van der Waerden, Zum
Gedenken an Andreas Speiser.

Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich HS, 471-474 (1970); Nachruf.
Neue Zürcher Zeitung, Mittwoch 21. Oktober 1970, Nr. 490; Nachruf.
Basler Nachrichten, Mittwoch 9. Juni 1965, Nr. 238, S.3; Prof. Dr. Andreas Speiser achtzigjährig, von
G.A.W.
Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 150. Versammlung 1970, S. 325-327.

P. Finsler:
Jahresbericht der Universität Zürich 1970/71, S. 101-102, mit Bild.
Elemente der Mathematik 26, 19-21 (1971); Nachruf mit Schriftenverzeichnis.
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 115, 469-41Q (1970).
Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 150. Versammlung 1970, S. 285-286,
mit Bild.
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4. Verzeichnisse

a) Rudolf Fueter

I. Zahlentheorie

1. Der Klassenkörper der quadratischen Körper und die komplexe Multiplikation. Inaugural-

Dissertation, Göttingen 1903.

2. Die Theorie der Zahlstrahlen, 1. Teil. J. Reine Angew. Math. 130, 197-237 (1905).

3. Die Theorie der Zahlstrahlen, 2. Teil. J. Reine Angew. Math. 132, 255-269 (1907).

4. Die Klassenzahl der Körper der komplexen Multiplikation. Nachr. Ges. Wiss. Göttingen. Math.-

phys. Kl. 1907, S. 288-298.
5. Die verallgemeinerte Kroneckersche Grenzformel und ihre Anwendung auf die Berechnung der

Klassenzahl. Rendiconti circ. mat. di Palermo 29, 1-16 (1910).

6. Über eine Eigenschaft der Klassenkörper der komplexen Multiplikation. Nachr. Ges. Wiss.

Göttingen. Math.-phys. Kl. 1913, S.331-334.

7. Abelsche Gleichungen in quadratisch-imaginären Zahlkörpern. Math. Ann. 75, 177-255 (1914).

8. Die Klassenkörper der komplexen Multiplikation und ihr Einfluss auf die Entwicklung der

Zahlentheorie. Jber. Deutsch. Math.-Verein. 1911, S. 1-47.

9. Die Klassenzahl zyklischer Körper vom Primzahlgrad, deren Diskriminante nur eine Primzahl

enthält. J. Reine Angew. Math. 147, 174-183 (1917).

10. Kummers Kriterium zum letzten Theorem von Fermât. Math. Ann. 85, 11-20 (1922).

11. Reziprozitätsgesetze in quadratisch-imaginären Körpern. Nachr. Ges. Wiss. Göttingen. Math.-phys.

Kl. 1927, 1. und 2. Mitteilung, S.336-346, 427-445.

12. Zur Theorie der relativ Abelschen Körper. Calcutta Math. Soc. Bull. 20, 193-197 (1928/29).

13. Ein Satz über Ring- und Strahlklassenzahlen in algebraischen Zahlkörpern. Comment. Math. Helv.

5,319-322(1933).
13a. Über die Normalbasis in einem absolut Abelschen Zahlkörper. Festschrift Andreas Speiser, Orell

Füssli, Zürich 1945, Separatdruck, S. 1-12.

14. Abelsche Gleichungen in algebraischen Zahlkörpern. Comment. Math. Helv. 17, 108-127 (1954/

55).
15. Über primitive Wurzeln von Primzahlen. Comment. Math. Helv. 18, 217-223 (1955/56)»

II. Diophantische Gleichungen

16. Die Diophantische Gleichung f> + tj3 + £3 0. Sitzungsberichte der Heidelberger Akademie 25,

1-15(1913).
17. Über kubische Diophantische Gleichungen. Comment. Math. Helv. 2, 69-89 (1930).

III. Theorie der Algebren

18. Über eine spezielle Algebra. J. Reine Angew. Math. 167, 52-61 (1931).

19. Formes d'Hermite, groupe de Picard et théorie des idéaux de quaternions. C.R. Acad. Sei. Paris

194, 2009 (1932).
20. Zur Theorie der Brandtschen Quaternionenalgebren. Math. Ann. 110, 650-661 (1935).

21. Quaternionenringe. Comment. Math. Helv. 6, 199-222 (1933/34).
22. Quelques résultats de l'algèbre moderne. Riv. Fac. Ci. Univ. Coimbra 2, No 4, 201-216 (1932), mit

Bild.

