
Zeitschrift: Elemente der Mathematik (Beihefte zur Zeitschrift)

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 15 (1977)

Artikel: Die ersten 50 Millionen Primzahlen

Autor: Zagier, D.

DOI: https://doi.org/10.5169/seals-10209

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-10209
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


DIE ERSTEN 50 MILLIONEN PRIMZAHLEN

Ich möchte Ihnen heute von einem Gebiet erzählen, auf dem ich zwar selber nicht

gearbeitet habe, das mich aber immer außerordentlich gefesselt hat, und das wohl die

Mathematiker von der frühesten Vorgeschichte bis zur Gegenwart fasziniert hat - nämlich

die Frage nach der Verteilung der Primzahlen.
Was eine Primzahl ist, ist Ihnen sicherlich allen bekannt: Sie ist eine von 1

verschiedene natürliche Zahl, die durch keine andere natürliche Zahl außer 1 teilbar ist.

Mindestens ist das die Definition des Zahlentheoretikers; manchmal haben andere

Mathematiker freilich andere Definitionen. So ist für den Funktionentheoretiker eine

Primzahl eine ganzzahlige Nullstelle der analytischen Funktion

sin

n
sin —

s

für den Algebraiker ist sie

«die Charakteristik eines endlichen Körpers»

oder

«ein Punkt aus Spec Z»

oder

«eine nichtarchimedische Bewertung»;

für den Kombinatoriker werden die Primzahlen definiert durch die Rekursion [1]

n I ]\r
[

|
1 _ iog2 + 2J JT Yn\*- f=n<i,<...<i,<«' '

(Jx] ganzzahliger Teil von x) ;

und schließlich definiert sie neuerdings der Logiker als die positiven Werte des

Polynoms [2]

F(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)

-/2)2

— («a P — l2 +1 — m?Y — {n + l + v — y)2}..

Ich hoffe aber, Sie sind mit der ersten Definition, die ich gegeben habe, zufrieden.
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Es gibt zwei Tatsachen über die Verteilung der Primzahlen, von denen ich hoffeSie dermaßen zu überzeugen, daß sie für immer in Ihrem Herzen eingraviert sind Die
eine ist, daß die Primzahlen, trotz ihrer einfachen Definition und Rolle als Bausteineder natürlichen Zahlen, zu den willkürlichsten, widerspenstigsten Objekten gehörendie der Mathematiker überhaupt studiert. Sie wachsen wie Unkraut unter den natürlichen

Zahlen, scheinbar keinem anderen Gesetz als dem Zufall unterworfen und kein
Mensch kann voraussagen, wo wieder eine sprießen wird, noch einer Zahl ansehen ob
sie prim ist oder nicht. Die andere Tatsache ist viel verblüffender, denn sie besagt justdas Gegenteil - daß die Primzahlen die ungeheuerste Regelmäßigkeit aufzeigen daß
sie durchaus Gesetzen unterworfen sind und diesen mit fast peinlicher Genauigkeit
gehorchen. b

Um die erste dieser beiden Behauptungen zu veranschaulichen, zeige ich Ihnen ¦
zunächst eine Liste von den primen und den zusammengesetzten Zahlen bis 100 wobeiich neben 2 nur die ungeraden aufgeführt habe

^ nicht prim
2
3

5
7

11

13

17

19

23
29
31

37
41

43
47
53

59
61

67
71

73

79

83

89

97

9
15

21
25
27
33

35
39

45
49
51

55
57

63
65
69
75

77
81

85

87

91

93
95

99

oder wiederum eine Liste von den Primzahlen aus den hundert Zahlen die 10 000 000
vorangehen bzw. folgen :

Die Primzahlen zwischen Die Primzahlen zwischen
9 999 900 und 10 000 000 IQ qqq qqq und 10 000 100

9 999 901 10 000 019
9 999 907 10 000 079
9 999 929
9 999 931
9 999 937
9 999 943
9 999 971
9 999 973
9 999 991

