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Menschen wie Speiser wirken in die Tiefe. Wir dürfen feststellen, dass er die Saat

aufgehen sah. Vieles aber harrt noch des Wachsens. Es liegt in der Natur des

Geistigen, dass oft eine oder mehrere Generationen das Erbe nicht nützen können,

spätere werden davon um so mehr zehren. Dies gilt auch für das Erbe von Speiser.
Noch hatte sich die Erde über seinem Grabe nicht gesenkt, als aus seiner Vaterstadt

zu vernehmen war: «Die Weissglut mathematischer Forschungsarbeit lag ihm
nicht» (NZZ, 21. Oktober 1970, Mittagsausgabe).

3. Paul Finsler wurde am 11. April 1894 als Sohn des Kaufmanns Julius Finsler

(1853-1905) und seiner Frau Elise-Luise, geborene Berrer (1872-1913), in
Heilbronn geboren. Er wuchs im Kreise einer Schwester und des Bruders Hans auf, der

als Photograph einen bedeutenden Namen erwarb. Die Familie Finsler, aus Stäfa

stammend, wurde 1538 in Zürich eingebürgert. Ein Urgrossvater von Paul, Hans

Jakob Finsler (1796-1863) verheiratete sich mit Louise Gessner, einer Enkelin von
Pfarrer Hans Caspar Lavater. Der Grossvater Jakob Georg Finsler (1826-1887),
verheiratet mit Susanne Amalie Ulrich, war Kaufmann im Meyershof.
Paul Finsler besuchte die Lateinschule in Urach und 1908-1912 das Realgymnasium

in Cannstatt, das er mit dem Zeugnis der Reife verliess. Nach einem Studienjahr

an der Technischen Hochschule in Stuttgart bezog er die Universität Göttingen
zum Studium der Mathematik. Im Frühjahr 1918 erwarb er dort den Doktorgrad
mit der Dissertation <Über Kurven und Flächen in allgemeinen Räumern, die er auf

Anregung von C. Carathéodory schrieb. Unter seinen Lehrern finden wir die

bedeutendsten Mathematiker jener Zeit, unter anderen E. Hecke, D. Hubert,
F. Klein, E. Landau, C. Runge. 1922 habilitierte sich Finsler an der Universität
Köln und wurde im Dezember 1926 mit Amtsantritt im April 1927 zum ausseror-
dentlichen Professor für angewandte Mathematik an der Universität seiner Vaterstadt

gewählt. Der Lehrauftrag umfasste 6-8 Semesterstunden, und zwar: in jedem
Semester eine vierstündige Vorlesung mit Übungen in darstellender Geometrie und

Vorlesungen in zwanglosem Turnus aus den übrigen Gebieten der Geometrie und
der angewandten Mathematik. Auf den Herbst 1944 wurde Finsler zum ordentlichen

Professor ernannt, mit einer Lehrverpflichtung von 8 bis 12 Vorlesungs- und

Übungsstunden, wovon jedes Semester eine vierstündige Vorlesung über Differential-

und Integralrechnung mit je einer Stunde Proseminar. Später übernahm er statt
dieser Vorlesung wieder diejenige in darstellender Geometrie. Im Frühjahr 1959 trat
er altershalber zurück, unter gleichzeitiger Ernennung zum Honorarprofessor. Eine

Reise nach dem Fernen Osten erfüllte hierauf seinen Wunsch, auch dort den

Sternenhimmel betrachten zu können. Die Teilnahme am mathematischen Leben in

Zürich, an Vorträgen und Seminarien zeigt sein fortdauerndes Interesse an der

Wissenschaft. War Finsler lange Zeit ein rüstiger Wanderer, der auf keinem

Seminarausflug fehlte, so untersagten ihm dies in späteren Jahren auftretende
Herzbeschwerden. Auf dem Gang zum Dies academicus am 29. April 1970, einem

schwülen Tag, erlag er kurz vor Erreichen der Universität einem Herzversagen.

Ausgehend von Ideen von Bernhard Riemann stellte Carathéodory Finsler die

Aufgabe, die Differentialgeometrie von Kurven und Flächen in Räumen Rn von
beliebig vielen Dimensionen n unter Zugrundelegung einer verallgemeinerten
Längenbestimmung, Metrik oder Massbestimmung zu untersuchen. Dabei wird
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stets nur die Umgebung eines festen Punktes bzw. eines von P ausgehenden Linien-

elementes betrachtet. Mit der Bearbeitung dieser Frage eröffnete Finsler der

Forschung ein neues und überaus fruchtbares Gebiet.

Die Länge eines Kurvenstückes wird von Finsler als das Integral über eine im

wesentlichen willkürliche reelle Funktion definiert, die von den Koordinaten des

betrachteten Punktes P und ihren ersten Ableitungen nach der Bogenlänge abhängt.

Hiermit lässt sich eindeutig eine Kurventheorie sowie eine Theorie der Kurven und

Flächen in mehrdimensionalen Räumen aufbauen. Zum Teil erhält man dabei die

aus der klassischen Theorie der Kurven und Flächen bekannten Sätze, zum Teil

müssen diese modifiziert werden. Betrachten wir die Arbeit näher. Sie ist in drei

Abschnitte eingeteilt: A. Grundbegriffe (S. 10-51), B. Kurventheorie (S. 52-84),

C. Flächentheorie (S. 85-120).
A. Ein Punkt x=(xh...,xn) wird durch seine n Koordinaten in einem beliebigen

Koordinatensystem festgelegt, das man sich als cartesisches oder als krummliniges
vorstellen kann. Diese Punkte bilden den Rn, in ihm ist durch .x^x,(«!,...,mv)
ein v-dimensionaler Raum Rv (1 < v <; ri) festgelegt, der für v n - 1 als Hyperfläche,

für v 2 als Fläche und für v=l als Kurve bezeichnet wird. Jedem Punkt der

Kurve x=x(t) ist den Vektor x'=dx/dt zugeordnet. Alle von x ausgehenden

Vektoren erfüllen der Raum T„, diejenige Gerade von T„, die x1 enthält, heisst

Linienelement (von P ausgehend). Die Linienelemente zu P in einem R heissen

Tangentialraum. Wenn eine Kurve C einen R im Punkt P trifft, so kann sie auf

eine Kurve F in R projiziert werden. Dazu verbindet man die Punkte von C

mit denjenigen von R durch eine einparametrige Schar von Kurven C=T + pl.
Wichtig ist der Begriff der Berührung zweier Kurven C und f. Sie ist im Punkt

