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28 J.J1. Burckhardt: Die Mathematik an der Universitit Ziirich 19161950

Menschen wie Speiser wirken in die Tiefe. Wir diirfen feststellen, dass er die Saat
aufgehen sah. Vieles aber harrt noch des Wachsens. Es liegt in der Natur des
Geistigen, dass oft eine oder mehrere Generationen das Erbe nicht niitzen konnen,
spitere werden davon um so mehr zehren. Dies gilt auch fiir das Erbe von Speiser.
Noch hatte sich die Erde iiber seinem Grabe nicht gesenkt, als aus seiner Vaterstadt
zu vernehmen war: «Die Weissglut mathematischer Forschungsarbeit lag ithm
nicht» (NZZ, 21. Oktober 1970, Mittagsausgabe).

3. Paul Finsler wurde am 11.April 1894 als Sohn des Kaufmanns Julius Finsler
(1853-1905) und seiner Frau Elise-Luise, geborene Berrer (1872-1913), in Heil-
bronn geboren. Er wuchs im Kreise einer Schwester und des Bruders Hans auf, der
als Photograph einen bedeutenden Namen erwarb. Die Familie Finsler, aus Stifa
stammend, wurde 1538 in Zirich eingebiirgert. Ein Urgrossvater von Paul, Hans
Jakob Finsler (1796-1863) verheiratete sich mit Louise Gessner, einer Enkelin von
Pfarrer Hans Caspar Lavater. Der Grossvater Jakob Georg Finsler (1826-1887),
verheiratet mit Susanne Amalie Ulrich, war Kaufmann im Meyershof.

Paul Finsler besuchte die Lateinschule in Urach und 1908-1912 das Realgymna-
sium in Cannstatt, das er mit dem Zeugnis der Reife verliess. Nach einem Studien-
jahr an der Technischen Hochschule in Stuttgart bezog er die Universitdt Gottingen
zum Studium der Mathematik. Im Frithjahr 1918 erwarb er dort den Doktorgrad
mit der Dissertation «Uber Kurven und Flichen in allgemeinen Raumem, die er auf
Anregung von C. Carathéodory schrieb. Unter seinen Lehrern finden wir die
bedeutendsten Mathematiker jener Zeit, unter anderen E. Hecke, D. Hilbert,
F. Klein, E. Landau, C. Runge. 1922 habilitierte sich Finsler an der Universitit
Ko6ln und wurde im Dezember 1926 mit Amtsantritt im April 1927 zum ausseror-
dentlichen Professor fiir angewandte Mathematik an der Universitdt seiner Vater-
stadt gewihlt. Der Lehrauftrag umfasste 6-8 Semesterstunden, und zwar: in jedem
Semester eine vierstitndige Vorlesung mit Ubungen in darstellender Geometrie und
Vorlesungen in zwanglosem Turnus aus den iibrigen Gebieten der Geometrie und
der angewandten Mathematik. Auf den Herbst 1944 wurde Finsler zum ordenth-
chen Professor ernannt, mit einer Lehrverpflichtung von 8 bis 12 Vorlesungs- und
Ubungsstunden, wovon jedes Semester eine vierstiindige Vorlesung uber Differen-
tial- und Integrairechnung mit je einer Stunde Proseminar. Spiter ibernahm er statt
dieser Vorlesung wieder diejenige in darstellender Geometrie. Im Frithjahr 1959 trat
er altershalber zuriick, unter gleichzeitiger Ernennung zum Honorarprofessor. Eine
Reise nach dem Fernen Osten erfiillte hierauf seinen Wunsch, auch dort den
Sternenhimmel betrachten zu konnen. Die Teilnahme am mathematischen Leben in
Zirich, an Vortrigen und Seminarien zeigt sein fortdauerndes Interesse an der
Wissenschaft. War Finsler lange Zeit ein ristiger Wanderer, der auf keinem
Seminarausflug fehlte, so untersagten ihm dies in spiteren Jahren aufiretende
Herzbeschwerden. Auf dem Gang zum Dies academicus am 29. April 1970, einem
schwiilen Tag, erlag er kurz vor Erreichen der Universitit einem Herzversagen.
Ausgehend von Ideen von Bernhard Riemann stellte Carathéodory Finsler die
Aufgabe, die Differentialgeometrie von Kurven und Flichen in Rdumen R, von
beliebig vielen Dimensionen n unter Zugrundelegung einer verallgemeinerten
Lingenbestimmung, Metrik oder Massbestimmung zu untersuchen. Dabei wird
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stets nur die Umgebung eines festen Punktes bzw. eines von P ausgehenden Linien-
clementes betrachtet. Mit der Bearbeitung dieser Frage eroffnete Finsler der
Forschung ein neues und iiberaus fruchtbares Gebiet.

Die Linge eines Kurvenstiickes wird von Finsler als das Integral iiber eine im
wesentlichen willkiirliche reelle Funktion definiert, die von den Koordinaten des
betrachteten Punktes P und ihren ersten Ableitungen nach der Bogenlinge abhingt.
Hiermit lisst sich eindeutig eine Kurventheorie sowie eine Theorie der Kurven und
Flichen in mehrdimensionalen Riumen aufbauen. Zum Teil erhdlt man dabei die
aus der klassischen Theorie der Kurven und Flichen bekannten Sitze, zum Teil
miissen diese modifiziert werden. Betrachten wir die Arbeit niher. Sie ist in drei
Abschnitte eingeteilt: A. Grundbegriffe (5.10-51), B. Kurventheorie (S.52-84),
C. Flachentheorie (S.85-120).