Ich glaube, Sie werden zustimmen, daß kein sichtbarer Grund vorhanden ist warum
'

eine Zahl pnm ausfällt und die andere nicht. Vielmehr hat man beim Anblick dieser
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Zahlen das Gefühl, vor einem der unergründlichen Geheimnisse der Schöpfung zu
stehen. Daß auch die Mathematiker dieses Geheimnis nicht durchdrungen haben, wird
vielleicht am deutlichsten durch den Eifer bezeugt, mit dem sie nach immer größeren
Primzahlen suchen. Bei Zahlen, die gesetzmäßig anwachsen, wie etwa den Quadraten
oder den Zweierpotenzen, wäre es natürlich witzlos, ein größeres Exemplar als die
vorher bekannten hinzuschreiben. Bei Primzahlen dagegen gibt man sich große Mühe,
genau das zu tun. Im Jahre 1876 zum Beispiel hat Lucas bewiesen, daß die Zahl 2127—1

prim ist, und 75 Jahre blieb sie unübertroffen - was vielleicht nicht überraschend ist,
wenn man die Zahl sieht :

2127 - 1 170 141 183 460 469 231 731 687 303 715 884 105 727

Erst 1951, mit dem Erscheinen der elektronischen Rechenanlagen, fand man größere
Primzahlen. Die Daten über die nacheinanderfolgenden Titelinhaber können Sie in
der nachfolgenden Tabelle sehen [3]. Augenblicklich ist die 6002ziffrige Zahl 219937 — 1,

die ich nicht hinschreiben möchte, der Glückspilz, der sich dieses Ruhms brüsten
kann. Wer mir nicht glaubt, kann im Guinness-Buch der Weltrekorde nachgucken.

Die größte bekannte Primzahl

Anzahl der
Ziffern

Entdeckt
im Jahr

Von wem

2127

(2148 +
114 (2127 -
180 (2127 -

2521

2607

21279

22203

22281

23217

24253

24423 _
29689

28941 _^_

211213

219937

1

1)/T

1)2-
1

1

1

1

1

1

1

1

1

1

1

1

39
7 44

- 1 41

f 1 79
157
183

386
664

687
969

1281
1332
2917
2993
3376
6002

1876 Lucas
1951 Ferrier

1951 Miller + Wheeler + EDSAC 1

1952 Lehmer+Robinson + SWAC

1957 Riesel + BESK

1961 Hurwitz + Selfridge + IBM 7090

1963 Gillies + ILIAC 2

1971 Tuckerman + IBM 360

Viel interessanter ist aber die Frage nach den Gesetzen, die die Primzahlen
beherrschen. Ich habe Ihnen vorhin eine Liste der Primzahlen bis 100 gezeigt. Hier ist
dieselbe Information in graphischer Darstellung (siehe Fig. 1). Die mit n(x) bezeichnete
Funktion, von der ab jetzt dauernd die Rede sein wird, ist die Anzahl der Primzahlen
kleiner gleich x; sie fängt also bei Null an und springt bei jeder Primzahl x 2, 3, 5

usw. um eins hoch. Schon in diesem Bild sieht man, daß das Anwachsen von ti(x) trotz
kleiner lokaler Schwankungen im Großen ziemlich regelmäßig ist. Wenn ich aber den
Bereich der x-Werte von 100 auf 50 000 ausdehne, wird diese Regelmäßigkeit auf
atemberaubende Weise deutlich, denn der Graph sieht so aus, wie in Fig. 2 abgebildet.
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10000 20000 30 000 40000 50000

Fig. 2

Für mich gehört die Glätte, mit der diese Kurve steigt, zu den verblüffendsten
Tatsachen der Mathematik.

Nun, wo es Gesetze gibt, gibt es auch Wissenschaftler, die dahinter zu kommen

versuchen, und das hier ist keine Ausnahme. Es ist auch nicht schwer, eine empirische

Regel zu finden, die das Wachstum der Primzahlen gut beschreibt. Bis 100 gibt es

25 Primzahlen, also ein Viertel der Zahlen; bis 1000 gibt es 168, also ungefähr ein

Sechstel; bis 10 000 sind 1229 Primzahlen, also ungefähr ein Achtel. Wenn wir diese

Liste fortsetzen und für hunderttausend, eine Million usw. jeweils das Verhältnis von
Primzahlen zu natürlichen Zahlen ausrechnen, so finden wir diese Zahlen:

X

10

100

1000
10 000

100 000
1 000 000

10 000 000
100 000 000

1 000 000 000

10 000 000 000

7C{X)

4
25

168

1229
9 592

78 498
664 579

5 761 455
50 847 534

455 052 512

x[n{x)

2,5
4,0
6,0
8,1

10,4
12,7

15,0
17,4
19,7
22,0

(In dieser Tabelle stellen die Werte von n(x), die so unachtsam hingeschrieben sind,