P von /z-ter Ordnung, wenn in diesem Punkt genau die ß ersten Ableitungen der

beiden Kurven nach dem Kurvenparameter übereinstimmen. Für dieses Berühren

werden sechs wichtige Sätze bewiesen, z.B.: «Wenn eine Kurve C auf Rv

projiziert wird, so berührt sie alle ihre Projektionen r1,f2,... von derselben

Ordnung.»
Nach dieser Vorbereitung kann die Bogenlänge einer Kurve x x(t) definiert

werden. Man bestimmt einen Parameter s, der die Bogenlänge genannt wird, so,

dassx'=(dx/ds) ¦ (ds/dt) wird.
Damit wird £ (dxjds)2 <p2 (x, jcO eine Funktion von x und x1, und Finsler definiert

Hiermit wird die Bogenlänge s(t)=^F(x,x')dt, wobei aus der Definition von

Finsler folgt: F(x,kx') kF(x,x>), und die Gleichung der Indikatrix lautet

F(x,X)=l.
Hiermit kann der Begriff der zu p transversalen Richtung q erklärt werden, dies

ist eine Verallgemeinerung des Senkrechtstehens. Die Extremalen des Variationsproblems

Ss=O sind die Integrale der Lagrangeschen Differentialgleichung und

treten an die Stelle der Geraden der gewöhnlichen Differentialgeometrie. An dieser

Stelle wird besonders deutlich, wie Finsler an die Dissertation seines Lehrers
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Carathéodory anknüpft (Über die diskontinuierlichen Lösungen in der Variationsrechnung,

1904, und Math. Ann. 62, 449-503, 1906) und auf deren Ergebnissen
aufbaut.
Wird die Kurve C auf die Kurve F transversal projiziert, so wird der Winkel <p

zwischen C und F im Punkt P folgendermassen erklärt: Man trage von P aus auf
C ein Stück a ab, seine Projektion auf F habe die Länge b. Dann sei cosq>

/
Ist C= C(t) und F F (t), so wird daraus

> lim [Tj0F(r,r')rfr/jF(C, C)*].

Im allgemeinen ist hierdurch der Winkel zwischen zwei Richtungen p und q von
der Reihenfolge der Schenkel abhängig. Finsler gibt die Bedingungen an, in
welchen Symmetrie besteht: Es muss F2=Q (V) eine quadratische Form sein.
Mittels des Winkels zwischen Vektoren kann in der üblichen Art derjenige zwischen
Ebenen definiert werden, ebenso das Senkrechtstehen von Vektoren auf Ebenen.
Hierbei ergibt sich der schöne Satz: Eine Normale / eines Raumes Rv ist
transversal zu v unabhängigen, unendlich benachbarten Richtungen in diesem Raum.

B. Mit obigen Begriffen lässt sich in der Umgebung eines Linienelementes ein~

deutig eine Kurventheorie entwickeln. Man geht von einer regulären Kurve C
aus, sie besitze im Punkt P die Richtung p. Berührt sie ihre Tangente in P nur
in erster Ordnung, so ist durch Kurve und Tangente die Schmiegungsebene T2
bestimmt. Die Extremalen, welche T2 in P berühren, bilden die Schmiegfläche S2-

So fortfahrend, erhält man Schmiegungsräume Tv und Schmiegflächen Sv. Besonders

reizvoll ist die Einführung der Kurvenkrümmung: Sei b die Länge eines
Kurvenstückes zwischen den Punkten 1 und 2 auf der Kurve C, s die Länge der
Sehne von 1 nach 2. Finsler definiert die Krümmung k von C in P, indem er
die Punkte 1 und 2 in den Punkt P zusammenrücken lässt und dort den Grenzwert
nimmt:

/ l^sk=J \im24
v r.

Diese Definition geht für die klassische Kurventheorie in den üblichen Ausdruck
über, indem Finsler zeigt, dass sie mit dem Grenzwert

k= lim —-
js=o As

übereinstimmt, wo A 5 der Winkel zwischen benachbarten Tangenten ist. Dies wird
für den zweidimensionalen Fall näher ausgeführt. Anschliessend werden auf zwei
Wegen die höheren Krümmungen einer Kurve eingeführt und diskutiert und die
natürliche Gleichung einer Kurve aufgestellt. Im Mittelpunkt der Kurventheorie
steht der Satz von der Eindeutigkeit: Bei geeigneten Anfangsbedingungen ist eine
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Kurve (in der Umgebung des Anfangspunktes) eindeutig bestimmt, wenn ihre

sämtlichen Krümmungen als Funktion der Bogenlänge vorgeschrieben sind.

C. Ebenso, wie in einem regulären n-dimensionalen Raum Rn auf jedem Linien-
element ein Vektor liegt und die Längenmessung bestimmt, ist dies auch in jedem
Rv der Fall (2<v<«). Ist die Fläche Rv durch n-v Gleichungen Gß(x) 0,

/?=l,2,...,n—v bestimmt, so ist die Länge einer auf ihr liegenden Kurve wie

früher bestimmt durch s=\\oF{x,x')dt, während die Extremalen in Rv als Lösungen
des Variationsproblems ö\F(x,x')dt 0 mit der Nebenbedingung Gß(x) 0 auftreten;

sie heissen geodätische Linien, die zugehörigen Krümmungen die geodätischen

Krümmungen. Jede Kurve, deren geodätische Krümmung identisch verschwindet,

ist geodätische Linie. Wie in der klassischen Flächentheorie gilt, dass die geodätischen

Linien mit denjenigen Flächenkurven identisch sind, deren Schmiegebenen

sämtlich die Fläche senkrecht schneiden. Ist C eine Flächenkurve und F ihre

geodätische Tangente, k die absolute und k die erste Krümmung im Berührungspunkt,

ferner y/ der Winkel zwischen den Schmiegebenen von C und von F,
dann gilt der Satz von Meusnier K2 k2cosys, und für die geodätische Krümmung
y gilt y2+ K2 k2.