A. Ein Punkt x=(xy,...,x,) wird durch seine n Koordinaten in einem belicbigen
Koordinatensystem festgelegt, das man sich als cartesisches oder als krummliniges
vorstellen kann. Diese Punkte bilden den R,, in ihm ist durch x;=x;(uy,...,%,)
ein v-dimensionaler Raum R, (1 <v < n) festgelegt, der fiir v=n—1 als Hyperfliche,
fir v=2 als Fliche und fiir v=1 als Kurve bezeichnet wird. Jedem Punkt der
Kurve x=x(f) ist den Vektor x’ =dx/dr zugeordnet. Alle von x ausgehenden
Vektoren erfiillen der Raum T, diejenige Gerade von T,, die x’ enthilt, heisst
Linienelement (von P ausgehend). Die Linienelemente zu P in einem R heissen
Tangentialraum. Wenn eine Kurve C einen R im Punkt P trifft, so kann sie auf
eine Kurve I' in R projiziert werden. Dazu verbindet man die Punkte von C
mit denjenigen von R durch eine einparametrige Schar von Kurven C=I"+p L
Wichtig ist der Begriff der Berithrung zweier Kurven C und I'. Sie ist im Punkt
P von p-ter Ordnung, wenn in diesem Punkt genau die u ersten Ableitungen der
beiden Kurven nach dem Kurvenparameter iibereinstimmen. Fiir dieses Beriihren
werden sechs wichtige Sitze bewiesen, z.B.: «Wenn eine Kurve C auf R,
projiziert wird, so beriihrt sie alle ihre Projektionen I'y,I,... von derseiben
Ordnung.» :

Nach dieser Vorbereitung kann die Bogenlinge einer Kurve x=x(¢) definiert
werden. Man bestimmt einen Parameter s, der die Bogenlinge genannt wird, so,
dass x'=(dx /ds) - (ds/dr) wird. |
Damit wird ¥, (dx; / ds)? = p? (x, x’) eine Funktion von x und x’, und Finsler definiert

F(x,x)=4/>, x?-

0 (x,x)

Hiermit wird die Bogenlinge s(f)=[! F(x,x)dt, wobei aus der Definition von
Finsler folgt: F(x,kx")=k F(x,x’), und die Gleichung der Indikatrix lautet
F(x,X)=1.

Hiermit kann der Begriff der zu p transversalen Richtung g erklért werden, dies
ist eine Verallgemeinerung des Senkrechtstehens. Die Extremalen des Variations-
problems ds=0 sind die Integrale der Lagrangeschen Differentialgleichung und
treten an die Stelle der Geraden der gewohnlichen Differentialgeometrie. An dieser
Stelle wird besonders deutlich, wie Finsler an die Dissertation seines Lehrers
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Carathéodory ankniipft (Uber die diskontinuierlichen Losungen in der Variations-
rechnung, 1904, und Math. Ann. 62, 449-503, 1906) und auf deren Ergebnissen
aufbaut. ’

Wird die Kurve C auf die Kurve I' transversal projiziert, so wird der Winkel ¢
zwischen C und I' im Punkt P folgendermassen erklart: Man trage von P aus auf
C ein Stiick a ab, seine Projektion auf I' habe die Linge b. Dann sei cosg
=1imam0b/ a.

Ist C=C(t) und I'=TI (), so wird daraus

{) t
COSQ)“HIH[ (E F(F,I")dr/gF(C,C’)dz],

t=0

Im aligemeinen ist hierdurch der Winkel zwischen zwei Richtungen p und ¢ von
der Reihenfolge der Schenkel abhingig. Finsler gibt die Bedingungen an, in
welchen Symmetrie besteht: Es muss F?=Q(x) eine quadratische Form sein.
Mittels des Winkels zwischen Vektoren kann in der iiblichen Art derjenige zwischen
Ebenen definiert werden, ebenso das Senkrechtstehen von Vektoren auf Ebenen.
Hierbei ergibt sich der schone Satz: Eine Normale / eines Raumes R, ist trans-
versal zu v unabhingigen, unendlich benachbarten Richtungen in diesem Raum.

B. Mit obigen Begriffen lidsst sich in der Umgebung eines Linienelementes ein-
deutig eine Kurventheorie entwickeln. Man geht von einer reguliren Kurve C
aus, sie besitze im Punkt P die Richtung p. Beriihrt sie ithre Tangente in P nur
in erster Ordnung, so ist durch Kurve und Tangente die Schmiegungsebene T,
bestimmt. Die Extremalen, welche 7, in P beriihren, bilden die Schmiegfliche S,.
So fortfahrend, erhadlt man Schmiegungsriume T, und Schmiegflichen S,. Beson-
ders reizvoll ist die Einfitlhrung der Kurvenkrimmung: Sei b die Linge eines
Kurvenstiickes zwischen den Punkten 1 und 2 auf der Kurve C, s die Linge der
Sehne von 1 nach 2. Finsler definiert die Kriimmung & von C in P, indem er
die Punkte 1 und 2 in den Punkt P zusammenriicken lisst und dort den Grenzwert
nimmt:

) b—s
k=,/é1£%24 ot

Diese Definition geht fiir die klassische Kurventheorie in den tiblichen Ausdruck
iber, indem Finsler zeigt, dass sie mit dem Grenzwert

49
k=lim ~—
Aigl() 4s

iibereinstimmt, wo 4 3 der Winkel zwischen benachbarten Tangenten ist. Dies wird
fiir den zweidimensionalen Fall niher ausgefiihrt. Anschliessend werden auf zwei
Wegen die hoheren Kriimmungen einer Kurve eingefithrt und diskutiert und die
natiirliche Gleichung einer Kurve aufgestellt. Im Mittelpunkt der Kurventheorie
steht der Satz von der Eindeutigkeit: Bei geeigneten Anfangsbedingungen ist eine
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Kurve (in der Umgebung des Anfangspunktes) eindeutig bestimmt, wenn ihre
simtlichen Kriimmungen als Funktion der Bogenlinge vorgeschrieben sind.

C. Ebenso, wie in einem reguliren n-dimensionalen Raum R, auf jedem Linien-
element ein Vektor liegt und die Lingenmessung bestimmt, ist dies auch in jedem
R, der Fall 2<v<n). Ist die Fliche R, durch n—v Gleichungen Gj(x)=0,
f=1,2,...,n—v bestimmt, so ist die Linge einer auf ihr liegenden Kurve wie
frither bestimmt durch s= ﬁOF (x,x)) di, wihrend die Extremalen in R, als Losungen
des Variationsproblems 6 [ F (x,x") d¢=0 mit der Nebenbedingung G4 (x)=0 auftre-
ten; sie heissen geoditische Linien, die zugehdrigen Kriimmungen die geodétischen
Krimmungen. Jede Kurve, deren geoditische Kriitmmung identisch verschwindet,
ist geoditische Linie. Wie in der klassischen Flichentheorie gilt, dass die geodéti-
schen Linien mit denjenigen Flichenkurven identisch sind, deren Schmiegebenen
simtlich die Fliche senkrecht schneiden. Ist C eine Flichenkurve und I' ihre
geoditische Tangente, k die absolute und & die erste Kriimmung im Beriihrungs-
punkt, ferner y der Winkel zwischen den Schmiegebenen von C und von T,
dann gilt der Satz von Meusnier x?= k? cosy, und fiir die geoditische Krimmung
y gilt 2 +x2=k2,