Tausende von Stunden mühseligen Rechnens dar.) Wir sehen, daß das Verhältnis von

x zu nix) immer um ungefähr 2,3 hochgeht, wenn wir von einer Zehnerpotenz zur
nächsten übergehen. Mathematiker erkennen diese Zahl 2,3 sofort als den Logarithmus

von 10 (zu der Basis e. natürlich). So kommt man auf die Vermutung, daß

n(x)
log*
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wobei das Zeichen <~ bedeutet, daß das Verhältnis tz[x) : xfiogx mit wachsendem x
nach 1 strebt. Diese Beziehung, die erst 1896 bewiesen wurde, nennen wir heute den

Primzahlsatz; Gauß, der größte aller Mathematiker, hat sie schon als Fünfzehnjähriger
gefunden, indem er Primzahltabellen, die in einer ihm im Jahr zuvor geschenkten
Logarithmentafel enthalten waren, studierte. Während seines ganzen Lebens hat sich
Gauß lebhaft für die Verteilung der Primzahlen interessiert und ausgedehnte
Rechnungen durchgeführt. In einem Brief an Enke [4] beschreibt er, wie er «sehr oft
einzelne unbeschäftigte Viertelstunden verwandt» habe, «um bald hie bald dort eine

Chiliade [das heißt ein Intervall von 1000 Zahlen] abzuzählen», bis er schließlich die
Primzahlen bis 3 Millionen aufgezählt und mit den Formeln verglichen hatte, die

er für ihre Verteilung vermutete.
Der Primzahlsatz besagt, daß n{x) asymptotisch, das heißt mit einem Relativfehler

von 0%, gleich xjlogx, ist. Wenn wir aber den Graph der Funktion xflogx mit
7i(x) vergleichen, so sehen wir, daß die Funktion at/log« zwar das Verhalten von n(x)
qualitativ widerspiegelt, jedoch nicht mit einer solchen Genauigkeit mit dieser
übereinstimmt, als daß die Glätte der Funktion n{x) dadurch erklärt wäre :

6000

5000

4000

3000

2000

1000

-

-
^^\s^ X^^^ logx

X
1 r-

10 000 20 000 30000 40 000 50 000

Fig. 3

Es liegt also nahe, nach besseren Approximationen zu fragen. Wenn wir die obige
Tabelle von den Verhältnissen von x zu n(x) wieder angucken, so sehen wir, daß dieses

Verhältnis ziemlich genau gleich loga; — 1 ist. Durch sorgfältigeres Rechnen mit
vollständigeren Daten über n{x) hat Legendre [5] 1808 gefunden, daß man eine besonders

gute Approximation erhält, wenn man anstatt 1 die Zahl 1,08366 von logx abzieht, also

n(x)
log* - 1,08366

Eine andere sehr gute Approximation zu n(x), die erstmalig von Gauß angegeben

wurde, erhält man, indem man die empirische Tatsache als Ausgangspunkt nimmt,
daß die Frequenz der Primzahlen um eine sehr große Zahl x fast genau gleich l/log«
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ist. Danach wäre die Anzahl der Primzahlen bis x ungefähr durch die logarithmische

Summe

gegeben, oder, was fast dasselbe ist [6], durch das logarithmische Integral

-dt.Li(*)

Wenn wir den Graph von U{x) mit dem von n{x) vergleichen, so sehen wir, daß die

beiden innerhalb der Toleranz des Bildes genau übereinstimmen:

10 000 20000 30000 40000 50000

Fig. 4

Das Bild der Legendreschen Approximation brauche ich Ihnen dann nicht zu zeigen,

denn sie stellt in diesem Bereich sogar eine noch bessere Annäherung zu n(x) dar.

Es gibt noch eine Approximation, die ich erwähnen möchte. Die Untersuchungen

von Riemann über Primzahlen suggerieren, daß die Wahrscheinlichkeit für eine große

Zahl x, prim zu sein, noch genauer durch l/log* gegeben sein würde, wenn man nicht

nur die Primzahlen, sondern auch noch die Vrimzshlpotenzen mitzählte, wobei das

Quadrat einer Primzahl als eine halbe Primzahl gezählt wird, die dritte Potenz einer

Primzahl als eine Drittel-Primzahl usw. Dies führt zu der Approximation

n\

oder, wenn wir das umkehren, zu

n{x) g* Li(%) - - [7]
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Wir bezeichnen die Funktion, die auf der rechten Seite dieser Formel steht, zu Ehren

von Riemann mit R{x). Sie stellt eine erstaunlich gute Approximation zu n{x) dar,

wie man aus den folgenden Werten sieht :