Hierauf ist Finsler 1940 in der Arbeit Nr. 19 zurückgekommen. Definiert man
ferner als Asymptotenlinien einer Fläche diejenigen Kurven, deren Schmiegebenen
sämtlich die Fläche berühren, so ergibt sich aus dem Satz von Meusnier, dass

ihre Normalkrümmung verschwindet und dass ihre geodätische Krümmung gleich
ihrer absoluten Krümmung ist.
Ein folgender Abschnitt gilt den höheren Krümmungen. Sodann wird eine Hyper-
fläche G(x) 0 (Dimension n—l v) betrachtet, ihre Extremalen im Punkt P

bilden die Tangentenfläche !"„_,. Durch Betrachtung der Parallelfläche G(x) h

und ihres Schnittes mit Tn_\ gelingt es, darauf einen (n-2)-dimensionalen Raum

zu definieren, welcher die Dupinsche Indikatrix der gegebenen Fläche heisst. Ist

speziell F2 eine quadratische Form, so ist jene ein algebraisches Gebilde zweiter

Ordnung. Ihre Achsen liefern dabei die Hauptkrümmungsrichtungen. Für den

zweidimensionalen Fall werden die Krümmung von Gauss, die in der klassischen

Theorie das Produkt der Hauptkrümmungen ist, und die mittlere Krümmung M
eingeführt.
In der allgemeinen Geometrie muss man zwischen der äusseren Krümmung K,
die Finsler die Krümmung nach Gauss nennt, und der inneren Krümmung Kt
unterscheiden. Ist F2 eine quadratische Form, so wird K=-\/rlr2 und

M=(\/rl + l/V2)/2, wo \jrx und l/r2 die Hauptkrümmungen sind.

Um die innere Krümmung Kt im Punkt P zu erhalten, betrachtet man eine

Extremale durch P und ihre Parallelkurven. Eine zweite Extremale durch P

schneide diese unter dem Winkel y/. Kt wird als der negative Grenzwert

lim =0(l/y/)(d2if//ds2) definiert und stimmt mit einer Invarianten bei einem

Extremalproblem überein. Die Torsion oder die zweite Krümmung k2 einer Kurve
ist der Grenzwert \imAs=o(A02/As),wobei 02 der Winkel zwischen benachbarten

Schmiegebenen ist. Die Torsion der geodätischen Linien wird sowohl durch die

Ableitung der Normalkrümmung ausgedrückt als auch durch die Flächenkrümmungen

k, M und K. Ist F2 eine quadratische Form, so verschwindet die Torsion
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der geodätischen Linien für die Hauptkrümmungsrichtungen oder, anders
ausgedrückt: Die Torsion der geodätischen Tangente einer Krümmungslinie verschwindet

im Berührungspunkt.
Jede geodätische Krümmungslinie ist eben, und jede ebene geodätische Linie ist
Krümmungslinie oder Extremale. Für die Asymptotenlinien gilt, dass das Quadrat
ihrer Torsion gleich der negativen Gaußschen Krümmung der Fläche ist. Zum
Abschluss der Arbeit werden die abwickelbaren Flächen betrachtet. Diese definiert
Finsler als solche, die eine Schar von Asymptotenlinien tragen, deren Gaußsche
Krümmung K identisch verschwindet, sie heissen naturgemäss die Erzeugenden
der Fläche. Allerdings verliert die Bezeichnung <abwickelbar> ihre ursprüngliche
Bedeutung. In der euklidischen Geometrie sind die abwickelbaren Flächen zugleich
Regelflächen. In der Finslerschen Geometrie sind dagegen die abwickelbaren
Flächen keine Regelflächen. Ihre Erzeugenden sind ebene Kurven, deren Krümmung

angegeben wird. Die Tangenten der Erzeugenden berühren die Fläche in
mindestens dritter Ordnung.
Die Dissertation ist ausserordentlich klar geschrieben, Finsler ist 1940 in zwei
Abhandlungen darauf zurückgekommen. In Nr. 19 <Über eine Verallgemeinerung
des Satzes von Meusnieo verallgemeinert er ein in der Dissertation aufgestelltes
Ergebnis. Er lässt die dortige Bedingung, wonach der v-dimensionale Schmiegraum
zur Fläche normal steht, fallen und erhält ein entsprechendes Resultat. Die Arbeit
Nr. 20 vermittelt einen kurzen Überblick über die Dissertation und ist als eine erste
Lektüre zu empfehlen. Die Einleitung und Problemstellung erinnert an die
Betrachtungen von Grassmann und von Riemann. Als Ziel seiner eigenen
Untersuchungen wird angegeben, die Begriffe von Windung und Torsion einer Kurve
auf Räume beliebiger Dimension und Massbestimmung auszudehnen. Entsprechend

wäre die Flächentheorie zu behandeln. Im zweiten Paragraphen wird in
solchen Räumen die Krümmung definiert wie in der Dissertation auf Seite 59 und
die Länge eines Bogenstückes als Integral über F{x,x!) eingeführt (Dissertation
S. 33). Die Differenz zwischen Sehne und Bogen wird dann das Integral über
die Weierstraßsche 2?-Funktion (Dissertation S.61). Im dritten Paragraphen wird
die Winkelmessung zwischen Kurven und zwischen Flächenelementen ausgeführt.
Paragraph 4 behandelt die erste und die höheren Krümmungen kx,,..,kv einer Kurve,

wobei deren Produkt klk2---kv gleich der v-ten Ableitung des Winkels ist, den
die Projektion der Kurve auf die v-dimensionale Schmiegebene mit der sie treffenden

Feldlinien bildet.
In Paragraph 5 wird die erste Krümmung einer Fläche und insbesondere der
Satz von Meusnier behandelt, während Paragraph 6 die höheren Krümmungen
einführt.
In Paragraph 7 wird, neu gegenüber der Dissertation, die Frage aufgeworfen, ob
es natürliche Gleichungen einer Fläche gibt, analog zu den natürlichen Gleichungen

einer Kurve. Man stellt sich also die Frage, ob ein Flächenstück bestimmt
ist durch die Normalkrümmungen, die etwa längs einer Schar von geodätischen
Linien als Funktion der Bogenlänge gegeben sind. Finsler weist darauf hin, dass

die Frage in Sonderfällen von seinem Schüler S. Grünbaum in desspn Dissertation

bejahend beantwortet ist.
Im abschliessenden Paragraphen bespricht Finsler das Verhältnis seiner geometri-
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sehen mit den inzwischen sehr erfolgreich eingesetzten analytischen Methoden

des Differentialkalküls. Es stellt sich dabei die Frage, was unter geometrischer

Methode zu verstehen ist. Finsler denkt dabei etwa an ähnliche Unterschiede,

die zwischen analytischer und synthetischer Geometrie bestehen.