Hierauf ist Finsler 1940 in der Arbeit Nr.19 zuriickgekommen. Definiert man
ferner als Asymptotenlinien einer Fliche diejenigen Kurven, deren Schmiegebenen
simtlich die Fldache beriihren, so ergibt sich aus dem Satz von Meusnier, dass
ihre Normalkriimmung verschwindet und dass ihre geoditische Kriimmung gleich
ihrer absoluten Kriitmmung ist. -

Ein folgender Abschnitt gilt den hoheren Kriitmmungen. Sodann wird eine Hyper-
fliche G(x)=0 (Dimension n—1=v) betrachtet, ihre Extremalen im Punkt P
bilden die Tangentenfliche T,_;. Durch Betrachtung der Paralleifliche G (x)=nh
und ihres Schnittes mit 7,_; gelingt es, darauf einen (n— 2)-dimensionalen Raum
zu definieren, welcher die Dupinsche Indikatrix der gegebenen Fliche heisst. Ist
speziell F? eine quadratische Form, so ist jene ein algebraisches Gebilde zweilter
Ordnung. Thre Achsen liefern dabei die Hauptkrimmungsrichtungen. Fur den
zweidimensionalen Fall werden die Kriimmung von Gauss, die in der klassischen
Theorie das Produkt der Hauptkriitmmungen ist, und die mittlere Krimmung M
eingefiihrt.

In der allgemeinen Geometrie muss man zwischen der #dusseren Krimmung K,
die Finsler die Krimmung nach Gauss nennt, und der inneren Kriimmung K,
unterscheiden. Ist F? eine quadratische Form, so wird K=1/ryr, und
M=(1/r+1/r)/2,wol /r; und 1/r, die Hauptkriimmungen sind.

Um die innere Kriimmung K; im Punkt P zu erhalten, betrachtet man eine
Extremale durch P und ihre Parallelkurven. Eine zweite Extremale durch P
schneide diese unter dem Winkel w. K, wird als der negative Grenzwert
lim, (1 Jw)(d*w /ds?) definiert und stimmt mit einer Invarianten bei einem
Extremalproblem iiberein. Die Torsion oder die zweite Krimmung «, einer Kurve
ist der Grenzwert lim,,_q(d4@,/45s),wobei @, der Winkel zwischen benachbarten
Schmiegebenen ist. Die Torsion der geoditischen Linien wird sowohl durch die
Ableitung der Normalkrimmung ausgedriickt als auch durch die Flachenkriim-
mungen x, M und K. Ist F* eine quadratische Form, so verschwindet die Torsion
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der geoditischen Linien fiir die Hauptkrimmungsrichtungen oder, anders aus-
gedriickt: Die Torsion der geoditischen Tangente einer Krimmungslinie verschwin-
det im Beriihrungspunkt.

Jede geoditische Kriitmmungslinie ist eben, und jede ebene geoditische Linie ist
Kriimmungslinie oder Extremale. Fiir die Asymptotenlinien gilt, dass das Quadrat
ihrer Torsion gleich der negativen GauBschen Kriimmung der Fliche ist. Zum
Abschluss der Arbeit werden die abwickelbaren Flichen betrachtet. Diese definiert
Finsler als solche, die eine Schar von Asymptotenlinien tragen, deren GauBsche
Kriimmung K identisch verschwindet, sie heissen naturgeméiss die Erzeugenden
der Flache. Allerdings verliert die Bezeichnung <abwickelbar) ihre urspriingliche
Bedeutung. In der euklidischen Geometrie sind die abwickelbaren Flichen zugleich
Regelflichen. In der Finslerschen Geometrie sind dagegen die abwickelbaren
Flichen keine Regelflichen. Ihre Erzeugenden sind ebene Kurven, deren Kriim-
mung angegeben wird. Die Tangenten der Erzeugenden berithren die Fliche in
mindestens dritter Ordnung.

Die Dissertation ist ausserordentlich klar geschrieben, Finsler ist 1940 in zwei
Abhandlungen darauf zuriickgekommen. In Nr.19 «Uber eine Verallgemeinerung
des Satzes von Meusnier> verallgemeinert er ein in der Dissertation aufgestelltes
Ergebnis. Er lasst die dortige Bedingung, wonach der v-dimensionale Schmiegraum
zur Fliche normal steht, fallen und erhilt ein entsprechendes Resultat. Die Arbeit
Nr.20 vermittelt einen kurzen Uberblick fiber die Dissertation und ist als eine erste
Lektiire zu empfehlen. Die Einleitung und Problemstellung erinnert an die Be-
trachtungen von Grassmann und von Riemann. Als Ziel seiner eigenen Unter-
suchungen wird angegeben, die Begriffe von Windung und Torsion einer Kurve
auf Réume beliebiger Dimension und Massbestimmung auszudehnen. Entspre-
chend wire die Flichentheorie zu behandeln. Im zweiten Paragraphen wird in
solchen Riumen die Kriimmung definiert wie in der Dissertation auf Seite 59 und
die Linge eines Bogenstiickes als Integral iiber F(x.x’) eingefithrt (Dissertation
S5.33). Die Differenz zwischen Sehne und Bogen wird dann das Integral iiber
die WeierstraBsche E-Fupktion (Dissertation S.61). Im dritten Paragraphen wird
die Winkelmessung zwischen Kurven und zwischen Flichenelementen ausgefiihrt.
Paragraph 4 behandelt die erste und die héheren Kriitmmungen k4, ..., k, einer Kur-
ve, wobei deren Produkt ky k,--- &, gleich der v-ten Ableitung des Winkels ist, den
die Projektion der Kurve auf die v-dimensionale Schmiegebene mit der sie treffen-
den Feldlinien bildet. |

In Paragraph 5 wird die erste Kriimmung einer Fliche und insbesondere der
Satz von Meusnier behandelt, wihrend Paragraph 6 die hoheren Kriimmungen
einfithrt.

