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DIE ERSTEN 50 MILLIONEN PRIMZAHLEN

Ich méchte Thnen heute von einem Gebiet erzihlen, auf dem ich zwar selber nicht
gearbeitet habe, das mich aber immer auBerordentlich gefesselt hat, und das wohl die
Mathematiker von der frithesten Vorgeschichte bis zur Gegenwart fasziniert hat - nam-
lich die Frage nach der Verteilung der Primzahlen.

Was eine Primzahl ist, ist Thnen sicherlich allen bekannt: Sie ist eine von 1 ver-
schiedene natiirliche Zahl, die durch keine andere natiirliche Zahl auBler 1 teilbar ist.
Mindestens ist das die Definition des Zahlentheoretikers; manchmal haben andere
Mathematiker freilich andere Definitionen. So ist fiir den Funktionentheoretiker eine
Primzahl eine ganzzahlige Nullstelle der analytischen Funktion

fiir den Algebraiker ist sie

«die Charakteristik eines endlichen Korpers»

oder
«ein Punkt aus Spec Z»
oder
«eine nichtarchimedische Bewertung»;

fiir den Kombinatoriker werden die Primzahlen definiert durch die Rekursion [1]

1 " (__u 1)r
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Ib +1 [ Oge ( 2 +=¢§15i1<g<i,§n 2391-1...;0,'7, —1 ):l

([%] = ganzzahliger Teil von x);

und schlieBlich definiert sie neuerdings der Logiker als die positiven We;te des Poly-
noms (2]
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" Ich hoffe aber, Sie sind mit der ersten Definition, die ich gegeben habe, zufrieden.
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Es gibt zwei Tatsachen iiber die Verteilung der Primzahlen, von denen ich hoffe,
Sie dermaBen zu tiberzeugen, daB sie fiir immer in Threm Herzen eingraviert sind. Die
eine ist, daB} die Primzahlen, trotz ihrer einfachen Definition und Rolle als Bausteine
der natiirlichen Zahlen, zu den willkiirlichsten, widerspenstigsten Objekten gehéren,
die der Mathematiker ttberhaupt studiert. Sie wachsen wie Unkraut unter den natiir-
lichen Zahlen, scheinbar keinem anderen Gesetz als dem Zufall unterworfen, und kein
Mensch kann voraussagen, wo wieder eine sprieen wird, noch einer Zahl ansehen, ob
sie prim ist oder nicht. Die andere Tatsache ist viel verbliiffender, denn sie besagt just
das Gegenteil — da3 die Primzahlen die ungeheuerste RegelmiBigkeit aufzeigen, daB
sie durchaus Gesetzen unterworfen sind und diesen mit fast peinlicher Genauigkeit
gehorchen.

Um die erste dieser beiden Behauptungen zu veranschaulichen, zeige ich Thnen -
zunidchst eine Liste von den primen und den zusammengesetzten Zahlen bis 100, wobei
ich neben 2 nur die ungeraden aufgefithrt habe

prim nicht prim
2 43 9 63
3 47 15 65
5 53 21 69
7 59 25 75
11 61 27 77
13 67 33 81
17 71 35 85
19 73 39 87
23 79 45 91
29 83 49 93
31 89 51 95
37 97 55 99
41 57

oder wiederum eine Liste von den Primzahlen aus den hundert Zahlen, die 10 000 000
vorangehen bzw. folgen: '

Die Primzahlen zwischen Die Primzahlen zwischen
9 999 900 und 10 000 000 10 000 000 und 10 000 100

G999 901 10 000 019
9 999 907 10 000 079
9999 929
9999 931
9 996 937
9 999 943
9999 971
9999 973
9999 991

Ich glaube, Sie werden zustimmen, daf} kein sichtbarer Grund vorhanden ist, warum
eine Zahl prim ausfallt und die andere nicht. Vielmehr hat man beim Anblick dieser



Die ersten 30 Millionen Primzahlen ‘5

Zahlen das Gefiihl, vor einem der unergriindlichen Geheimnisse der Schopfung zu
stehen. Dall auch die Mathematiker dieses Geheimnis nicht durchdrungen haben, wird
vielleicht am deutlichsten durch den Eifer bezeugt, mit dem sie nach immer gréBeren
Primzahlen suchen. Bei Zahlen, die gesetzmaBig anwachsen, wie etwa den Quadraten
oder den Zweierpotenzen, wire es nattirlich witzlos, ein gréBeres Exemplar als die
vorher bekannten hinzuschreiben. Bei Primzahlen dagegen gibt man sich groBe Miihe,
genau das zu tun. Im Jahre 1876 zum Beispiel hat Lucas bewiesen, daB die Zahl 2127 —1
prim ist, und 75 Jahre blieb sie uniibertroffen — was vielleicht nicht iiberraschend ist,
wenn man die Zahl sieht:

2127 — 1 = 170 141 183 460 469 231 731 687 303 715 884 105 727 .

Erst 1951, mit dem Erscheinen der elektronischen Rechenanlagen, fand man groBere
Primzahlen. Die Daten iiber die nacheinanderfolgenden Titelinhaber kénnen Sie in
der nachfolgenden Tabelle sehen [3]. Augenblicklich ist die 6002ziffrige Zahl 219987 — 1,
die ich nicht hinschreiben mdochte, der Gliickspilz, der sich dieses Ruhms briisten
kann. Wer mir nicht glaubt, kann im Guinness-Buch der Weltrekorde nachgucken.