IV. Funktionentheorie

23. Zur Theorie der Modulfunktionen. Jber. Deutsch. Math.-Verein. 18, 411-415 (1909).

24. Ein Satz über Iteration von Potenzreihen und seine zahlentheoretische Anwendung. Vierteljschr.

Naturforsch. Ges. Zürich 62, 67-72 (1917).

25. Über die Konstruktion einer speziellen automorphen Funktion. Vierteljschr. Naturforsch. Ges.

Züricher, 1-4(1919).
26. Einige Sätze aus der Theorie der komplexen Multiplikation der elliptischen Funktionen. C. rend.

Congrès intern, des math. 1920, S. 1-4.
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27. Über automorphe Funktionen. J. Reine Angew. Math. 157, 66-78 (1927).

28. Sur les groupes improprement discontinus. C.R. Acad. Soi. Paris 182, 432 (1926).

29. Die Diskriminante der Körper der singulären Moduln und der Teilungskörper der elliptischen

Funktionen. Acta Math. 48, 43-89 (1926).
30. Idealtheorie und Funktionen théorie. Verh. Intern. Math. Kongress Zürich 1932, 1. Bericht und allg.

Vorträge, S. 83-92.
31. Über unimodulare lineare Substitutionen. Verh. Naturforsch. Ges. Basel 21, 94-101 (1910).

32. Über automorphe Funktionen der Picardschen Gruppe I (eine Fortsetzung ist nicht erschienen).

Comment Math. Helv. 3, 42-68 (1931).
32a. Über Abelsche Funktionen von zwei komplexen Variablen. Ann. Math. Pura Appl. IV, 28, 211-215

(1949).

V. Funktionen einer Quaternionenvariablen

33. Über Funktionen einer Quaternionenvariablen. Atti Congr. Int. Mat. Bologna 1928,2.

34. Analytische Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 4, 9-20 (1932).

35. Die Funktionentheorie der Differentialgleichung /lu 0 und AAu=0 mit vier reellen Variablen.

Comment. Math. Helv. 7, 307-330 (1934/35).
36. Zur Theorie der regulären Funktionen einer Quaternionenvariablen. Monatshefte für Math, und

Phys. 43, 69-74 (1936).
37. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvanablen. Com¬

ment. Math. Helv. 8, 371-378 (1935/36).
38. Die Theorie der regulären Funktionen einer Quaternionenvariablen. C. rend. Congrès intern, des

math. Oslo 1936, 73-91 (1937).
39. Die Singularitäten der eindeutigen regulären Funktionen einer Quaternionenvariablen I. Comment

Math. Helv. 9, 320-334 (1936/37).
40. Integralsätze für reguläre Funktionen einer Quaternionenvariablen. Comment Math. Helv. 10,

306-315 (1937/38).
41. Über einen Hartogsschen Satz. Comment. Math. Helv. 12, 75-80 (1939/40).
42. Über vierfachperiodische Funktionen. Monatshefte für Math, und Phys. 48, 161-169 (1939).

43. Über einen Hartogsschen Satz in der Theorie der analytischen Funktionen von n komplexen
Variablen. Comment. Math. Helv. 14, 394-400 (1941/42).

44. Die Funktionentheorie der Diracschen Differentialgleichungen. Comment. Math. Helv. 16, 19-28

(1943/44).
45. Problèmes actuels de la théorie des fonctions analytiques de plusieurs variables. Atti del Convegno

Matematico Roma 1942, 169-177 (1945).
45a. Über die Funktionentheorie in einer hyperkomplexen Algebra. Elem. Math. HI/5, 89-94 (1948).

VI. Varia

46. Über die Wahrscheinlichkeit des Auftretens geschlechtsgebundener Leiden. Graefes Archiv für

Ophtalmologie 114, 593 (1924).
47. Über eine Eulersche Beweismethode in der Zahlentheorie. Schweiz. Medizinische Wochenschrift

69/13,103-111(1939).
48. Der Einfluss der mathematischen Disziplinen auf die Kriegswissenschaft. Festschrift für Max

Huber <Vom Krieg und vom Frieden) 1944.

48a. R. Fueter und G. Pölya, Rationale Abzählung der Gitterpunkte. Vierteljschr. Naturforsch. Ges.