In Paragraph 7 wird, neu gegeniiber der Dissertation, die Frage aufgeworfen, ob
es natiirliche Gleichungen einer Fliche gibt, analog zu den natiirlichen Gleichun-
gen emer Kurve. Man stellt sich also die Frage, ob ein Flichenstiick bestimmt
ist durch die Normalkrimmungen, die etwa lings einer Schar von geoditischen
Linien als Funktion der Bogenlinge gegeben sind. Finsler weist darauf hin, dass
die Frage in Sonderfillen von seinem Schiiler S. Griinbaum in dessen Disserta-
tion bejahend beantwortet ist. ’

Im abschliessenden Paragraphen bespricht Finsler das Verhiltnis seiner geometri-
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schen mit den inzwischen sehr erfolgreich eingesetzten analytischen Methoden
des Differentialkalkiils. Es stellt sich dabei die Frage, was unter geometrischer
Methode zu verstehen ist. Finsler denkt dabei etwa an #hnliche Unterschiede,
die zwischen analytischer und synthetischer Geometrie bestehen.

Finsler erdffnete mit seiner Dissertation der Geometrie ein neues Forschungs-
gebiet. Zunichst verbreiteten sich seine Gedanken nur langsam, dies ist wohl dem
Umstand zuzuschreiben, dass die Dissertation als Privatdruck nur eine beschrinkte
Verbreitung fand. Erstmals sehe ich die Bezeichnung «general (Finsler) space
im Jahre 1927. Durch das Buch <Les espaces de Finsler> von Elie Cartan biirgerte
sich ab 1934 die Bezeichnung ein, und die Ideen fanden weltweite Anerkennung.
1951 gab sodann der Birkhiuser Verlag einen anastatischen Nachdruck heraus.
Wie weltberithmt Finsler war, zeigt eine kleine Anekdote: Ich hatte einst zwel
japanische Mathematiker durch das Institut zu begleiten. Wir kamen zur Tiire des
Dozentenzimmers im dritten Stock der Universitidt. Bevor ich offnete, bemerkte
ich zu den Besuchern, dass ich sie Paul Finsler vorstellen werde. Die beiden
erstarrten und sagten: «Finsler lebt?!» Es war, als hitte ich ihnen gesagt, sie
wiirden Euklid sehen.

Finsler beschiftigte sich ausfithrlich mit Fragen der algebraischen Geometrie und
legte seine Ergebnisse in den Arbeiten Nrn.5, 6, 9, 11, 12, 16, 17, 18 und 21 dar.
1927 erschien die erste Ankiindigung, 1929 in Nr.9 ein erster Teil. Darin geht
Finsler von einer aus der Variationsrechnung entspringenden Frage aus: Unter
welchen Bedingungen enthilt eine mehrparametrige lineare Schar von quadrati-
schen Formen eine definite Form? Diese Frage fithrt zur Untersuchung einer
bestimmten Klasse von algebraischen Gebilden, insbesondere der spéter unter-
suchten Freigebilde. Ein algebraisches Gebilde ist eine Menge von Punkten im
n-dimensionalen projektiven Raum R,, deren Koordinaten xg:x;:---:x, einem
System von homogenen algebraischen Gleichungen geniigen. Es werden die
Begriffe der Vereinigung G+ H und des Durchschnittes GH zweier Gebilde
definiert. Wichtig ist, wie Finsler die Reduzibilitit definiert: G heisst reduzibel,
wenn es als Vereinigung zweier algebraischer Gebilde 4 und B dargestellt werden
kann, von denen keines mit G identisch ist: G=A4 + B. Anderenfalls heisst G irredu-
zibel. Nach der Finfihrung der linearen Gebilde wird mittels Betrachtung der
Schnittpunktzahlen, das heisst auf geometrischem Weg, die Ordnung eines Gebildes
eingefiihrt. Abschliessend beweist Finsler den Satz, dass ein algebraisches Gebilde G
reduzibel ist, wenn ein anderes Gebilde 4 derselben Dimension in ihm enthalten
ist. Dabei wird die Dimension folgendermassen eingefuthrt: Ein linearer Raum L,
wird von linearen homogenen Gleichungen dargestellt, seine Dimension v ist um
eins geringer als die grosste Anzahl linear unabhéngiger Punkte, die man beliebig
in ihm wihlen kann. G=G, heisst v-dimensional, wenn es einen L, , ;, aber
keinen L, , gibt, der G, nicht trifft. Die Dimension eines Gebildes ist von der
Dimension des umgebenden Raumes unabhéngig.

Die Arbeiten Nrn. 11, 12, 16, 17, 18 und 21 handeln insbesondere von den Frei-
gebilden und Freisystemen. B.L. van der Waerden hat sie im Zentralblatt far
Mathematik (Zbl) referiert und mir freundlichst erlaubt, seine Besprechungen im
folgenden wiederzugeben, wofiir ich ihm auch hier bestens danke.

Nr.11 (Zbl.16, S.221): «Ein algebraisches Gebilde im komplexen projektiven
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Raum heisst Freigebilde, wenn es von jedem linearen Raum entweder in unend-
lich vielen Punkten (d.h. in ganzen Kurven oder Flichen) oder in endlich vielen
linear unabhédngigen Punkten geschnitten wird. Aufgrund einiger allgemeiner Sitze
iiber Freigebilde werden alle Freigebilde des dreidimensionalen Raumes L; auf-
gezihlt. Es sind quadratische Flichen und kubische Raumkurven sowie einige aus
Punkten, Geraden, Kegelschnitten und Ebenen zusammengesetzte Gebilde. Ist eine
Fliche 2. Grades Q, mit reeller Gleichung in L; gegeben und ganz auf der einen
Seite von @, ein reelles Freigebilde F, das nicht mit dem ganzen Raum zusammen-
fallt, so gibt es eine Fliche 2.Grades Q,, die F enthilt und Q, im Reellen nicht
trifft. Hat F Punkte mit Q, gemeinsam, aber im ibrigen nur Punkte auf der
einen Seite von Q,, so gibt es auch eine Fliche 2.Grades 0, die F enthilt und
Q, nicht durchsetzt. Ist ein algebraisches Gebilde G in L; im Reellen nicht
Freigebilde, so gibt es eine Flache 2.Grades @, derart, dass G auf der einen
Seite von Q, liegt, aber dass jede Fliche 2.Grades Q,, welche G enthilt, O,
trifft.»