- —
R(%)

100 000 000 5 761 455 5 761 552

200 000 000 11078 937 11079 090

300 000 000 16 252 325 16 252 355

400 000 000 21 336 326 21 336 185

500 000.000 26 355 867 26 355 517

600 000 000 31 324 703 31 324 622

700 000 000 36 252 931 36 252 719

800 000 000 41 146 179 41 146 248

900 000 000 46 009 215 46 009 949

1000 000 000 50 847 534 50 847 455

Für den Leser, der etwas Funktionentheorie kennt, darf ich vielleicht kurz erwähnen,
daß R{x) eine ganze Funktion von log« ist, gegeben durch die schnell konvergente
Potenzreihe

r(X)==i + y 1 (log*)"

~x n Ç\n- +1) n\

wobei f(« + 1) die Riemannsche Zetafunktion bezeichnet |8].
Allerdings sei hier betont, daß die von Gauß und Legendre gegebenen

Approximationen zu n{x) nur empirische Feststellungen waren, und daß sogar Riemann, der

doch durch theoretische Überlegungen zu seiner Funktion R(x) geführt wurde, den

Primzahlsatz nie bewiesen hat. Das haben erst 1896 Hadamard und (unabhängig) d.e

la Vallée Poussin, auf Riemanns Untersuchungen aufbauend, getan.
Zu dem Thema der Voraussagbarkeit der Primzahlen möchte ich noch einige

numerische Beispiele bringen. Wie schon gesagt, ist die Wahrscheinlichkeit, daß eine

Zahl von der Größenordnung x prim ist, ungefähr gleich lßogx; das heißt, die Anzahl
der Primzahlen in einem Intervall der Länge a um x soll ungefähr aßogx sein, mindestens

dann, wenn das Intervall lang genug ist, um Statistik sinnvoll machen zu können,

aber klein im Vergleich mit x. Zum Beispiel erwarten wir in dem Intervall
zwischen 100 Millionen und 100 Millionen plus 150 000 ungefähr 8142 Primzahlen, da

150 000 150 000

TogO-OÖ 000 000)"
~~

18,427 ^

ist. Entsprechend ist die Wahrscheinlichkeit, daß zwei vorgegebene Zahlen in der

Nähe von x beide prim sind, ungefähr l/(log%)2. Wenn man also fragt, wieviel
Primzahlzwillinge (also wieviel Paare wie 11, 13 oder 59, 61 von Primzahlen, die sich um

genau 2 unterscheiden) es in dem Intervall von x bis x + a gibt, so erwartet man

ungefähr a/(log%)2. In der Tat erwartet man ein bißchen mehr, da die Tatsache, daß n

schon prim ist, die Chancen von n + 2, auch prim zu sein, etwas ändert - zum Beispiel
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ist « + 2 dann sicherlich ungerade. Ein leichtes heuristisches Argument [9] gibt

C[«/(logx)2] als die erwartete Anzahl der Primzahlzwillinge im Intervall [x, x + a]

an wo C eine Konstante mit dem Wert ungefähr 1,3 ist (genauer : C 1,320 323 6316...).
So' sollten sich zwischen 100 Millionen und 100 Millionen 150 Tausend ungefähr

1 32 X 150000/(18,427)2 ^ 584 Paare von Primzahlzwillingen befinden. Ich habe

hier die von den Herren Jones, Lal und Blundon [10] berechneten Daten für die

wirklichen Anzahlen von Primzahlen und Zwillingen in diesem Intervall sowie in

einigen gleich langen Intervallen um größere Zehnerpotenzen:

Intervall Primzahlen Primzahlzwillinge
erwartet gefunden erwartet gefunden

100 000 000-
100150 000 8142 8154

1 000 000 000-
1000150 000 7238 7242

10 000 000 000-
10 000150 000 6514 6511

100 000 000 000-
100 000150 000 5922 5974

1 000 000 000 000-
1000 000150 000 5429 5433

10 000 000 000 000-
10 000 000150 000 5011 5065

100 000 000 000 000-
100 000 000150 000 4653 4643

1 000 000 000 000 000-
1000 000 000150 000 4343 4251

Wie Sie sehen, ist die Übereinstimmung mit der Theorie sehr gut. Das ist besonders

erstaunlich im Falle der Zwillinge, da man da nicht einmal beweisen kann, daß es

überhaupt unendlich viele Primzahlzwillinge gibt, geschweige denn, daß sie nach dem

erwarteten Gesetz verteilt sind. _ ;