Zürich 68, 380-386 (1923).

48b. Jakob Steiner, Grosse Schweizer, Atlantis-Verlag, Zürich 1938.

48c. Jakob Steiner, Grosse Schweizer Forscher, Atlantis-Verlag, Zürich 1939, S.202f.

VII. Selbständige Werke

Synthetische Zahlentheorie, de Gruyter, Berlin, 1917,21925,31950.

Vorlesungen über die singulären Moduln und die komplexe Multiplikation der elliptischen Funktionen.

B.G. Teubner, l.Teil 1924,2.Teil 1927.

Das mathematische Werkzeug des Chemikers, Biologen und Statistikers. Orell-Füssli-Verlag, 1926,

21930,31948.
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Herausgabe der Bände Series prima, 4 und 5 der Opera omnia Leonhardi Euleri mit je einer Vorrede.

Herausgabe von Jakob Steiner, Allgemeine Theorie über das Berühren und Schneiden der Kreise und

Kugeln. Orell-Füssli-Verlag, 1931.

Analytische Geometrie der Ebene und des Raumes. Birkhäuser Verlag, Basel 1945.

Leonhard Euler (1707-1783). Beiheft Nr.3 der Zeitschrift Elemente der Mathematik, Birkhäuser Verlag,

Basel, 1948,21960,31979.

Eine Reihe von Zeitungsartikeln sowie die Liste der von Fueter angeregten Dissertationen sind nicht

aufgenommen. Erstere wurden in der Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 95,

200f. (1950), mitgeteilt.

b) Andreas Speiser

A. Abhandlungen
1. Die Theorie der binären quadratischen Formen mit Koeffizienten und Unbestimmten in einem

beliebigen Zahlkörper. Dissertation, Göttingen 1909. Druck der Dietrichschen Universitäts-Buch-

druckerei, 34 Seiten.

2. Über die Komposition der binären quadratischen Formen. Festschrift Heinrich Weber, Leipzig und

Berlin 1912, S.375-395.
3. Zur Theorie der Substitutionsgruppen. Math. Ann. 75, 443-448 (1914).

4. Gruppendeterminante und Körperdiskriminante. Math. Ann. 77, 546-562 (1916).

4a. L'équation du cinquième degré. L'Enseignement Math. 19, 331-332 (1917).

5. Die Zerlegungsgruppe. J. Reine Angew. Math. 149, 174-188 (1919).

6. Zahlentheoretische Sätze aus der Gruppentheorie. Math. Z. 5, 1-6 (1919).

7. Über geodätische Linien auf einem konvexen Körper. Vierteljschr. Naturforsch. Ges. Zürich 66,

28-38 (1921).
7a. Sur les lignes géodésiques sur les surfaces convexes. L'Enseignement Math. 20, 443 (1919).

8 Die Zerlegung von Primzahlen in algebraischen Zahlkörpern. Trans. Amer. Math. Soc. 23, 173-178

(1922).
8a. Sur la décomposition des nombres premiers dans des corps algébriques. L'Enseignement Math. 22,

63 (1922).
9. Allgemeine Zahlentheorie. Vierteljschr. Naturforsch. Ges. Zürich 71, 8-48 (1926).

10 Musik und Mathematik. Sonderdruck aus der Festschrift für Paul Speiser. Basler Druck- & Verlags¬

anstalt, Basel 1926,9 Seiten.

11. Naturphilosophische Untersuchungen von Euler und Riemann, J. Reine Angew. Math. 157,

105-114(1927).
12. Über Gruppen und Gruppoide. Verh. Schweiz. Naturforsch. Ges. Basel 1927, II. Teil, S. 85-86.

12a. Sur les groupes et groupoides. L'Enseignement Math. 26, 317-318 (1926).

13. Probleme der Gruppen théorie. Atti Congr. Int. Math. Bologna 1928, S. 79-80.

14 Probleme aus dem Gebiet der ganzen transzendenten Funktionen. Comment. Math. Helv. 1,

289-312 (1929).
15. Über Riemannsche Flächen. Comment. Math. Helv. 2, 284-292 (1930).

16. Über beschränkte automorphe Funktionen. Comment Math. Helv. 4, 172-182 (1932).

17. Über die Minima Hermitescher Formen. J. Reine Angew. Math. 167, 88-97 (1931).