Nr.12 (Zbl. 16, §.199): «In einer zweigliedrigen Schar von reellen quadratischen
Formen @Q,+ 4 Q; in n+ 1 Verdnderlichen gibt es dann und nur dann eine definite
Form, wenn die Form Q, fur die reellen Nullstellen von (, stets positiv oder
stets negativ ist. Eine semidefinite Form gibt es in der Schar, wenn Q, fir die
reellen Nullstellen von Q, stets >0 oder stets <0 ist. Sind Z}Lj Q, samtliche
quadratische Formen in n+ 1<4 Verinderlichen, die auf einem festen reellen
Freigebilde G (sieche Nr.11) Null werden, und ist Q, eine reelle Form, welche
fiir die reellen Punkte von G nur positive Werte (bzw. nur Werte > 0) annimmt,
so enthilt die Schar Qa+Z}.j Q; eine positiv definite (bzw. halbdefinite) Form.
Wenn dagegen die gemeinsamen Punkte der Nulistellen der Formen Q; ein Gebilde
G ergeben, das im Reellen nicht Freigebilde ist, so kann man eine Form Q, finden,
die auf G nur positive Werte annimmt, jedoch so, dass die Schar Qﬁ-ZAj Q; nur

definite Formen enthilt.»
Nr.16 (Zbl. 19, §.325): «In dieser Arbeit werden alle Freigebilde des n-dimensiona-

len Raumes, die aus endlich vielen linearen Riumen zusammengesetzt sind,
aufgestellt.»

Nr. 17 (Zbl.22, S.78): «Ein aus linearen Riumen bestehendes Freigebilde heisst
Freisystem. Es werden nun alle Freisysteme im sechsdimensionalen Raum S, voll-
stindig aufgezihlt, ebenso die eindimensionalen und die irreduziblen Freigebilde
m Sg.»

Nr. 18 (Zbl.23, §.160): «Es wird eine Konstruktionsvorschrift gegeben, durch die
man alle eindimensionalen Freigebilde erhilt. Ein irreduzibles eindimensionales
Freigebilde ist eine rationale Normalkurve C* des Raumes L,. Ein zusammen-
hingendes eindimensionales Freigebilde besteht aus r solchen Kurven ¢, ..., C#,
die sich in hochstens r—1 Punkten treffen und so liegen, dass der zugehorige
Raum die Dimension ), y; hat. Durch Zusammensetzung solcher zusammenhin-
gender Gebilde in Réumen freier Lage erhilt man alle eindimensionalen Frei-
gebilde.»

Nr.21 (Zbl.28, S.303): «Die wichtigsten Sidtze aus der Arbeit des Verfassers
iiber eindimensionale Freigebilde (Nr. 18) werden auf reelle Freigebilde iibertragen.
Dabei heisst ein Freigebilde reell, wenn es mit dem konjugiert komplexen zusam-
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menfillt und seine reellen Punkte nicht in einem Raum geringerer Dimension
enthalten sind als die komplexen. Sodann wird bewiesen: Wird ein zum Raum.
L, gehoriges Freigebilde G von einer Hyperfliche 2.Grades in p+1 linear un-
abhingigen reellen Punkten getroffen und nicht durchsetzt, so ist es ganz in ihr
enthalten. Der wichtigste Hilfssatz heisst: Jeder nichtreelle Punkt eines reellen
Freigebildes G gehort einer in G enthaltenen reellen Freikurve an.»

Finslers Lehrauftrag umfasste die angewandte Mathematik und die Geometrie.
Zur Belebung der darstellenden Geometrie liess er verschiedene Modelle an-
fertigen. Fiir die angewandte Mathematik schaffte er eine Rechenmaschine an
sowie ausgedehnte Primzahltabellen. Er hatte Freude am Experimentieren mit
Zahlen und der Beschiiftigung mit Figuren. Davon zeugen die Arbeiten Nrn. 13,
14, 23, 24, 25, 26, 33 und 34. In Nr.13 untersucht er teils dltere Naherungs-
konstruktionen, teils neue und eigene. Er behandelt a) die Wiirfelverdoppelung,
b) die Konstruktion der Seite des reguldren 7-, 9-, 11- und 13-Ecks, c) die
Niherungskonstruktion von Umfang und Fliche des Kreises, d) die Dreiteilung
cines Winkels und verallgemeinert dies auf die Teilung in n Teile. Besondere
Sorgfalt widmet Finsler dabei der Bestimmung des auftretenden Fehlers. Im Anhang
gibt er eine reizvolle Konstruktion einer bestimmten Ellipsentangente. Diese ist
so gelegen, dass sie sich zwischen den beiden Kriimmungskreisen in den Scheiteln
befindet. Zusammen mit diesen erlaubt sie, die Ellipse mit guter Genauigkeit zu
zeichnen, und hat sich in den Ubungen zur darstellenden Geometrie stets bewihrt.
Tn der spiteren Arbeit Nr.33 wird 2z durch 3+ V97 /3 angenihrt. Ferner schlagt
der Autor eine Approximation von n vor, mit einem Fehler von etwa 2.3 - 1072,
Verschiedene bekannte Approximationen werden diskutiert und eine bereits in
Nr.13 vorgeschlagene neue Konstruktion fir den Kreisumfang vereinfacht. Ein
Zusatz zu ihr liefert eine relative Genauigkeit, die kleiner als ein Milliardstel
ist. Finsler zeigt insbesondere, wie sich seine Konstruktion zum Zeichnen in einer
Gitterebene eignet, ausserdem stellt er Vergleiche mit den Niherungen anderer
Geometer an.