Die grifite bekannte Primzahl

b Anzahl der Entdeckt VYon wem
Ziffern im Jahr
o127 . 1 -39 1876 Lucas
(218 1 1)/17 44 1051 Ferrier
}ég gizz - 32: 11 ‘7% } 1951 Miller - Wheeler - EDSAC 1
2521 .. ] 157
2607 __ 1 183 l
21279 1 386 1952 Lehmer-+ Robinson -+ SWAC
22203 . ] 664
22281 __ ] 687 J
23217 1 969 1957 Riesel - BESK
2058 1 1281 } 1961 Hurwitz - Selfridge + TBM 7090
24423 | 1332 ) _ ’
29689 1 2017 .
29041 1 2993 } 1963 Gillies - 1LIAC 2
21213 __ 1 3376 : >
219987 . 1 6002 1971 Tuckerman -+ IBM 360

Viel interessanter ist aber die Frage nach den Gesetzen, die die Primzahlen be-
herrschen. Ich habe Ihnen vorhin eine Liste der Primzahlen bis 100 gezeigt. Hier ist
dieselbe Information in graphischer Darstellung (siehe Fig. 1). Die mit s(x) bezeichnete
Funktion, von der ab jetzt dauernd die Rede sein wird, ist die Anzahl der Primzahlen
kleiner gleich x; sie fingt also bei Null an und springt bei jeder Primzahl x = 2, 3, 5
usw. um eins hoch. Schon in diesem Bild sieht man, daB das Anwachsen von 7(x) trotz
kleiner lokaler Schwankungen im GroBlen ziemlich regelm&fBig ist. Wenn ich aber den
Bereich der x-Werte von 100 auf 50 000 ausdehne, wird diese RegelmiBigkeit auf
atemberaubende Weise deutlich, denn der Graph sieht so aus, wie in Fig. 2 abgebildet.
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Fiir mich gehort die Glatte, mit der diese Kurve steigt, zu den verbliiffendsten Tat-
sachen der Mathematik. :

Nun, wo es Gesetze gibt, gibt es auch Wissenschaftler, die dahinter zu kommen
versuchen, und das hier ist keine Ausnahme. Es ist auch nicht schwer, eine empirische
Regel zu finden, die das Wachstum der Primzahlen gut beschreibt. Bis 100 gibt es
25 Primzahlen, also ein Viertel der Zahlen; bis 1000 gibt es 168, also ungefdhr ein
Sechstel; bis 10 000 sind 1229 Primzahlen, also ungefihr ein Achtel. Wenn wir diese
Liste fortsetzen und fiir hunderttausend, eine Million usw. jeweils das Verhéltnis von
Primzahlen zu natiirlichen Zahlen ausrechnen, so finden wir diese Zahlen:

% 7(x) x[7e(x)
10 4 ‘2,5
100 25 ’ 4,0
1 000 168 6,0
10 000 ‘ 1229 8,1
100 000 9 592 10,4
1 000 000 78 498 : 12,7
10 000 000 - 664 579 15,0
100 000 000 5761455 - ' 17,4
1000 000 000 50 847 534 19,7
10 000 000 000 455 052 512 22:0

(In dieser Tabelle stellen die Werte von 7(x), die so unachtsam hingeschrieben sind,
Tausende von Stunden miihseligen Rechnens dar.) Wir sehen, dafl das Verhiltnis von
x zu m(x) immer um ungefihr 2,3 hochgeht, wenn wir von einer Zehnerpotenz zur
néchsten libergehen. Mathematiker erkennen diese Zahl 2,3 sofort als den Logarithmus
von 10 (zu der Basis ¢ natiirlich). So kommt man auf die Vermutung, dalB

(k) ~

" logx
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wobei das Zeichen ~ bedeutet, daBl das Verhiltnis m(x) : x/logx mit wachsendem x
nach 1 strebt. Diese Beziehung, die erst 1896 bewiesen wurde, nennen wir heute den
Primzahlsatz ; GauB}, der groBte aller Mathematiker, hat sie schon als Fiinfzehnjahriger
gefunden, indem er Primzahltabellen, die in einer ihm im Jahr zuvor geschenkten
Logarithmentafel enthalten waren, studierte. Wahrend seines ganzen Lebens hat sich
GauB lebhaft fiir die Verteilung der Primzahlen interessiert und ausgedehnte Rech-
nungen durchgefiihrt. In einem Brief an Enke [4] beschreibt er, wie er «sehr oft emn-
zelne unbeschiftigte Viertelstunden verwandt» habe, «um bald hie bald dort eine
Chiliade [das heit ein Intervall von 1000 Zahlen] abzuzihlen», bis er schlieBlich die
Primzahlen bis 3 Millionen (!) aufgezihlt und mit den Formeln verglichen hatte, die
er fiir ihre Verteillung vermutete. -

Der Primzahlsatz besagt, daB z(x) asymptotisch, das heilt mit einem Relativ-
fehler von 09, gleich x/logx, ist. Wenn wir aber den Graph der Funktion x/logx mit
a(x) vergleichen, so sehen wir, daB die Funktion x/logx zwar das Verhalten von 7(x)
qualitativ widerspiegelt, jedoch nicht mit einer solchen Genauigkeit mit dieser iiber-
einstimmt, als daf die Gldtte der Funktion n(x) dadurch erklirt wire:

6000 +—
5000 |-

J{x)
4,000 -

X
3000} log x
2000
1000}~
l ! | ; L i
0 10 000 20000 30000 40000 50 000

Fig. 3

Es liegt also nahe, nach besseren Approximationen zu fragen. Wenn wir die obige
Tabelle von den Verhiltnissen von x zu w{x) wieder angucken, so sehen wir, daf} dieses
Verhiltnis ziemlich genau gleich logx — 1 ist. Durch sorgfiltigeres Rechnen mit voll-
stindigeren Daten iiber z{x) hat Legendre [5] 1808 gefunden, daB3 man eine besonders -
gute Approximation erhilt, wenn man anstatt 1 die Zahl 1,08366 von log x abzieht, also

x
~ logx — 1,08366

(%)

Eine andere sehr gute Approximation zu z(x), die erstmalig von Gaufl angegeben
wurde, erhidlt man, indem man die empirische Tatsache als Ausgangspunkt nimmt,
daB die Frequenz der Primzahlen um eine sehr groBe Zahl x fast genau gleich 1/logx
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ist. Danach wire die Anzahl der Primzahlen bis x ungefihr durch die logarithwmasche
Summe :

1 1
log?2 T log3 T +mlmcm{g_xm

Ls(x) =

gegeben, oder, was fast dasselbe ist [6], durch das logavithmische Integral

|

Li(x) = | ——dt.
logt
5 4

Wenn wir den Graph von Li (¥) mit dem von 7 (¥) vergleichen, so sehen wir, daB die
beiden innerhalb der Toleranz des Bildes genau iibereinstimmen:
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Fig. 4

Das Bild der Legendreschen Approximation brauche ich Thnen dann nicht zu zeigen,
denn sie stellt in diesem Bereich sogar eine noch bessere Annéherung zu m(x) dar.

Es gibt noch eine Approximation, die ich erwihnen mochte. Die Untersuchungen
von Riemani iiber Primzahlen suggerieren, daBl die Wahrscheinlichkeit fiir eine grofie
Zahl x, prim zu sein, noch genauer durch 1/logx gegeben sein wiirde, wenn man nicht
nur die Primzahlen, sondern auch noch die Primzahlpotenzen mitzdhlte, wobel das
Quadrat einer Primzahl als eine halbe Primzahl gezihlt wird, die dritte Potenz einer
Primzahl als eine Drittel-Primzahl usw. Dies fiihrt zu der Approximation

1 . 1 - !
wx) + & wl/ x) + £ aly x) + - - == Lilx)
oder, wenn wir das umkehren, zu |

mo(x) = Li(x) — %Li(\/}E) — %n.Li(\‘f'/?c) i D
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Wir bezeichnen die Funktion, die auf der rechten Seite dieser Formel steht, zu Ehren
von Riemann mit R(x). Sie stellt eine erstaunlich gute Approximation zu z(x) dar,

"wie man aus den folgenden Werten sieht:

x (%) R(x)
100 000 000 5761 455 5761 552
200 000 000 11 078 937 11 079 090
300 000 000 16 252 325 16 252 355
400 000 000 21 336 326 21 336 185
500 000 000 26 355 867 26 355 517
600 000 000 31 324 703 31 324 622
700 000 000 36 252 931 36 252 719
800 000 000 41 146 179 41 146 248
900 000 000 46 009 215 46 009 949
1 000 000 000 50 847 534 50 847 455

Fiir den Leser, der etwas Fuhktionentheorie kennt, darf ich vielleicht kurz erwidhnen,
daB R(x) eine ganze Funktion von logx ist, gegeben durch die schnell konvergente
Potenzreihe ’

2 1 (logx)»
Rz =1 +Z; niw+ 1) ul
wobei {(n + 1) die Riemannsche Zetafunktion bezeichnet [8].

Allerdings sei hier betont, dafB die von GauB und Legendre gegebenen Approxi-
mationen zu z(x) nur empirische Feststellungen waren, und dafl sogar Riemann, der
doch durch theoretische Uberlegungen zu seiner Funktion R(x) gefithrt wurde, den
Primzahlsatz nie bewiesen hat. Das haben erst 1896 Hadamard und (unabhingig) de
la Vallée Poussin, auf Riemanns Untersuchungen aufbauend, getan. :

Zu dem Thema der Voraussagbarkeit der Primzahlen mé&chte ich noch einige
numerische Beispiele bringen. Wie schon gesagt, ist die Wahrscheinlichkeit, dal3 eine
Zahl von der Gréfenordnung » prim ist, ungefiahr gleich 1/logx; das heifit, die Anzahl
der Primzahlen in einem Intervall der Linge a um x soll ungefihr aflogx sein, minde-
stens dann, wenn das Intervall lang genug ist, um Statistik sinnvoll machen zu kon-
nen, aber klein im Vergleich mit ¥, Zum Beispiel erwarten wir in dem Intervall zwi-
schen 100 Millionen und 100 Millionen plus 150 000 ungefihr 8142 Primzahlen, da