18. Independente Theorie gewisser Funktionenklassen. Verh. Intern. Math. Kongress Zürich 1932,

2. Bd., S.47.
19. Naturforscher Dante. Deutsch. Dante-Jahrbuch 16, Weimar 1934, S. 130.

20. Geometrisches zur Riemannschen Zetafunktion. Math. Ann. HO, 514-521 (1934).

21. Leonhard Euler und die Deutsche Philosophie. Aulavortrag, 22. Februar 1934. Orell-Füssli-Verlag,

Zürich, 16 Seiten.
22. Zahlentheorie in rationalen Algebren. Comment. Math. Helv. 8, 391-406 (1935/36).

23. Der Erlösungsbegriff bei Plotin. Eranosjahrbuch 1937, Rheinverlag, Zürich, S. 137-154.

24. Riemannsche Flächen vom hyperbolischen Typus. Comment. Math. Helv. 10, 232-242 (1937/38).

25. Leonhard Euler. Grosse Schweizer. Atlantis-Verlag, Zürich 1938, 6 Seiten.

i>26. Die Basler Mathematiker. 117. Neujahrsblatt, herausgegeben von der Gesellschaft zur Beförderung

des Guten und Gemeinnützigen, Basel 1939, S. 1-51.

27. Leonhard Euler. Grosse Schweizer Forscher. Atlantis-Verlag, Zürich 1939.
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28. Die Funktionalgleichung der Dirichletschen L-Funktion. Monatshefte für Math, und Phys. 48,
240-244 (1939).

29. Topologische Fragen der Himmelsmechanik. Vierteljschr. Naturforsch. Ges. Zürich 85, Beiblatt 32,
Festschrift Rudolf Fueter, 204-213 (1940).

30. Der Anteil der Schweiz an der Entwicklung der Mathematik. Die Schweiz und die Forschung I,
Verlag des Guide Pratique, Wabern-Bern und Freiburg 1941, S. 70-77. Radiovortrag vom 17. Mai
1940.

31. Gruppen aus der Klassenkörpertheorie. J. Reine Angew. Math. 182, 178-179 (1940).
32. Die Platonische Lehre vom unbekannten Gott und die christliche Trinität. Eranosjahrbuch 1940/41,

Rheinverlag, Zürich, S. 11-29.
33. Die räumliche Deutung der Aussenwelt. Verh. Schweiz. Naturforsch. Ges. Basel 1941, S. 38-51.
34. Piatons Ideenlehre und die Mathematik. Jahrbuch der Schweiz. Philos. Ges. 2, 123-140 (1942).
35. Wissenschaft und Glaube. Schriften der Mlle Marie Gretler-Stiftung Zürich, E. Rentsch Verlag,

Erlenbach-Zürich 1944, S. 29-46.
36. Die mathematische Betrachtung der Kunst. Concinnitas, Benno Schwabe Verlag, Basel 1944,

S.215-231.
37. Über symmetrische analytische Funktionen. Comment. Math. Helv. 16, 105-114 (1943/44).
38. Problemi attuali della teoria dei gruppi astratti. Atti Conv. Mat. 1942, Roma 1945, S. 85-90.
38a. Geist und Mathematik. Eranosjahrbuch 1945, Rheinverlag, Zürich 1946.
39. Einteilung der sämtlichen Werke Leonhard Eulers. Comment. Math. Helv. 20, 288-318 (1947).
39a. Die Grundlagen der Mathematik von Plato bis Fichte. Eranosjahrbuch 1946, Rheinverlag, Zürich

1947.

40. La notion de Groupe et les Arts. Les grands Courants de la Pensée Mathématique présenté par
F. de Lionnais. Cahiers du Sud 1948, p. 475-479.

41. Sulle superficie Riemanniane. Rend. Sem. Mat. Fis. Milano 18, 91-92 (1948).
42. Il gruppo metrico dei colori. Ann. Mat. Pura Appl. (IV) 28, 231-236 (1949).
42a. Über die Freiheit. Rektoratsrede. Basel 1950.

43. Rudolf Fuetert. Ansprache. Elem. Math. J, 98-99 (1950).
44. Neue Proportionen für die Kunst. Les Cahiers techn. de l'Art, Strasbourg 1957, S. 46-47.
45. Oltre la spera. Deutsch. Dante-Jahrbuch 36/37, Weimar 1958, S. 52.