Finsler hat sich eingehend mit der Wahrscheinlichkeitsrechnung befasst. Seine klare
und tief durchdachte Vorlesung hieriiber hat viele Studierende in dieses Gebiet
eingefiithrt. In der Arbeit Nr.26 geht er von den Schwierigkeiten aus, die der
Klassischen sowie der Limesdefinition der Wahrscheinlichkeit anhaften. Sodann
stellt er eine einfache axiomatische Begriindung auf. Die Arbeit verdient auch
heute noch Beachtung, obschon Finsler bereits vorhandene Darstellungen in
derselben Richtung nicht beriicksichtigt hat. Einen weiteren Beitrag zur Wabhr-
scheinlichkeitsrechnung liefern die Nrn.24 und 34. In einer Poisson-Verteilung
mit dem Parameter & wird die Wahrscheinlichkeit w(8,¢,T) dafiir berechnet, dass
das Zeitintervall 7 mindestens ein Intervall # mit 0<¢< 7 enthilt, in welches kein
Ereignis failt. '

In Nr.23 gibt Finsler einen einfachen Beweis fur das Postulat von Bertrand,
wonach zwischen n und 2# stets wenigstens eine Primzahl liegt. Der Beweis
beruht darauf, dass der Quotient von (2n)! und (n!a!) vollstindig in Prim-
faktoren zerlegt wird. Dieses Verfahren ermoglichte ihm gleichzeitig, fiir die Anzahl
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der Primzahlen zwischen n und 2n eine obere und eine untere Grenze anzu-
geben.

In Nr.25 zeigt sich einmal mehr Finslers Liebe zur elementaren Zahlentheorie.
In einem ersten Abschnitt werden mit der ihm eigenen Griindlichkeit die Teil-
barkeitsregeln durch die Zahlen 7, 11 und 13 behandelt. Sodann wird erldutert,
wie man mit Hilfe des Rechenschiebers das Produkt 1 - n=p - g zerlegen kann. Die
Zunge des Schiebers wird herausgezogen und umgekehrt eingefiigt, so dass die
Skalen entgegengesetzt laufen.Gegeniiberliegende Zahlen haben dann ein konstan-
tes Produkt; steht 1 der Zahl n gegeniiber, so p der Zahl ¢g. Hiermit und mit
einigen Hilfstafeln wird unter anderem 10 000007=941 - 10627 zerlegt, wihrend
100000007 sich als Primzahl erweist.

In einer kurzen Notiz in «Courrier du Sphinx» 7 (1937) berichtet Finsler, dass
er Anno 1934 durch eine direkte Methode, ohne die Bestimmung der quadratischen
Reste, fiinf Primzahlen gefunden habe, z. B. 1308 636 140 501.

In der Arbeit Nr.14 werden einem Dreieck D iiber seinen Seiten nach aussen
bzw. nach innen gleichseitige Aufsatzdreiecke angelegt, man erhidlt eine nach
Torricelli benannte Figur. Die Schwerpunkte der angelegten Dreiecke bilden gleich-
seitige Dreiecke D; bzw. D,. Die zwischen deren Flichen F, F, und F, und
deren quadratischen Umfingen bestehenden Gleichungen und Ungleichungen
werden bewiesen. Anschliessend wird eine Verallgemeinerung betrachtet, in welcher
die aufgesetzten Dreiecke zueinander shnlich sind. Auch hier gilt Fj—F,=F.
D, und D, sind dann zu den Aufsatzdreiecken #hnlich. Der Schwerpunkt von D
liegt in der Mitte zwischen demjenigen von D, und D,; sind diese gleichseitig,
so fallen die drei Schwerpunkte zusammen. Ferner haben D; und D, denselben
Hohenschnittpunkt. Mittels des Begriffes des Spiegelpunktes eines Dreiecks werden
Sitze uiber die elf Spiegelpunkte eines solchen hergeleitet. Die Arbeit zeigt einmal
mehr, wie reich an neuen Beziehungen die elementare Dreiecksgeometrie ist.

Mit der Arbeit Nr.27 betritt Finsler ein schwieriges Gebiet der Arithmetik. Es
handelt sich um Forschungen, welche die Zahlen der<hdheren Zahlenklassen und
ihre Operationen betreffen. Ist w- die erste auf die Reihe der natiirlichen Zahlen
folgende Ordnungszahl, so kann man fiir sie die Addition o + , die Multiplikation
o - w und das Potenzieren einfithren. Finsler beschiftigt sich mit dem Problem,
die auf das Potenzieren w® nichstfolgende Operation zu definieren. Dadurch
betritt er das Gebiet der Limeszahlen der zweiten Zahlklasse, Ein Ergebnis seiner
Untersuchungen besteht darin, dass er jeder Zahl der ersten und der zweiten
Zahlklasse eine <Hauptdarstellungy zuordnen kann. Sein Schiiler H. Bachmann hat
die Ansitze weiter verfolgt und mit den Methoden von O. Veblen verglichen

(Comment. Math. Helv. 26, 55-67, 1952).
In der seinem Kollegen B.L. van der Waerden gewidmeten Arbeit Nr.35 fiihrt

Finsler den Begriff der totalendlichen Menge ein. Er betrachtet zu diesem Zweck
nur reine Mengen, d.h. solche Mengen, deren Elemente stets wieder reine Mengen
sind. Zum Beispiel konnen die natiirlichen Zahlen als solch reine Mengen aufgefasst
werden; wir haben es daher mit einer sinngemissen Verallgemeinerung dieser zu
tun. Uber den Begriff der Stufenzahl gelangt man zu den totalendlichen Mengen,
das sind solche mit endlicher Stufenzahl. Wie die natiirlichen Zahlen auf eine
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Punktreihe abgebildet werden konnen, vermag man den verallgemeinerten Zahlen
Figuren zuzuordnen, die aus Punkten und Strecken bestehen. Bedeutsam ist, dass
sie eine jeweilen assoziative Addition und Multiplikation besitzen, die jedoch nicht
kommutativ zu sein braucht. Es gelingt ferner, den Begriff der Primzahl einzufiih-
ren. Das schwierige, von Finsler aufgeworfene Problem nach der Eindeutigkeit der
Primfaktorzerlegung wurde von G. Mazzola gelost (Der Satz von der Zerlegung
Finslerscher Zahlen in Primfaktoren. Math. Ann. 195, 227-244, 1972). In der
folgenden Arbeit Nr.37 zeigt Finsler, dass fiir seine verallgemeinerten Zahlen die
Vermutung von Goldbach falsch ist.