150 000 150 000

- ~ 8142
log (100 000 000) 18,427 ... Bt

ist. Entsprechend ist die Wahrscheinlichkeit, daB8 zwei vorgegebene Zahlen in der
Nihe von # beide prim sind, ungefihr 1/(logx)2. Wenn man also fragt, wieviel Prim-
zahlzwillinge (also wieviel Paare wie 11, 13 oder 59, 61 von Primzahlen, die sich um
genau 2 unterscheiden) es in dem Intervall von x bis x - « gibt, so erwartet man un-
gefihr a/(logx)?. In der Tat erwartet man ein bichen mehr, da die Tatsache, dall »
schon prim ist, die Chancen von # + 2, auch prim zu sein, etwas andert — zum Beispiel
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ist # - 2 dann sicherlich ungerade. Ein leichtes heuristisches Argument [9] gibt
Cla/(logx)?] als die erwartete Anzahl der Primzahlzwillinge im Intervall [x, x -+ a]
an, wo C eine Konstante mit dem Wert ungefahr 1,31ist (genauer: C =1,3203236316...).
So ‘sollten sich zwischen 100 Millionen und 100 Millionen 150 Tausend ungefihr
1,32... x 150000/(18,427)% ~ 584 Paare von Primzahlzwillingen befinden. Ich habe
hier die von den Herren Jones, Lal und Blundon [10] berechneten Daten fiir die
wirklichen Anzahlen von Primzahlen und Zwillingen in diesem Intervall sowie in
einigen gleich langen Intervallen um grofere Zehnerpotenzen: '

Intervall Primzahlen Primzahlzwillinge
erwartet  gefunden erwartet  gefunden
100 000 000- :
100 150 000 8142 8154 584 601
1 000 000 000
1 000 150 000 7238 7242 _ 461 466
10 000 000 000~ ' :
10 000 150 000 6514 6511 374 - 389
100 000 000 000~ '
100 000 150 000 5922 5974 300 276
1 000 000 000 000~
1 000 000 150 000 5429 5433 229 276
10 000 000 000 000
10 000 000 150 000 5011 5065 211 208
100 000 000 000 000~
100 000 000 150 000 4653 4643 191 186
1 000 000 000 000 000-
1 000 000 000 150 000 4343 4251 166 161

Wie Sie sehen, ist die Ubereinstimmung mit der Theorie sehr gut. Das ist besonders
erstaunlich im Falle der Zwillinge, da man da nicht einmal beweisen kann, dal} es
itberhaupt unendlich viele Primzahlzwillinge gibt, geschweige denn, daB sie nach dem
erwarteten Gesetz verteilt sind.

74 dem Thema der Voraussagbarkeit der Primzahlen gebe ich ein letztes Beispiel,
das Problem der Liicken zwischen den Primzahlen: Wenn man Primzahltabellen an-
guckt, so findet man manchmal besonders groBe Intervalle, wie das zwischen 113 und
127, die gar keine Primzahlen enthalten. Sei g{x) die Linge des grofiten primzahlireien
Intervalls bis x (g soll an das englische Wort «gap» erinnern); zum Beispiel ist das
lingste solche Intervall bis 200 das eben erwihnte Intervall von 113 bis 127, also
- ¢(200) = 14. Die Zahl g(x) wéchst natiirlich sehr unregelmaBig, aber ein heuristisches
Argument deutet auf die asymptotische Formel

g(x) ~ (logx)?

hin [11]. Wie gut sogar die sehr stark schwankende Funktion g(x) sich an das erwartete
Benehmen halt, sehen Sie im folgenden Bild: '
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Bisher habe ich meine Behauptung iiber die Ordnung, die bei den Primzahlen
herrscht, viel eingehender belegt als meine Behauptung tiber ihre Willkiir, Auch habe
ich noch nicht das Versprechen meines Titels, Ihnen die ersten 50 Millionen Primzahlen
zu zeigen, erfiillt, sondern Sie haben bisher nur Daten iiber einige Tausend Primzahlen
gesehen. Hier ist also ein Graph von 7z{x) im Vergleich mit den Approximationen von
Legendre, GauB und Riemann bis 10 Millionen [12]; da diese vier Funktionen so dicht
aneinender sind, dal man ihre Graphen nicht unterscheiden kénnte — wie ich IThnen
schon in dem Bild bis 50 000 gezeigt habe —, habe ich hier nur die Differenzen ge-
zeichnet (siehe Fig. 6). Ich glaube, erst dieses Bild zeigt, worauf derjenige sich einge-
" lassen hat, der sich entscheidet, die Primzahlen zu studieren.

Wie Sie sehen, ist die Legendresche Approximation x/(logx — 1,08366) fiir kleine x
(bis zirka 1 Million) wesentlich besser als die Gaullsche Li(x), ab 5 Millionen ist aber
Li(x) besser, und man kann zeigen, daB das bei wachsendem x immer mehr der Fall ist.

Bis 10 Millionen gibt es allerdings nur etwa 600 000 Primzahlen; um Ihnen die
vollen 50 Millionen vorzustellen, muf3 ich nicht bis 10 Millionen, sondern bis 1 Milliarde
- gehen. Der Graph von R(x) — z(x) in diesem Bereich sieht so aus, wie in Fig. 7 ge-
zeigt [13]. Die Schwankungen der Funktion z(x) werden immer groBer, aber sogar bei
diesen fast unvorstellbar groBen Werten von x tibertreffen sie nie ein paar Hundert.