46. Herausgeber von Bänden der Opera omnia von Leonhard Euler mit Vorworten:

Serie I,
Serie I,
Serie I,
Serie I,
Serie I,
Serie I,
Serie I,
Serie I,
Serie I,
Serie III,
Serie III,
Serie III,

47.

Bd. 5 (1944)
Bd. 9 (1945)
Bd. 16/1 (1933)
Bd. 16/2 (1935)
Bd. 24 (1952)

(1953)
(1954)
(1955)
(1956)
(1926)
(1962)

Bd. 26

Bd. 27

Bd. 28

Bd. 29

Bd. 1

Bd. 6

Bd. 7

Seite

VII
VII-L
VII
XCVII-CV
VII
VII-XXXVI
VII-XLVI
VII-XLVI
VII-XLIV
VII-XXV
VII-XXVIII

(1964)

Serie III, Bd. 11 (1960) VIKXLIII

Serie III, Bd. 12 (1960) VII-XVII

Bde.26-29: Geometrie

zusammen mit F. Rudio und E. Bernoulli (Musik)
(Optik)
Herausgeber
Einleitung von W. Habicht
Briefe an eine Deutsche Prinzessin und Rettung
der Göttlichen Offenbarung
Vorrede und Nachwort

Herausgeber von: Johann Heinrich Lambert, Mathematische Werke, Band 1, 1946, Band 2, 1948.

Orell-Füssli-Verlag, Zürich. Vorreden von A. Sp. S.IX-XXXI bzw. IX-XXIX.

B. Bücher

1. Die Theorie der Gruppen von endlicher Ordnung, mit Anwendungen auf algebraische Zahlen und
Gleichungen sowie auf die Kristallographie. Springer, Berlin, 1923, 21927, 31937 (Nachdruck 3. Aufl.
bei Dover Publ., New York 1945); 4. Auflage Birkhäuser, Basel 1955.
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2. Klassische Stücke der Mathematik. Ausgewählt von Andreas Speiser. Orell Füssli, Zürich 1925.

3. Kapitel XIII: Idealtheorie in rationalen Algebren, von Andreas Speiser, in: L.E. Dickson, Algebren

und ihre Zahlentheorie. Aus dem Englischen übersetzt von J.J. Burckhardt und E. Schubarth. Orell

Füssli, Zürich 1927.

4. Die mathematische Denkweise. Rascher, Zürich 1932; 21945 und 3. Aufl. (1952) bei Birkhäuser, Basel

5. Elemente der Philosophie und der Mathematik. Birkhäuser, Basel 1952.

6. Ein Parmenideskommentar. Studien zur Platonischen Dialektik. Köhler Leipzig 1937; 2. erw. Aufl.

Köhler, Stuttgart 1959.

7. Die geistige Arbeit. Birkhäuser, Basel 1955.

Ein Verzeichnis von Gelegenheitsartikeln ist veröffentlicht in der Zeitschrift <Elemente der Mathematik)

26,97-120(1971).

c) Paul Finsler

1, Ober Kurven und Flächen in allgemeinen Räumen. Dissertation Göttingen 1918.

2. Gibt es Wiedersprüche in der Mathematik? Jber. Deutsch. Math.-Verein. 34, 143-155 (1925).

3. Formale Beweise und die Entscheidbarkeit. Math. Z. 25, 676-682 (1926).

4. Über die Grundlegung der Mengenlehre. Erster Teil. Die Mengen und ihre Axiome. Math. Z. 25,

673-713(1926).
5. Formes quadratiques et variétés algébriques. Enseignement Math. 26, 319f. (1927).

6. Quadratische Formen und algebraische Gebilde. Verh. Schweiz. Naturforsch. Ges. 108, 88 (1927).

7. (mit H. Lipps) Über die Lösung von Paradoxien. Phil. Anzeiger 2, 183-203 (1927).

8. Erwiderung auf die vorstehende Note des Herrn R. Baer. Math. Z. 27, 540-542 (1928).

9. Über algebraische Gebilde. Math. Ann. 101, 284-292 (1929).

10. Die Existenz der Zahlenreihe und des Kontinuums. Comment. Math. Helv. 5, 88-94 (1933).

11. Über eine Klasse algebraischer Gebilde (Freigebilde). Comment. Math. Helv. 9, 172-187 (1936/37).