Paul Finsler widmete einen betrichtlichen Teil seiner Arbeitskraft der Frage nach
den Grundlagen der Mathematik. Anfang unseres Jahrhunderts erlangten solche
Uberlegungen deshalb eine besondere Beachtung, weil gewisse Antinomien der
Mengenlehre Zweifel daran aufkommen liessen, ob mathematisches Schliessen stets
zu eindeutigen Ergebnissen fithre. Durch die Schriften bedeutender Forscher jener
Zeit, unter anderen D. Hilbert, L.J. Brouwer, H. Weyl, wurden die Fragen in den
Mittelpunkt der Auseinandersetzungen von Mathematikern und Philosophen ge-
stellt, Diskussionen, die oft mit Hirte und Verbissenheit gefithrt wurden. Finsler
griff in diese Auseinandersetzungen ein mit seiner Antrittsrede Nr.2 «Gibt es
Widerspriiche in der Mathematik?, gehalten 1923 in K6ln. In dieser Rede umriss er
ein Programm, das er in den Arbeiten Nrn.3, 4, 7, 8, 10, 15, 22, 30, 31 und 36
ausfithrte und vervollstindigte. Ich méchte mich kurz an die Ausfithrungen der
Antrittsrede halten, um eine Skizze von Finslers Gedanken darzulegen. Die Frage:
«Gibt es unlosbare Widerspriiche im exakten Denken?», oder anders ausgedriickt:
«Ist jeder Satz entweder richtig oder falsch?», oder nochmals anders gewendet:
«Kann man einen Satz zugleich mit seinem Gegenteil beweisen?» bildet den
Ausgangspunkt. Diese Fragen sind in gewissen Antinomien begriindet, von denen
Finsler insbesondere zwei anfiihrt:

1. Welches ist die kleinste natiirliche Zahl, die nicht mit weniger als 100 Silben in
deutscher Sprache definiert werden kann? Vor allem: Gibt es eine solche Zahl?

2. Man bilde die Menge aller sich nicht selbst enthaltenden Mengen. Enthélt sich
diese selbst oder enthilt sie sich nicht selbst?

Losungsversuche dieser Fragen von D. Hilbert, H. Poincaré, B. Russell, J. Konig,
L.J. Brouwer werden von Finsler nicht anerkannt. Er stellt sich die Aufgabe, die
entstehenden Widerspriiche aufzukliren und daraufhin zu losen.

Um zu diesem Ziel zu gelangen, gibt er ein neues Problem:

Schreibe auf die Tafel die Zahlen 1, 2, 3 und den Satz: «Die kleinste natiirliche
Zahl, die nicht auf der Tafel angegeben ist.»

Frage: Gibt es eine solche Zahl?

Mit dieser Antinomie zeigte uns Finsler den prinzipiellen Unterschied zwischen
Schreiben und Sprechen, formalisierten Aussagen und Denken. Er ist damit, wie
B.L. van der Waerden.in seinem Nachruf betont, ein Vorlaufer von Kurt Godel
geworden. Sprache, als Medium des Denkens und zugleich Gegenstand des Den-
kens; Denken nur zu vermitteln, soweit gesprochen werden kann, diese Antinomie
in aller menschlichen Frkenntnis und ihrer Mitteilung liegt der fruchtbaren, bis
heute nicht beendigten Auseinandersetzung jener Zeit zugrunde. Auch die berithm-
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ten «Entretiens de Ziirich» von 1938 zeigten nur Trennung, konnten keine Losung
oder Verstindigung bringen; die Zeit liess die Auseinandersetzungen zur Vergan- -
genheit werden. Eine ausfithrliche Rechtfertigung seines Standpunktes, die Finsler
1964 verdffentlichte, fand kaum Beachtung. War alles vergeblich? Ich glaube nicht.
Vor allem waren es die folgenden Gedanken Finslers, die Beachtung fanden:
1. Finsler betrachtet nicht irgendwelche Zusammenfassungen als Mengen, sondern
nur solche, deren Elemente stets wieder Mengen sind. Dies hat sich als fruchtbar
erwiesen. 2. Es ist nicht selbstverstindlich, ob ein System von Mengen wieder eine
Menge bildet. Man muss zwischen den beiden Begriffen unterscheiden. 3. Finslers
Begriff der zirkelhaften Definitionen stellt einen fruchtbaren Ansatz zur Untersu-
chung logischer Beziehungen dar. Ich hatte versucht, Finslers Gedanken in zwei
Arbeiten verstindlich darzustellen (Zur Neubegriindung der Mengenlehre. Jber.
Deutsch. Math.-Verein. 48, 146-165, 1938, und 49, 146-155, 1939). Der Erfolg blieb
aus.

Fiir Finsler waren obige Auseinandersetzungen ein zentrales Problem. Widersprii-
che n semer Wissenschaft wiren fiir ihn unertriglich gewesen. Und wie kdnnten
solche entstehen? Seine Antwort war: «Widerspriiche entstehen, indem man sich
selbst widerspricht.» Auf meine Frage, ob er dies begriinden kénne, blieb er mir die
Antwort schuldig. Finsler glaubte an die Richtigkeit menschlichen Denkens und die
Moglichkeit der sprachlichen Verstindigung; die Problematik, die hierin liegt, sah
er nicht, sie lag ausserhalb seines Daseins. Ich komme unten nochmals auf sein
Weltbild zu sprechen.

Finsler war, obwohl eher sensibler Natur, ein ziher Denker, wie die Auseinanderset-
zung mit den Grundlagen der Mathematik zeigte, die sich iiber sein ganzes Leben
hin erstreckte. Er war sensibel, indem der Widerstand gegen seine Ansichten seine
geistige und physische Gesundheit stark angegriffen haben. Ich erinnere mich gut:
Er trug etwa 1927 seine Ansichten im mathematischen Kolloquium in Ziirich vor. Sie
wurden von H. Weyl in der anschliessenden Diskussion nach Strich und Faden
- zerzaust. Finsler musste daraufhin wegen Krankheit fiir zwei Jahre beurlaubt
werden. |
Nach Abschluss obiger Ausfithrungen erhalte ich das Buch «<Inhaltliches Denken
und formale Systeme> von Bernardo J. Gut (Verlag Rolf Kugler, Oberwil bei Zug,
1979) zugestellt. Darin wird, nach langer Pause, das Problem <Denken - Sprechen>
neu in ganzer Breite aufgerollt. Ausfithrlich werden Finslers Ansichten in ihren
verschiedenen Fassungen sowie seine Auseinandersetzungen mit den Kritikern
dargelegt. Durch das griindliche Studium der Originalabhandlungen liefert uns
B. Gut einen wertvollen Beitrag zur angemessenen Beurteilung von Finslers
Gedankengut und dessen Bedeutung fiir die Grundlagenforschung.