Finsler eröffnete mit seiner Dissertation der Geometrie ein neues Forschungsgebiet.

Zunächst verbreiteten sich seine Gedanken nur langsam, dies ist wohl dem

Umstand zuzuschreiben, dass die Dissertation als Privatdruck nur eine beschränkte

Verbreitung fand. Erstmals sehe ich die Bezeichnung <general (Finsler) space>

im Jahre 1927. Durch das Buch <Les espaces de Finslen von Elie Cartan bürgerte
sich ab 1934 die Bezeichnung ein, und die Ideen fanden weltweite Anerkennung.
1951 gab sodann der Birkhäuser Verlag einen anastatischen Nachdruck heraus.

Wie weltberühmt Finsler war, zeigt eine kleine Anekdote: Ich hatte einst zwei

japanische Mathematiker durch das Institut zu begleiten. Wir kamen zur Türe des

Dozentenzimmers im dritten Stock der Universität. Bevor ich öffnete, bemerkte

ich zu den Besuchern, dass ich sie Paul Finsler vorstellen werde. Die beiden

erstarrten und sagten: «Finsler lebt?!» Es war, als hätte ich ihnen gesagt, sie

würden Euklid sehen.

Finsler beschäftigte sich ausführlich mit Fragen der algebraischen Geometrie und

legte seine Ergebnisse in den Arbeiten Nrn. 5, 6, 9, 11, 12, 16, 17, 18 und 21 dar.

1927 erschien die erste Ankündigung, 1929 in Nr. 9 ein erster Teil. Darin geht

Finsler von einer aus der Variationsrechnung entspringenden Frage aus: Unter

welchen Bedingungen enthält eine mehrparametrige lineare Schar von quadratischen

Formen eine definite Form? Diese Frage führt zur Untersuchung einer

bestimmten Klasse von algebraischen Gebilden, insbesondere der später untef^

suchten Freigebilde. Ein algebraisches Gebilde ist eine Menge von Punkten im

n-dimensionalen projektiven Raum Rn, deren Koordinaten xo:xx: ¦¦¦:x„ einem

System von homogenen algebraischen Gleichungen genügen. Es werden die

Begriffe der Vereinigung G+H und des Durchschnittes GH zweier Gebilde

definiert. Wichtig ist, wie Finsler die Reduzibilität definiert: G heisst reduzibel,

wenn es als Vereinigung zweier algebraischer Gebilde A und B dargestellt werden

kann, von denen keines mit G identisch ist: G=A + B. Anderenfalls heisst G irredu-

zibel. Nach der Einführung der linearen Gebilde wird mittels Betrachtung der

Schnittpunktzahlen, das heisst auf geometrischem Weg, die Ordnung eines Gebildes

eingeführt. Abschliessend beweist Finsler den Satz, dass ein algebraisches Gebilde G

reduzibel ist, wenn ein anderes Gebilde A derselben Dimension in ihm enthalten

ist. Dabei wird die Dimension folgendermassen eingeführt: Ein linearer Raum Lv

wird von linearen homogenen Gleichungen dargestellt, seine Dimension v ist um

eins geringer als die grösste Anzahl linear unabhängiger Punkte, die man beliebig

in ihm wählen kann. G=GV heisst v-dimensional, wenn es einen L„_v^1, aber

keinen L„_v gibt, der Gv nicht trifft. Die Dimension eines Gebildes ist von der

Dimension des umgebenden Raumes unabhängig.
Die Arbeiten Nrn. 11, 12, 16, 17, 18 und 21 handeln insbesondere von den

Freigebilden und Freisystemen. B.L. van der Waerden hat sie im Zentralblatt für
Mathematik (Zbl.) referiert und mir freundlichst erlaubt, seine Besprechungen im

folgenden wiederzugeben, wofür ich ihm auch hier bestens danke.

Nr. 11 (Zbl. 16, S.221): «Ein algebraisches Gebilde im komplexen projektiven
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Raum heisst Freigebilde, wenn es von jedem linearen Raum entweder in unendlich

vielen Punkten (d.h. in ganzen Kurven oder Flächen) oder in endlich vielen
linear unabhängigen Punkten geschnitten wird. Aufgrund einiger allgemeiner Sätze
über Freigebilde werden alle Freigebilde des dreidimensionalen Raumes L3
aufgezählt. Es sind quadratische Flächen und kubische Raumkurven sowie einige aus
Punkten, Geraden, Kegelschnitten und Ebenen zusammengesetzte Gebilde. Ist eine
Fläche 2. Grades Qa mit reeller Gleichung in L3 gegeben und ganz auf der einen
Seite von Qa ein reelles Freigebilde F, das nicht mit dem ganzen Raum zusammenfällt,