Im Zusammenhang mit diesen Daten kann ich noch eine Tatsache {iber die Prim-
zahlanzahl 7(x) erwidhnen. Auf dem Bild bis 10 Millionen war die GauBsche Approxi-
mation Li(x) immer grifer als zr(x). Das bleibt der Fall bis 1 Milliarde, wie Sie auf dem .
folgenden Bild (in dem dieselben Daten wie vorher logarithmisch geplottet sind) sehen
konnen (siehe Fig. 8).
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Sicherlich gibt uns dieser Graph den Eindruck, dal} die Differenz Li(x) — 7({x) mit
wachsendem x unbeirrt nach Unendlich strebt, das heilt, daB das logarithmische
Integral Li(x) grundsdtzlich die Anzahl der Primzahlen bis x iiberschétzt (was mit
der Feststellung, dall R{x) eine bessere Approximation als Li(x) liefert, {ibereinstim-
men wiirde, da R(x) immer kleiner als Li(x) ist). Dies ist aber nicht der Fall: Man kann
nidmlich beweisen, daBB es Punkte gibt, wo die Schwankungen von z(x} so groB sind,
daB m(x) Li(x) ibertrifft. Solche Zahlen hat man bisher nicht gefunden und wird man
vielleicht nie finden, aber Littlewood hat gezeigt, daB sie existieren, und Skewes [14]

sogar, daB es eine gibt, die kleiner als (10101034) ist. (Von dieser Zahl sagt Hardy, sie sei
wohl die grofite, die je in der Mathematik irgendwelchem besonderen Zweck gedient
hat.) Jedenfalls zeigt dieses Beispiel, wie unklug es ist, aus numerischen Daten
Schliisse iiber die Primzahlen zu ziehen.

Ich méchte im letzten Teil meines Vortrags einige der theoretischen Ergebnisse
iiber m(x) erzihlen, damit Sie nicht mit dem Gefiihl weggehen, ausschlieBlich experi-
mentelle Mathematik gesehen zu haben. Ein Uneingewethter wiirde sicherlich meinen,
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daB die Eigenschaft, prim zu sein, viel zu zufallsbedingt ist, um irgendetwas dariiber
beweisen zu kénnen. Diese Ansicht wurde schon vor 2200 Jahren von Euklid wider-
legt, indem er die Existenz von unendlich vielen Primzahlen zeigte. Sein Argument
148t sich in einem Satz formulieren: Gibe es nur endlich viele Primzahlen, so koénnte
man sie zusammenmultiplizieren und 1 addieren, um eine Zahl zu erhalten, die durch
gar keine Primzahl teilbar ist, und das ist unmoglich. Tm 18. Jahrhundert hat Euler
mehr bewiesen, nimlich, daB die Summe der Reziproken der Primzahlen divergent ist,
also jede vorgegebene Zahl iibertrifft. Sein ebenfalls sehr einfacher Beweis benutzt
die FFunktion

1 1
M) =14+ 5+

deren Bedeutung fiir das Studium von s7(x) aber erst spater durch die Arbeit von
Riemann voll zur Geltung kommen sollte. In diesem Zusammenhang sei auch bemerkt,
daB die Summe der Reziproken aller Primzahlen zwar unendlich ist, die Summe der
Reziproken aller bekannten (also etwa der ersten 50 Millionen) kleiner als vier {15].

Erst 1850 konnte Tschebyscheff den ersten Ansatz zum Beweis des Primzahl-
satzes machen [16]. Er zeigte, daB fiir hinreichend groBe x

0,89~ 2 ) 2 L1 ome
logx logx

~ gilt, also daB der Primzahlsatz richtig ist mit einem relativen Fehler von hochstens
119%,. Sein Beweis benutzt Binomialkoeffizienten und ist so schén, daB ich der Ver-
suchung nicht widerstehen kann, eine vereinfachte Version davon anzudeuten (aller-
dings mit schlechteren Konstanten).

In der einen Richtung werden wir

{x) = L7 ?
X 1,7 —— -
& logx

zeigen. Diese Ungleichung stimmt fiir x < 1200. lch nehme induktiv an, sie sei fiir

x < n bewiesen und betrachte den mittleren Binomialkoeffizienten (%). Wegen

: 2n 2n ‘ 2n ' 2%
220 — 1 - 1)22 — ]
L+ 1) (O)+(1)+ +(%)-+ +(2%)
ist er sicherlich kleiner als 227, Anderseits ist

oY) (X (n—1) X - X 2 X 1)?

(2%) 2n)!  (2n) x 2n—1)x - x2X1

"

Hier kommt jede Primzahl ¢, die kleiﬁer als 2 » ist, im Zihler vor, aber fiir p groBer
als n erscheint p sicherlich nicht im Nenner. Deswegen ist (3% durch jede Primzahl
teilbar, die zwischen # und 2 # liegt:
2n
R

11?7

n<p<2n
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Aber in dem Produkt sind #(2 #) — m(n) Faktoren, alle groBer als #, also gilt

2n

%:':(Zn)—-rr(ﬂ.} < P <(
n<fr<2n [

) < 22n .