Zu dem Thema der Voraussagbarkeit der Primzahlen gebe ich ein letztes Beispiel,

das Problem der Lücken zwischen den Primzahlen. Wenn man Primzahltabellen

anguckt so findet man manchmal besonders große Intervalle, wie das zwischen 113 und

127 die gar keine Primzahlen enthalten. Sei g(x) die Länge des größten primzahlfreien

Intervalls bis x {g soll an das englische Wort «gap» erinnern); zum Beispiel ist das

längste solche Intervall bis 200 das eben erwähnte Intervall von 113 bis 127, also

g(200) 14. Die Zahl g(x) wächst natürlich sehr unregelmäßig, aber ein heuristisches

Argument deutet auf die asymptotische Formel

g(x) ~ (log«)2

hin [11]. Wie gut sogar die sehr stark schwankende Funktion g(x) sich an das erwartete

Benehmen hält, sehen Sie im folgenden Bild:

584

461

374

309

259

211

191

166

601

466

389

276

276

208

186

161
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10 102 103 104 105 106 107 108 109 1010 10" 1012

Fig. 5

Bisher habe ich meine Behauptung über die Ordnung, die bei den Primzahlen
herrscht, viel eingehender belegt als meine Behauptung über ihre Willkür. Auch habe
ich noch nicht das Versprechen meines Titels, Ihnen die ersten 50 Millionen Primzahlen
zu zeigen, erfüllt, sondern Sie haben bisher nur Daten über einige Tausend Primzahlen
gesehen. Hier ist also ein Graph von n(x) im Vergleich mit den Approximationen von
Legendre, Gauß und Riemann bis 10 Millionen [12] ; da diese vier Funktionen so dicht
aneinender sind, daß man ihre Graphen nicht unterscheiden könnte - wie ich Ihnen
schon in dem Bild bis 50 000 gezeigt habe -, habe ich hier nur die Differenzen
gezeichnet (siehe Fig. 6). Ich glaube, erst dieses Bild zeigt, worauf derjenige sich
eingelassen hat, der sich entscheidet, die Primzahlen zu studieren.

Wie Sie sehen, ist die Legendresche Approximation xl(logx —1,08366) für kleine x
(bis zirka 1 Million) wesentlich besser als die Gaußsche Li(#), ab 5 Millionen ist aber

Li (x) besser, und man kann zeigen, daß das bei wachsendem x immer mehr der Fall ist.
Bis 10 Millionen gibt es allerdings nur etwa 600 000 Primzahlen; um Ihnen die

vollen 50 Millionen vorzustellen, muß ich nicht bis 10 Millionen, sondern bis 1 Milliarde
gehen. Der Graph von R(x) — n(x) in diesem Bereich sieht so aus, wie in Fig. 7

gezeigt [13]. Die Schwankungen der Funktion n[x) werden immer größer, aber sogar bei
diesen fast unvorstellbar großen Werten von x übertreffen sie nie ein paar Hundert.

Im Zusammenhang mit diesen Daten kann ich noch eine Tatsache über die
Primzahlanzahl n(x) erwähnen. Auf dem Bild bis 10 Millionen war die Gaußsche Approximation

Li (x) immer größer als n(x). Das bleibt der Fall bis 1 Milliarde, wie Sie auf dem

folgenden Bild (in dem dieselben Daten wie vorher logarithmisch geplottet sind) sehen

können (siehe Fig. 8).
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7/ 81 a M 9» 10

1,000,000,000

Fig. 7

2000 -

1000 -

500 -

200 -

100
10 20 30 500 100070 100 200

x (in Millionen)

Fig. 8

Sicherlich gibt uns dieser Graph den Eindruck, daß die Differenz Li (x) — n(x) mit
wachsendem x unbeirrt nach Unendlich strebt, das heißt, daß das logarithmische
Integral lA{x) grundsätzlich die Anzahl der Primzahlen bis x überschätzt (was mit
der Feststellung, daß R(x) eine bessere Approximation als hi(x) liefert, übereinstimmen

würde, da R(x) immer kleiner als Li (x) ist). Dies ist aber nicht der Fall : Man kann
nämlich beweisen, daß es Punkte gibt, wo die Schwankungen von n(x) so groß sind,
daß 7t(x) lA{x) übertrifft. Solche Zahlen hat man bisher nicht gefunden und wird man
vielleicht nie finden, aber Littlewood hat gezeigt, daß sie existieren, und Skewes [14]

sogar, daß es eine gibt, die kleiner als (101010 ist. (Von dieser Zahl sagt Hardy, sie sei

wohl die größte, die je in der Mathematik irgendwelchem besonderen Zweck gedient
hat.) Jedenfalls zeigt dieses Beispiel, wie unklug es ist, aus numerischen Daten
Schlüsse über die Primzahlen zu ziehen.