so gibt es eine Fläche 2. Grades Qb, die F enthält und Qa im Reellen nicht
trifft. Hat F Punkte mit Qa gemeinsam, aber im übrigen nur Punkte auf der
einen Seite von Qa, so gibt es auch eine Fläche 2. Grades Qb, die F enthält und
Qa nicht durchsetzt. Ist ein algebraisches Gebilde G in L3 im Reellen nicht
Freigebilde, so gibt es eine Fläche 2. Grades Qa derart, dass G auf der einen
Seite von Qa liegt, aber dass jede Fläche 2. Grades Qb, welche G enthält, Qa
trifft.»
Nr. 12 (Zbl. 16, S. 199): «In einer zweigliedrigen Schar von reellen quadratischen
Formen Qa + À Qb in n+ 1 Veränderlichen gibt es dann und nur dann eine definite
Form, wenn die Form Qa für die reellen Nullstellen von Qb stets positiv oder
stets negativ ist. Eine semidefinite Form gibt es in der Schar, wenn Qa für die
reellen Nullstellen von Qb stets 2:0 oder stets <0 ist. Sind Tj^jQj sämtliche
quadratische Formen in n+l<4 Veränderlichen, die auf einem festen reellen
Freigebilde G (siehe Nr. 11) Null werden, und ist Qa eine reelle Form, welche
für die reellen Punkte von G nur positive Werte (bzw. nur Werte > 0) annimmt,
so enthält die Schar ßa +X^ß/ eine positiv definite (bzw. halbdefmite) Form.
Wenn dagegen die gemeinsamen Punkte der Nullstellen der Formen Qj ein Gebilde
G ergeben, das im Reellen nicht Freigebilde ist, so kann man eine Form Qa finden,
die auf G nur positive Werte annimmt, jedoch so, dass die Schar Qa + Yj^jQj nur
definite Formen enthält.»
Nr. 16 (Zbl. 19, S.325): «In dieser Arbeit werden alle Freigebilde des «-dimensiona-
len Raumes, die aus endlich vielen linearen Räumen zusammengesetzt sind,
aufgestellt.»
Nr. 17 (Zbl. 22, S.78): «Ein aus linearen Räumen bestehendes Freigebilde heisst
Freisystem. Es werden nun alle Freisysteme im sechsdimensionalen Raum S6
vollständig aufgezählt, ebenso die eindimensionalen und die irreduziblen Freigebilde
im S6.»
Nr. 18 (Zbl. 23, S. 160): «Es wird eine Konstruktionsvorschrift gegeben, durch die
man alle eindimensionalen Freigebilde erhält. Ein irreduzibles eindimensionales
Freigebilde ist eine rationale Normalkurve C des Raumes L Ein zusammenhängendes

eindimensionales Freigebilde besteht aus r solchen Kurven G"',...,O,
die sich in höchstens r— 1 Punkten treffen und so liegen, dass der zugehörige
Raum die Dimension Yußi nat- Durch Zusammensetzung solcher zusammenhängender

Gebilde in Räumen freier Lage erhält man alle eindimensionalen
Freigebilde.»

Nr. 21 (Zbl. 28, S.303): «Die wichtigsten Sätze aus der Arbeit des Verfassers
über eindimensionale Freigebilde (Nr. 18) werden auf reelle Freigebilde übertragen.
Dabei heisst ein Freigebilde reell, wenn es mit dem konjugiert komplexen zusam-
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menfällt und seine reellen Punkte nicht in einem Raum geringerer Dimension

enthalten sind als die komplexen. Sodann wird bewiesen: Wird ein zum Raum

L gehöriges Freigebilde G von einer Hyperfläche 2.Grades in p+l linear

unabhängigen reellen Punkten getroffen und nicht durchsetzt, so ist es ganz in ihr
enthalten. Der wichtigste Hilfssatz heisst: Jeder nichtreelle Punkt eines reellen

Freigebildes G gehört einer in G enthaltenen reellen Freikurve an.»

Finslers Lehrauftrag umfasste die angewandte Mathematik und die Geometrie.

Zur Belebung der darstellenden Geometrie liess er verschiedene Modelle

anfertigen. Für die angewandte Mathematik schaffte er eine Rechenmaschine an

sowie ausgedehnte Primzahltabellen. Er hatte Freude am Experimentieren mit

Zahlen und der Beschäftigung mit Figuren. Davon zeugen die Arbeiten Nrn. 13,

14, 23, 24, 25, 26, 33 und 34. In Nr. 13 untersucht er teils ältere

Näherungskonstruktionen, teils neue und eigene. Er behandelt a) die Würfelverdoppelung,

b) die Konstruktion der Seite des regulären 7-, 9-, 11- und 13-Ecks, c) die

Näherungskonstruktion von Umfang und Fläche des Kreises, d) die Dreiteilung
eines Winkels und verallgemeinert dies auf die Teilung in n Teile. Besondere

Sorgfalt widmet Finsler dabei der Bestimmung des auftretenden Fehlers. Im Anhang

gibt er eine reizvolle Konstruktion einer bestimmten Ellipsentangente. Diese ist

so gelegen, dass sie sich zwischen den beiden Krümmungskreisen in den Scheiteln

befindet. Zusammen mit diesen erlaubt sie, die Ellipse mit guter Genauigkeit zu

zeichnen, und hat sich in den Übungen zur darstellenden Geometrie stets bewährt.

In der späteren Arbeit Nr.33 wird In durch 3 + VW/3 angenährt. Ferner schlägt

der Autor eine Approximation von n vor, mit einem Fehler von etwa 2,3 ¦ 10~9.

Verschiedene bekannte Approximationen werden diskutiert und eine bereits in
Nr. 13 vorgeschlagene neue Konstruktion für den Kreisumfang vereinfacht. Ein

Zusatz zu ihr liefert eine relative Genauigkeit, die kleiner als ein Milliardstel

ist. Finsler zeigt insbesondere, wie sich seine Konstruktion zum Zeichnen in einer

Gitterebene eignet, ausserdem stellt er Vergleiche mit den Näherungen anderer

Geometer an.