Paul Finsler war ¢in ausgezeichneter Kenner des Sternenhimmels, den er bei jeder
Gelegenheit mit dem Feldstecher beobachtete. Wenn notig begab er sich, oft mitten
in der Nacht, auf die Sternwarte der Eidgendssischen Technischen Hochschule, um
seine Beobachtungen an grosseren Instrumenten fortzusetzen. Dabei gelang es ihm,
zwel neue Kometen zu entdecken. Bereits in Koln fand er am 15.September kurz
nach 8 h MEZ den Kometen 1924¢ und am frithen Morgen des 4.Juli 1937 den
Kometen 1937f im Sternbild des Perseus (Astronomische Nachrichten, Bd.222, Kiel
1924, Nr.5324, S.335, bzw. Bd.263, Kiel 1937, Nr.6301, S.250). Fir diese Entdek-
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kungen erhielt er 1924 und 1937 die Medaillen der Astronomical Society of the
Pacific. Ferner beobachtete er die Sternschnuppen vom 9. Oktober 1933 in der Bahn
des Kometen Giacobini-Zinner (ebenda, Bd.250, Kiel 1933, Nr.5986, S.173f). Er ist
Mitentdecker der sehr hellen Nova im Sternbild Puppis, die er in den frithen
Morgenstunden des 11.November 1942 als erster in Europa beobachtete (Bericht
von M. Waldmeier in «Die Sternes, 23.Jahrgang 1943, Heft 11/12, und Beob.
Zirkular der Astronomischen Nachrichten 24, 1942, N1.25, S.115).

Wenn ich richtig sehe, so finden wir in der Gestalt des Hans Gisler im Roman von
Jakob Humm <Fin Jahr im Leben des Daniel Seuly (Tages-Anzeiger, Zirich,
3.Oktober 1977) ein treffendes Bild des jungen Finsler. Ich erlaube mir, daraus
. folgendes wiederzugeben:

«Wir trafen uns gewdhnlich im Odeon und wanderten den See hinauf. Auf jener
Bank beim Hafen Riesbach fand ich fast regelmissig meinen Freund Hans Gisler
vor, einen Mathematiker, den ich von Géottingen her kannte; er war ein Semester
vor mir nach Ziirich zuriickgekehrt und wohnte im Seefeld bei zwei Tanten.

Gisler war ein schmichtiger Mensch, dem ein gefrorenes Lécheln die Lippen -
umspielte und der nur Hochdeutsch sprach, aber schwibelnd, weil er in Stuttgart
aufgewachsen war. Er war aber Ziircher aus alter Familie. Er lud mich einmal zum
Tee bei seinen Tanten ein; beide Damen sassen still und schiichtern auf ihren
Stithlen, hinter ihnen hingen an den Wénden grosse Brustbilder von Lavater,
Gessner, Bodmer; unser Gesprich bestand aus Hiisteln, Lacheln, Schweigen. ...

So war Freund Gisler, ein vertriumter Mathematiker. Und er war nicht nur im
Leben ungeschickt, er war es auch in seinem Fach; mit seiner Dissertation, von der
es hiess, sie sei genial, trieb er es so verzagt, dass man sie ihm rzusammenschreiben
musste. Br kam mit der Reihenfolge der Beweise nicht zu Rande!

In Ziirich machte er abends seinen Erholungsspaziergang am See, er kam vom
Zirichhorn daher, und bei unserer Bank in der kleinen Riesbachanlage las er den
Barometerstand ab. Er trug stindig einen Taschenbarometer bei sich und dazu
cinen Schrittmesser. Auch diesen konsultierte er bei der Bank, und es freute ihn,
dass er vom Ziirichhorn bis zu dieser Bank immer die gleiche Anzahl Schritte
machte, die Abweichung betrug kein Promille. Das hatte er schon in Gottingen so
gehalten; auf kleinen Wanderungen in der hiigeligen Umgebung zeigte er mir stolz,
dass er schon Hohendifferenzen von zehn Metern ablesen konnte.»

Das Bild von Finsler bliebe unvollstindig, wenn ich nicht seine Schrift Nr.32 «Vom
Leben nach dem Tode> erwihnen wiirde. Er verfasste sie als Mitglied der «Gelehr-
ten Gesellschaft> als 121.Neujahrsblatt auf das Jahr 1958. Sie fand viele Leser und
ist vergriffen. Im Mittelpunkt steht in Abschnitt 9 eine Erkrankung des Verfassers,
wihrend der er in tiefe Bewusstlosigkeit verfiel. Wieder erwacht, itberdeckt sich das
Erleben des Jenseits mit dem Bisherigen, insbesondere mit seiner Wissenschaft. Wir
treffen daher auf eine faszinierende Schilderung der unendlichen Sternenwelt und
des Kosmos mit der Frage nach dem Leben auf anderen Sternen, wir begegnen
natiirlich auch den Auseinandersetzungen mit den Antinomien und der Frage nach
der Wahrheit. So sehen wir in Finsler einen Menschen, bei welchem sich zwei
verschiedene Ebenen der Wirklichkeit in einem Bildrahmen vereinigen: vorn die
sussere, hinten die innere Wirklichkeit. Und dies ist, nach Georg Schmidt (Edvard

&
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Munch), vielleicht die knappeste Definition dessen, was wir Surrealismus nennen:
Die Verbindung verschiedener Wirklichkeitsebenen im gleichen Bildraum.

Und noch eine andere Charakterisierung trifft auf Finsler zu: Die Abgeschlossenheit
und die Ichbezogenheit seines Daseins. Wie er sagt: Ich bin jeder und jeder ist ich.
Er war ein elliptischer Mensch. Sein Lebensraum erfillte das Innere einer Ellipse,
im einen Brennpunkt stand er, im Gegenpunkt der andere, aber dieser war derselbe.
Einen Aussenraum gab es sowenig, wie es einen Zugang zu diesem Innenraum gab.
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