Wenn ich Logarithmen nehme, finde ich

anogz‘ 139"

logn "7 logm

w2 n) — wln) <

Induktiv ist aber der Satz fiir # richtig, also

#
q(n) < 1,7 Togi *

durch Addition dieser Beziehungen ergibt sich

. # 2u
| —— b 1200
w(2n) < 3,0 o < 1,7 log (2 7) (n > 1200),

also gilt der Satz auch fiir 2 #. Wegen

_ 2 1
a(2n 4+ 1) < a(2n) +1<3’Ogi£%+1'<17 il {(n > 1200)

T log(2n + 1)

gilt er auch fiir 2# -+ 1, und der Induktionsschritt ist fertig.
Fiir die Abschdtzung in der anderen Richtung braucht man ein einfaches Lemma;,
- das man mit Hilfe einer wohlbekannten Formel fiir die Potenz von P, die in »! aufgeht,
leicht beweisen kann [17]: -

LEMMA : Sei p evne Primzahl. Ist p*r die grofte Potenz von p, die in (%) aufgeht, so ist
P < n.

KOROLLAR: Fiir jeden Binomialkoeffizient (3) gilt

R

psn

Wenn ich die Aussage des Korollars fiir alle Binomialkoeffizienten mit gegebenem #
- hinschreibe und diese Ungleichungen aufaddiere, so finde ich

"

=0
und der Logarithmus hiervon liefert
nlog2  log(n -+ 1)
logn log
2

2
s 0) .
>3 logn {2 200)

a(n) >
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Zum Schlu8 méchte ich ein paar Worte iiber Riemanns Arbeit sagén. Riemann
hat zwar nicht den Primzahlsatz bewiesen, dafiir aber etwas viel Verbliiffenderes ge-
macht, ndmlich eine genaue Formel fiir (x) gegeben. Diese Formel hat die Gestalt

(%) —I——%:rz(‘\/i) o % (/%) + - -+ =Lifx) — 3 Li(x9) ,

wobei die Summe tiber die Wurzeln der Zetafunktion {(s) Iiuft [18]. Diese sind (mit
Ausnahme der sogenannten «trivialen Wurzeln» o=—2, —4, —6,..., de einen
~ vernachlissigbaren Beitrag liefern) komplexe Zahlen mit Realteil zwischen 0 und 1,
wovon die ersten 10 folgende Werte haben [19]:

1 1
1 . 1 .
02 = + 21,0220407, g2 = 5 — 21,022040 ¢,

1 — 1 _
o= + 25,0108561, g5 = T 25,010856 ¢ ,

_ 1
0s =5 + 304248784, o4 = 5 — 30424878 ¢,

05 = —;—- + 32,93505717, 05 = ; — 32,935057 ¢ .
DaBl mit einer Wurzel immer auch die komplex Konjugierte auftritt, ist leicht zu zei-
gen. Daf} aber jeweils der reelle Teil der Wurzel genau gleich 1/2 ist, ist noch unbe-
wiesen; dies ist die berithmte Riemannsche Vermutung, die fiir die Primzahltheorie.
duBerst wichtige Folgen hitte [20]. Man hat sie fiir 7 Millionen Wurzeln verifiziert.

Die Riemannsche Formel kann mit Hilfe der oben eingefithrten Riemannschen
Funktion R(x) in der Gestalt

m(x) = Rix) — 3 R(x?)
e
geschrieben werden; sie liefert also als A-te Approximation zu z(x) die Funktion
Ry(x) = R(w) + T1(x) + To(x) + -+ + Ti(x) ,

wobel Ty{x) = — R(x®") — R(x%n) der Beitrag des n-ten Wurzelpaares der Zeta-
funktion ist. Iiir jedes n ist Ty(x) eine glatte, oszillierende Funktion von #: fiir die
ersten Werte von # siebt sie so aus wie in Fig. 9 abgebildet {21]. Somit ist auch Ry(x)
fiir jedes % eine glatte Funktion. Bei wachsendem % nihern sich diese Funktionen 7 (x).
- Hier sind zum Beispiel die Graphen der 10. und der 29. Approximationen (siehe Fig. 10
und 11) — und wenn man diese Kurven mit dem Graph von z(x) bis 100 (S. 4) ver-
gleicht, ergibt sich das in Fig. 12 gezeigte Bild. .

Ich hoffe, daB ich Ihnen mit diesem und den anderen Bildern einen gewissen Ein-
druck vermittelt habe von der groBen Schonheit der Primzahlen und von den end-
losen Uberraschungen, die sie fiir uns bereithalten. '
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ANMERKUNGEN

J. M. Gandhi, Formulae for the n-th prime, Proc. Washington State Univ. Conf. on Number
Theory, Washington State Univ., Pullman, Wash., 1971, 96-106. _

J. P. Jones, Diophantine representation of the set of prime numbers, Notices of the AMS 22
(1975), A-326. '

Es gibt einen guten Grund dafir, dall so vieleZahlen auf dieser Liste von der Gestalt M 2% —1
sind: Ein auf Lucas zuriickgehender Satz besagt, dall M} (k > 2) genau dann prim ist, wenn
My in Ly_y anfgeht, wo die Zahlen L, induktiv durch L; — 4, Ly = L% — 2 (also Ly =14,
Ly =194, Ly = 37634, .. ;) definiert werden, und damit kann man die Primalitit von My, sehr
viel schneller testen als fiir eine andere Zahl derselben GréBenordnung méglich wire.