Finsler hat sich eingehend mit der Wahrscheinlichkeitsrechnung befasst. Seine klare

und tief durchdachte Vorlesung hierüber hat viele Studierende in dieses Gebiet

eingeführt. In der Arbeit Nr. 26 geht er von den Schwierigkeiten aus, die der

klassischen sowie der Limesdefinition der Wahrscheinlichkeit anhaften. Sodann

stellt er eine einfache axiomatische Begründung auf. Die Arbeit verdient auch

heute noch Beachtung, obschon Finsler bereits vorhandene Darstellungen in

derselben Richtung nicht berücksichtigt hat. Einen weiteren Beitrag zur

Wahrscheinlichkeitsrechnung liefern die Nrn. 24 und 34. In einer Poisson-Verteilung

mit dem Parameter Ô wird die Wahrscheinlichkeit w(ô,t,T) dafür berechnet, dass

das Zeitintervall T mindestens ein Intervall t mit 0<t< T enthält, in welches kein

Ereignis fällt.
In Nr. 23 gibt Finsler einen einfachen Beweis für das Postulat von Bertrand,

wonach zwischen n und In stets wenigstens eine Primzahl liegt. Der Beweis

beruht darauf, dass der Quotient von (2n)! und (nlnl) vollständig in
Primfaktoren zerlegt wird. Dieses Verfahren ermöglichte ihm gleichzeitig, für die Anzahl
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der Primzahlen zwischen n und In eine obere und eine untere Grenze
anzugeben.

In Nr. 25 zeigt sich einmal mehr Finslers Liebe zur elementaren Zahlentheorie.
In einem ersten Abschnitt werden mit der ihm eigenen Gründlichkeit die
Teilbarkeitsregeln durch die Zahlen 7, 11 und 13 behandelt. Sodann wird erläutert,
wie man mit Hilfe des Rechenschiebers das Produkt 1 • n=p ¦ q zerlegen kann. Die
Zunge des Schiebers wird herausgezogen und umgekehrt eingefügt, so dass die
Skalen entgegengesetzt laufen. Gegenüberliegende Zahlen haben dann ein konstantes

Produkt; steht 1 der Zahl n gegenüber, so p der Zahl q. Hiermit und mit
einigen Hilfstafeln wird unter anderem 10000007 941 • 10 627 zerlegt, während
100000007 sich als Primzahl erweist.
In einer kurzen Notiz in (Courrier du Sphinx> 7 (1937) berichtet Finsler, dass
er Anno 1934 durch eine direkte Methode, ohne die Bestimmung der quadratischen
Reste, fünf Primzahlen gefunden habe, z.B. 1308 636 140501.
In der Arbeit Nr. 14 werden einem Dreieck D über seinen Seiten nach aussen
bzw. nach innen gleichseitige Aufsatzdreiecke angelegt, man erhält eine nach
Torricelli benannte Figur. Die Schwerpunkte der angelegten Dreiecke bilden gleichseitige

Dreiecke D{ bzw. D2. Die zwischen deren Flächen F, Ft und F2 und
deren quadratischen Umfangen bestehenden Gleichungen und Ungleichungen
werden bewiesen. Anschliessend wird eine Verallgemeinerung betrachtet, in welcher
die aufgesetzten Dreiecke zueinander ähnlich sind. Auch hier gilt Fl-F2 F.
Dx und D2 sind dann zu den Aufsatzdreiecken ähnlich. Der Schwerpunkt von D
liegt in der Mitte zwischen demjenigen von Dl und D2; sind diese gleichseitig,
so fallen die drei Schwerpunkte zusammen. Ferner haben Dx und D2 denselben
Höhenschnittpunkt. Mittels des Begriffes des Spiegelpunktes eines Dreiecks werden
Sätze über die elf Spiegelpunkte eines solchen hergeleitet. Die Arbeit zeigt einmal
mehr, wie reich an neuen Beziehungen die elementare Dreiecksgeometrie ist.
Mit der Arbeit Nr. 27 betritt Finsler ein schwieriges Gebiet der Arithmetik. Es
handelt sich um Forschungen, welche die Zahlen der-höheren Zahlenklassen und
ihre Operationen betreffen. Ist co die erste auf die Reihe der natürlichen Zahlen
folgende Ordnungszahl, so kann man für sie die Addition co + co, die Multiplikation
co ¦ co und das Potenzieren einführen. Finsler beschäftigt sich mit dem Problem,
die auf das Potenzieren cow nächstfolgende Operation zu definieren. Dadurch
betritt er das Gebiet der Limeszahlen der zweiten Zahlklasse. Ein Ergebnis seiner
Untersuchungen besteht darin, dass er jeder Zahl der ersten und der zweiten
Zahlklasse eine <Hauptdarstellung> zuordnen kann. Sein Schüler H. Bachmann hat
die Ansätze weiter verfolgt und mit den Methoden von O. Veblen verglichen
(Comment. Math. Helv. 26, 55-67,1952).
In der seinem Kollegen B.L. van der Waerden gewidmeten Arbeit Nr. 35 führt
Finsler den Begriff der totalendlichen Menge ein. Er betrachtet zu diesem Zweck
nur reine Mengen, d. h. solche Mengen, deren Elemente stets wieder reine Mengen
sind. Zum Beispiel können die natürlichen Zahlen als solch reine Mengen aufgefasst
werden; wir haben es daher mit einer sinngemässen Verallgemeinerung dieser zu
tun. Über den Begriff der Stufenzahl gelangt man zu den totalendlichen Mengen,
das sind solche mit endlicher Stufenzahl. Wie die natürlichen Zahlen auf eine
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Punktreihe abgebildet werden können, vermag man den verallgemeinerten Zahlen

Figuren zuzuordnen, die aus Punkten und Strecken bestehen. Bedeutsam ist, dass

sie eine jeweilen assoziative Addition und Multiplikation besitzen, die jedoch nicht

kommutativ zu sein braucht. Es gelingt ferner, den Begriff der Primzahl einzuführen.

Das schwierige, von Finsler aufgeworfene Problem nach der Eindeutigkeit der

Primfaktorzerlegung wurde von G. Mazzola gelöst (Der Satz von der Zerlegung
Finslerscher Zahlen in Primfaktoren. Math. Ann. 195, 227-244, 1972). In der

folgenden Arbeit Nr. 37 zeigt Finsler, dass für seine verallgemeinerten Zahlen die

Vermutung von Goldbach falsch ist.