12 Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen.
'

Comment. Math. Helv. 9, 187-192 (1936/37).
13 Einige elementargeometrische Näherungskonstruktionen. Comment. Math. Helv. 10, 243-262 (1937/

38).
14. (mit H. Hadwiger) Einige Relationen im Dreieck. Comment. Math. Helv. 10, 316-326 (1937/38).
15 A propos de la discussion sur les fondements des mathématiques. Extrait du <Les entretiens de

Zürich sur les fondements et la méthode des sciences mathématiques, 6-9 décembre 1938>, S. 162-

180.

16. Über Freisysteme (lineare Freigebilde). Comment. Math. Helv. 11, 62-76 (1938/39).

17. Über die Darstellung und Anzahl der Freisysteme und Freigebilde. Monatshefte Math. Phys. 48,

433_447 (1939).
18. Die eindimensionalen Freigebilde. Comment. Math. Helv. 12, 254-262 (1939/40).

19 Über eine Verallgemeinerung des Satzes von Meusnier. Vierteljschr. Naturforsch. Ges. Zürich 85,

155-164(1940).
20 Über die Krümmung der Kurven und Flächen. Reale Accademia d'Italia, Fondazione Alessandro

'
Volta, Atti dei Convegnii?, 463-478 (1939). Rom 1943.

21. Reelle Freigebilde. Comment. Math. Helv. 16, 73-80 (1943/44).

22. Gibt es unentscheidbare Sätze? Comment. Math. Helv. 16, 310-320 (1943/44).

23. Über die Primzahlen zwischen n und 2n. Festschrift zum 60. Geburtstag von Prof. Dr. Andreas

Speiser. Orell-Füssli-Verlag, Zürich 1945, S. 1-5.

24. Über die Wahrscheinlichkeit seltener Erscheinungen. Experientia 1, 56-57 (1945).

25. Über die Faktorzerlegung natürlicher Zahlen. Eiern. Math. 2, 1-11 (1947).

26. Über die mathematische Wahrscheinlichkeit. Elem. Math. 2, 108-114 (1947).

27. Eine transrimte Folge arithmetischer Operationen. Comment. Math. Helv. 25, 75-90 (1951).

28. Über Kurven und Flächen in allgemeinen Räumen. Unveränderter Neudruck der Dissertation von
1918. Mit ausführlichem Literaturverzeichnis von H. Schubert. Birkhäuser Verlag, Basel 1951, 160

Seiten.
29. Über die Berechtigung infinitesimalgeometrischer Betrachtungen. Convegno Intemazionale di Geo-

metria Differenziale, Italia, 1953, S. 8-12.

30. Die Unendlichkeit der Zahlenreihe. Elem. Math. 9, 29-35 (1954).
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31. Der platonische Standpunkt in der Mathematik. Dialectica 10, 250-277 (1956).
32. Vom Leben nach dem Tode. 121. Neujahrsblatt zum Besten des Waisenhauses Zürich für 1958.
33. Näherungskonstruktionen für den Kreisumfang. Eiern. Math. 14, 121-123 (1959).
34. Die Wahrscheinlichkeit seltener Erscheinungen. Ann. Mat. Pura Appl. (IV) 54, 311-323 (1961).
35. Totalendliche Mengen. Vierteljschr. Naturforsch. Ges. Zürich 108, 142-152 (1963).
36. Über die Grundlegung der Mengenlehre. Zweiter Teil. Verteidigung. Comment. Math Helv M

172-218(1964).
37. Zur Goldbachschen Vermutung. Eiern. Math. 20, 121-122 (1965).
38. Über die Unabhängigkeit der Kontinuumshypothese. Dialectica 23, 67-78 (1969).
Paul Finsler, Aufsätze zur Mengenlehre. Herausgegeben von Georg Unger. Wissenschaftliche
Buchgesellschaft, Darmstadt 1975.



Leere Seite
Blank page
Page vide


	Die Mathematik an der Universität Zürich 1916 - 1950: unter den Professoren R. Fueter, A. Speiser und P. Finsler
	Vorwort
	Einleitung
	Räumliches
	Karl Rudolf Fueter
	Andreas Speiser
	Paul Finsler
	Weitere Dozenten in Mathematik
	Vorlesungen in Mathematik von 1916 bis 1950
	...