Die Primzahlen der Gestalt 2% — 1 (A mu8 dann notwendigerweise selber prim sein) heiBen
Mersennesche Primzahlen (nach dem franzésischen Mathematiker Mersenne, der im Jahre 1644
eine grofBtenteils richtige Liste aller solchen Primzahlen, < 107 angegeben hat) und spielen’
im Zusammenhang mit einem ganz anderen Problem der Zahlentheorie eine Rolle. Euklid hat
entdeckt, daB3 die Zahlen 27-1 {22 — 1), wenn 29 — 1 prim ist, «vollkommens, das hei3t gleich
der Summe ihrer echten Teiler sind (z. B. 6 =142 4.3, 28 =1 +2+44+74 14, '
496 =1 42 +4 4 8 + 16 + 31 + 62 4 124 + 248), und Euler zeigte, daB alle geraden
vollkommenen Zahlen diese' Gestalt haben. Es ist unbekannt, ob es auch ungerade vollkom-
mene Zahlen gibt; sie miiBlten jedenfalls = 10199 sein. Es gibt genau 24 Werte von p < 20000,
fiir die 22 — 1 prim ist.

C. F. GauB, Werke, II (1872), 444-447. Fiir eine Diskussion der Geschichte der verschiedenen
Approximationen zu m(x), wo auch dieser Brief (in englischer Ubersetzung) abgedruckt wird,
siehe L. J. Goldstein, A history of the prime number theorem, Amer. Math. Monthly 80 (1973),
599-615,
A. M. Legendre, Essai sur la théorie de Nombres, 2. Auflage, Paris, 1808, S, 394,
Genauer gesagt, gilt

Ls{x) — 1,5 < Li(x) < Ls{x),

das heilit, die Differenz zwischen Li (#) und Ls(x) ist beschrinkt. Wir erwahnen auch, daB
das logarithmische Integral héufig als der Cauchy Hauptwert

1-g

k3 x
. dt . di dr
Lie) = . [ gt = ([ g | oet)
0 0

1+e

definiert wird; diese Definition unterscheidet sich aber von der im Text angegebenen auch nur
um eine Konstante. '

Das Bildungsgesetz der Koeffizienten ist wie folgt: der Koeffizient von Li (")/ x) ist gleich
+ 1/m, falls # das Produkt einer geraden Anzahl verschiedener Primzahlen ist, gleich — 1/n,
falls #» das Produlkt einer ungeraden Anzahl verschiedener Primzahlen ist, und gleich 0, falls %
mehrfache Primfaktoren enthilt.

Andere Darstellungen dieser Funktion sind

o0

. {log x)* di
B(x) = / O Y
o}

({(s) = Riemannsche Zetafunktion, I'(s) = Gammafunktion) und

R(EZTrx)__-_-EE{Z + i 3 b 6 ;}:5+...}

7B 738, " 5 Bg
2 252

= 40 43 L 77 45 L
3{12;54“ x3 + 5 x5+ }

(Bx = k-te Bernoulli-Zahl; = bedeutet, da3 die _Differenz der beiden Seiten mit wachsendem
# nach 0 strebt), die beide von Ramanujan stammen,. Vgl. H. G. Hardy, Ramanujan: Twelve
Lectures on Subjects Suggested by His Life and Work, Cambridge University Press, 1940,
Kap. 2.
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Niamlich: Fiir ein Paar (s, #) von zufillig gewihlten Zahlen ist die Walirscheinlichkeit, dall
und » beide = 0 (mod p) sind, offensichtlich gleich ((f — 1)/p)?, wihrend fiir eine zufillig ge-
wiahlte Zahl # die Wahrscheinlichkeit, dall » und » 4 2 beide s 0 (mod p) sind, gleich 1/2 fiir
p = 2und gleich (p — 2)/p.tir p £ 2 ist. Somit unterscheidet sich die Wahrscheinlichkeit fiir #
und # - 2, modulo p ein Paar von Primzahlkandidaten darzustellen, um einen Faktor
({p — 2)]p) (p2(p — 1)®) fiir p 5= 2 baw. 2 fiir p = 2 von der entsprechenden Wahrscheinlichkeit
fir zwel unabhingige Zahlen m und . Wir haben also insgesamt unsere Chancen um einen
Faktor

P prim

verbessert. Fiir eine etwas sorgfiltigere Durchiithrung dieses Arguments siehe G. H. Hardy
und E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford,
1960, § 22.20 (S. 371-373).

M. ¥. Jones, M. Lal und W. J. Blundon, Statistics on certain Iarge primes, Math. Comp. 27
(1967), 103-107.

D. Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646-651. Der
Graph von g(») wurde anhand der Tabellen aus folgenden Arbeiten gemacht: 1. J. Lander und
T. R. Parkin, On first appearance of prime differences, Math. Comp. 27 (1967), 483-488;
R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27
(1973), 959-963.

Die Daten in diesem Graph sind aus Lehmers Primzahltabelle entnommen worden (D. N. Leh-
mer, List of Prime Numbers from 1 to 10006721, Hafner Publishing Co., New York, 1956). -

Dieser und der folgende Graph wurden anhand der Werte von n{x) gemacht, die in D. C. Mapes,
Fast method for computing the number of primes less than a given limit, Math. Comp. 77
(1963), 179-185, angegeben werden. Im Gegensatz zu den im vorgehenden Graph benutzten
Daten von Lehmer wurden diese Werte mit Hilfe einer Formel fiir z{#) errechnet und nicht
durch Aufzdhlen der Primzahlen bis x.