Paul Finsler widmete einen beträchtlichen Teil seiner Arbeitskraft der Frage nach

den Grundlagen der Mathematik. Anfang unseres Jahrhunderts erlangten solche

Überlegungen deshalb eine besondere Beachtung, weil gewisse Antinomien der

Mengenlehre Zweifel daran aufkommen Hessen, ob mathematisches Schliessen stets

zu eindeutigen Ergebnissen führe. Durch die Schriften bedeutender Forscher jener

Zeit, unter anderen D. Hubert, L.J. Brouwer, H. Weyl, wurden die Fragen in den

Mittelpunkt der Auseinandersetzungen von Mathematikern und Philosophen
gestellt, Diskussionen, die oft mit Härte und Verbissenheit geführt wurden. Finsler

griff in diese Auseinandersetzungen ein mit seiner Antrittsrede Nr. 2 <Gibt es

Widersprüche in der Mathematik?), gehalten 1923 in Köln. In dieser Rede umriss er

ein Programm, das er in den Arbeiten Nrn. 3, 4, 7, 8, 10, 15, 22, 30, 31 und 36

ausführte und vervollständigte. Ich möchte mich kurz an die Ausführungen der

Antrittsrede halten, um eine Skizze von Finslers Gedanken darzulegen. Die Frage:

«Gibt es unlösbare Widersprüche im exakten Denken?», oder anders ausgedrückt:

«Ist jeder Satz entweder richtig oder falsch?», oder nochmals anders gewendet:

«Kann man einen Satz zugleich mit seinem Gegenteil beweisen?» bildet den

Ausgangspunkt. Diese Fragen sind in gewissen Antinomien begründet, von denen

Finsler insbesondere zwei anführt:

1. Welches ist die kleinste natürliche Zahl, die nicht mit weniger als 100 Silben in
deutscher Sprache definiert werden kann? Vor allem: Gibt es eine solche Zahl?

2. Man bilde die Menge aller sich nicht selbst enthaltenden Mengen. Enthält sich

diese selbst oder enthält sie sich nicht selbst?

Lösungsversuche dieser Fragen von D. Hubert, H. Poincaré, B. Russell, J. König,
L.J. Brouwer werden von Finsler nicht anerkannt. Er stellt sich die Aufgabe, die

entstehenden Widersprüche aufzuklären und daraufhin zu lösen.

Um zu diesem Ziel zu gelangen, gibt er ein neues Problem:

Schreibe auf die Tafel die Zahlen 1, 2, 3 und den Satz: «Die kleinste natürliche

Zahl, die nicht auf der Tafel angegeben ist.»

Frage: Gibt es eine solche Zahl?

Mit dieser Antinomie zeigte uns Finsler den prinzipiellen Unterschied zwischen

Schreiben und Sprechen, formalisierten Aussagen und Denken. Er ist damit, wie

B.L. van der Waerden in seinem Nachruf betont, ein Vorläufer von Kurt Gödel

geworden. Sprache, als Medium des Denkens und zugleich Gegenstand des Denkens;

Denken nur zu vermitteln, soweit gesprochen werden kann, diese Antinomie

in aller menschlichen Erkenntnis und ihrer Mitteilung liegt der fruchtbaren, bis

heute nicht beendigten Auseinandersetzung jener Zeit zugrunde. Auch die berühm-
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ten (Entretiens de Zürich> von 1938 zeigten nur Trennung, konnten keine Lösung
oder Verständigung bringen; die Zeit liess die Auseinandersetzungen zur Vergangenheit

werden. Eine ausführliche Rechtfertigung seines Standpunktes, die Finsler
1964 veröffentlichte, fand kaum Beachtung. War alles vergeblich? Ich glaube nicht.
Vor allem waren es die folgenden Gedanken Finslers, die Beachtung fanden:
1. Finsler betrachtet nicht irgendwelche Zusammenfassungen als Mengen, sondern
nur solche, deren Elemente stets wieder Mengen sind. Dies hat sich als fruchtbar
erwiesen. 2. Es ist nicht selbstverständlich, ob ein System von Mengen wieder eine
Menge bildet. Man muss zwischen den beiden Begriffen unterscheiden. 3. Finslers
Begriff der zirkelhaften Definitionen stellt einen fruchtbaren Ansatz zur Untersuchung

logischer Beziehungen dar. Ich hatte versucht, Finslers Gedanken in zwei
Arbeiten verständlich darzustellen (Zur Neubegründung der Mengenlehre. Jber,
Deutsch. Math.-Verein. 48, 146-165, 1938, und 49, 146-155, 1939). Der Erfolg blieb
aus.
Für Finsler waren obige Auseinandersetzungen ein zentrales Problem. Widersprüche

in seiner Wissenschaft wären für ihn unerträglich gewesen. Und wie könnten
solche entstehen? Seine Antwort war: «Widersprüche entstehen, indem man sich
selbst widerspricht.» Auf meine Frage, ob er dies begründen könne, blieb er mir die
Antwort schuldig. Finsler glaubte an die Richtigkeit menschlichen Denkens und die
Möglichkeit der sprachlichen Verständigung; die Problematik, die hierin liegt, sah
er nicht, sie lag ausserhalb seines Daseins. Ich komme unten nochmals auf sein
Weltbild zu sprechen.
Finsler war, obwohl eher sensibler Natur, ein zäher Denker, wie die Auseinandersetzung

mit den Grundlagen der Mathematik zeigte, die sich über sein ganzes Leben
hin erstreckte. Er war sensibel, indem der Widerstand gegen seine Ansichten seine
geistige und physische Gesundheit stark angegriffen haben. Ich erinnere mich gut:
Er trug etwa 1927 seine Ansichten im mathematischen Kolloquium in Zürich vor. Sie
wurden von H. Weyl in der anschliessenden Diskussion nach Strich und Faden
zerzaust. Finsler musste daraufhin wegen Krankheit für zwei Jahre beurlaubt
werden.
Nach Abschluss obiger Ausführungen erhalte ich das Buch (Inhaltliches Denken
und formale Systeme) von Bernardo J. Gut (Verlag Rolf Kugler, Oberwil bei Zug,
1979) zugestellt. Darin wird, nach langer Pause, das Problem (Denken - Sprechen)
neu in ganzer Breite aufgerollt. Ausführlich werden Finslers Ansichten in ihren
verschiedenen Fassungen sowie seine Auseinandersetzungen mit den Kritikern
dargelegt. Durch das gründliche Studium der Originalabhandlungen liefert uns
B. Gut einen wertvollen Beitrag zur angemessenen Beurteilung von Finslers
Gedankengut und dessen Bedeutung für die Grundlagenforschung.
Paul Finsler war ein ausgezeichneter Kenner des Sternenhimmels, den er bei jeder
Gelegenheit mit dem Feldstecher beobachtete. Wenn nötig begab er sich, oft mitten
in der Nacht, auf die Sternwarte der Eidgenössischen Technischen Hochschule, um
seine Beobachtungen an grösseren Instrumenten fortzusetzen. Dabei gelang es ihm,
zwei neue Kometen zu entdecken. Bereits in Köln fand er am 15. September kurz
nach 8 h MEZ den Kometen 1924c und am frühen Morgen des 4. Juli 1937 den
Kometen 1937f im Sternbild des Perseus (Astronomische Nachrichten, Bd. 222, Kiel
1924, Nr. 5324, S.335, bzw. Bd.263, Kiel 1937, Nr. 6301, S.250). Für diese Entdek-
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kungen erhielt er 1924 und 1937 die Medaillen der Astronomical Society of the

Pacific. Ferner beobachtete er die Sternschnuppen vom 9. Oktober 1933 in der Bahn

des Kometen Giacobini-Zinner (ebenda, Bd.250, Kiel 1933, Nr.5986, S. 173f.). Er ist

Mitentdecker der sehr hellen Nova im Sternbild Puppis, die er in den frühen

Morgenstunden des 11. November 1942 als erster in Europa beobachtete (Bericht

von M. Waldmeier in <Die Sterne>, 23.Jahrgang 1943, Heft 11/12, und Beob.

Zirkular der Astronomischen Nachrichten 24,1942, Nr.25, S. 115).

Wenn ich richtig sehe, so finden wir in der Gestalt des Hans Gisler im Roman von

Jakob Humm <Ein Jahr im Leben des Daniel Seub (Tages-Anzeiger, Zürich,
3. Oktober 1977) ein treffendes Bild des jungen Finsler. Ich erlaube mir, daraus

folgendes wiederzugeben:
«Wir trafen uns gewöhnlich im Odeon und wanderten den See hinauf. Auf jener
Bank beim Hafen Riesbach fand ich fast regelmässig meinen Freund Hans Gisler

vor, einen Mathematiker, den ich von Göttingen her kannte; er war ein Semester

vor mir nach Zürich zurückgekehrt und wohnte im Seefeld bei zwei Tanten.

Gisler war ein schmächtiger Mensch, dem ein gefrorenes Lächeln die Lippen

umspielte und der nur Hochdeutsch sprach, aber schwäbelnd, weil er in Stuttgart

aufgewachsen war. Er war aber Zürcher aus alter Familie. Er lud mich einmal zum

Tee bei seinen Tanten ein; beide Damen sassen still und schüchtern auf ihren

Stühlen, hinter ihnen hingen an den Wänden grosse Brustbilder von Lavater,

Gessner, Bodmer; unser Gespräch bestand aus Hüsteln, Lächeln, Schweigen....
So war Freund Gisler, ein verträumter Mathematiker. Und er war nicht nur im

Leben ungeschickt, er war es auch in seinem Fach; mit seiner Dissertation, von der

es hiess, sie sei genial, trieb er es so verzagt, dass man sie ihm zusammenschreiben

musste. Er kam mit der Reihenfolge der Beweise nicht zu Rande!

In Zürich machte er abends seinen Erholungsspaziergang am See, er kam vom

Zürichhorn daher, und bei unserer Bank in der kleinen Riesbachanlage las er den

Barometerstand ab. Er trug ständig einen Taschenbarometer bei sich und dazu

einen Schrittmesser. Auch diesen konsultierte er bei der Bank, und es freute ihn,

dass er vom Zürichhorn bis zu dieser Bank immer die gleiche Anzahl Schritte

machte, die Abweichung betrug kein Promille. Das hatte er schon in Göttingen so

gehalten; auf kleinen Wanderungen in der hügeligen Umgebung zeigte er mir stolz,

dass er schon Höhendifferenzen von zehn Metern ablesen konnte.»

Das Bild von Finsler bliebe unvollständig, wenn ich nicht seine Schrift Nr. 32 <Vom

Leben nach dem Tode> erwähnen würde. Er verfasste sie als Mitglied der <Gelehr-

ten Gesellschaft) als 121.Neujahrsblatt auf das Jahr 1958. Sie fand viele Leser und

ist vergriffen. Im Mittelpunkt steht in Abschnitt 9 eine Erkrankung des Verfassers,

während der er in tiefe Bewusstlosigkeit verfiel. Wieder erwacht, überdeckt sich das

Erleben des Jenseits mit dem Bisherigen, insbesondere mit seiner Wissenschaft. Wir

treffen daher auf eine faszinierende Schilderung der unendlichen Sternenwelt und

des Kosmos mit der Frage nach dem Leben auf anderen Sternen, wir begegnen

natürlich auch den Auseinandersetzungen mit den Antinomien und der Frage nach

der Wahrheit. So sehen wir in Finsler einen Menschen, bei welchem sich zwei

verschiedene Ebenen der Wirklichkeit in einem Bildrahmen vereinigen: vorn die

äussere, hinten die innere Wirklichkeit. Und dies ist, nach Georg Schmidt (Edvard
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Munch), vielleicht die knappeste Definition dessen, was wir Surrealismus nennen:
Die Verbindung verschiedener Wirklichkeitsebenen im gleichen Bildraum.
Und noch eine andere Charakterisierung trifft auf Finsler zu: Die Abgeschlossenheit
und die Ichbezogenheit seines Daseins. Wie er sagt: Ich bin jeder und jeder ist ich.
Er war ein elliptischer Mensch. Sein Lebensraum erfüllte das Innere einer Ellipse,
im einen Brennpunkt stand er, im Gegenpunkt der andere, aber dieser war derselbe.
Einen Aussenraum gab es sowenig, wie es einen Zugang zu diesem Innenraum gab.
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