S. Skewes, On the difference z{x) — 1i(x) (1), J. Lond. Math. Soc. 8 {1933), 277-283. Diese Ab-
schitzung hat Skewes zunichst unter Annahme der unten besprochenen Riemannschen V_er?
mutung bewiesen; zweiundiwanzig Jahre spdter (On the difference 7(x) — li{x) (II), Proc.
Lond. Math. Soc. {3) 5 {1955), 48-70) hat er ohne Hypothesg gezeigt, daBl es ein x unterhalb
der (noch viel gréfleren) Schranke 1010109 gibt mit () > Li(x). Diese Schranke ist von Cohen
und Mayhew auf 10105297 und von Lehman (On the difference m(#) — 1i (%), Acta Arithm. 77
(1966), 397-410) auf 1,65 x 101165 herabgesetzt worden. Lehman zeigte sogar, daf es zwischen
1,53 % 101165 ynd 1,65 x 101165 ein Intervall von mindestens 10500 Zahlen gibt, wo m{x) groBer
ist als Li(#); seiner Untersuchung zufolge gibt es wahrscheinlich eine Zahl x in der Nihe von
6,663 x 10370 mit m(x) > Li(¥) und keine Zahl unterhalb 1020 mit dieser Elgenschaft

Es gilt namlich (wie GauBl 1796 vermutete und Mertens 1874 bewies)

Z__." loglogxy + C -+ e(w),

p<:r

wo gly) — 0 fiir ¥ — cound C ~ 0,261497 cine Konstante ist. Dieser Ausdruck ist fiir x = 10¢
kleiner als 3,3 und sogar fiir ¥ == 1018 noch unterhally 4.

P. L. Tschebyscheff, Recherches nouvelles sur les nombres premiers, Paris 1851, CR Pais 29
(1849), 397401, 738-739. Fiir eine moderne Darstellung auf Deutsch des Tschebybcheffschen
Beweises siehe W. Schwarz, Einfithrung in Methoden und Ergebnisse der Primzahitheorie,
BI-Hochschul-Taschenbuch 278/278a, Mannheim 1969, Kap. 11.4, S. 42-48,

Die groBite Potenz von p, die ! teilt, ist PPl [P+ - wo [4] den ganzzahligen Teil von x
bezeichnet; somit ist in der Bezeichnung des Lemmas
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(18]

(19]

[20]

[21]
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In dieser Summe ist jeder Summand gleich 0 oder 1, und sicherlich gleich 0 fiir

logn
log ¢

logn
<
v [log;_b]
und die Behauptung folgt.
Die oben angegebene Definition von {(s) als

{da dann [xr/pr] = 0 ist), also ist

1 1
L $ s ot g o

hat nur da einen Sinn, wo s eine komplexe Zahl mit Realteil groBer als 1 ist (da die Reihe nur
dort konvergiert), und in diesem Bereich hat {(s) keine Nullstellen. Die Funktion (s) 148t sich
aber fiir alle komplexen Zahlen s definieren, so daf} es einen Sinn hat, von ihren Wurzeln in .
der komplexen Ebene zu sprechen. Die Erweiterung des Definitionsbereichs von (s) auf die
Halbebene Re(s) > 0 bekommt man am einfachsten, wenn man die fiir Re(s) > 1 giiltige
Identitdt

B _ 1 i ;| 1 1LY 8 (1
(L =2 cls) = 1 o 55+ ‘2(5*2‘5*5* )—Z“%s

benutzt und bemerkt, dal die rechtsstehende Reihe fiir alle s mit positivem Realteil konver-
giert. Somit lassen sich die «interessanten» Wurzeln der Zetafunktion, nimlich die Wurzeln
¢ =+ iymit0 < f < 1 elementar durch die beiden Gleichungen

s -1 X 1)1
2 qujfgi_ cos (ylogn) = 0, 2 ln}ﬂg sin (y logn) = 0
C =1 1

charakterisieren.
Die Summe iiber die Wurzeln g in der Riemannschen Formel ist nicht absolut konver-
gent und muB passend vorgenommen werden [nach wachsendem Absolutbetrag von Im(g)].
Schlieilich bemerken wir, daB die genaue Formel fiir s7(x) schon 1859 von Riemann auf-
gestellt wurde, erst aber 1895 von von Mangoldt bewiesen,
Diese Wurzeln wurden schon 1903 von Gram berechnet (J.-P. Gram, Sur les zéros de la fonc-
tion {(s) de Riemann, Acta Math. 27 (1903), 289-304). Fiir eine sehr schéne Darstellung der
Theorie der Riemannschen Zetafunktion und der Methoden zur Berechnung ihrer Nullstellen
siehe H. M. Edwards, Riemann’s Zeta Function, Academic Press, New York, 1974.
Néamlich die Riemannsche Vermutung impliziert (und ist sogar damit dquivalent), daB der
Fehler in der GauBschen Approximation Li(x) zu m(x) héchstens gleich einer Konstanten mal
#1/2 Jog v ist, wihrend man gegenwirtig nicht einmal weiB, ob dieser Fehler kleiner als x¢ fiir
irgendein ¢ <Z 1 ist.
Dieser Graph sowie die drei folgenden sind aus der Arbeit von H. Riesel und G. G&hl, Some
calculations related to Riemann’s prime number formula, Math. Comp. 24 (1970), 969983,
entnommen worden.
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