Ich möchte im letzten Teil meines Vortrags einige der theoretischen Ergebnisse
über 7i(x) erzählen, damit Sie nicht mit dem Gefühl weggehen, ausschließlich
experimentelle Mathematik gesehen zu haben. Ein Uneingeweihter würde sicherlich meinen,
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daß die Eigenschaft, prim zu sein, viel zu zufallsbedingt ist, um irgendetwas darüber

beweisen zu können. Diese Ansicht wurde schon vor 2200 Jahren von Euklid widerlegt,

indem er die Existenz von unendlich vielen Primzahlen zeigte. Sein Argument

läßt sich in einem Satz formulieren : Gäbe es nur endlich viele Primzahlen, so könnte

man sie zusammenmultiplizieren und 1 addieren, um eine Zahl zu erhalten, die durch

gar keine Primzahl teilbar ist, und das ist unmöglich. Im 18. Jahrhundert hat Euler

mehr bewiesen, nämlich, daß die Summe der Reziproken der Primzahlen divergent ist,

also jede vorgegebene Zahl übertrifft. Sein ebenfalls sehr einfacher Beweis benutzt

die Funktion

deren Bedeutung für das Studium von n\x) aber erst später durch die Arbeit von

Riemann voll zur Geltung kommen sollte. In diesem Zusammenhang sei auch bemerkt,

daß die Summe der Reziproken aller Primzahlen zwar unendlich ist, die Summe der

Reziproken aller bekannten (also etwa der ersten 50 Millionen) kleiner als vier [15].

Erst 1850 konnte Tschebyscheff den ersten Ansatz zum Beweis des Primzahlsatzes

machen [16]. Er zeigte, daß für hinreichend große x

0,89 -Î— < n{x) < 1,11 -:
log* log*

gilt, also daß der Primzahlsatz richtig ist mit einem relativen Fehler von höchstens

11%. Sein Beweis benutzt Binomialkoeffizienten und ist so schön, daß ich der

Versuchung nicht widerstehen kann, eine vereinfachte Version davon anzudeuten (allerdings

mit schlechteren Konstanten).
In der einen Richtung werden wir

n{x) <1,7 ---log*

zeigen. Diese Ungleichung stimmt für x < 1200. Ich nehme induktiv an, sie sei für

x < n bewiesen und betrachte den mittleren Binomialkoeffizienten (2*). Wegen

2 n\ 11 n\ [2
+ ()++(

ist er sicherlich kleiner als 22". Anderseits ist

2 n\ (2 n) (2 n) X (2 n - 1) X • • • X 2 X 1

n I "(w!Ja
"

{n X {n — 1) X • ¦ • X 2 X l)2

Hier kommt jede Primzahl p, die kleiner als 2 n ist, im Zähler vor, aber für p größer

als n erscheint p sicherlich nicht im Nenner. Deswegen ist (2J4) durch jede Primzahl

teilbar, die zwischen n und 2 n liegt :

U
n<p<2n n
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Aber in dem Produkt sind n(2 n) - n{n) Faktoren, alle größer als n, also gilt

< 22»
n<p<2n

Wenn ich Logarithmen nehme, finde ich

//i \ / * 2»log2 nn{2 n) - 7t(n) < — 5_ < 139
log« '

log«

Induktiv ist aber der Satz für n richtig, also

IM

n(n) < 1,7- ;

log«

durch Addition dieser Beziehungen ergibt sich

7t(2 n) < 3,09 -?— < 1,7 --^^ (n > 1200),log» log (2n)
v '

also gilt der Satz auch für 2 n. Wegen

71(2 n + 1)^ ^ n) + 1< 3'°9 +"<17
gilt er auch für 2 » + 1, und der Induktionsschritt ist fertig.

Für die Abschätzung in der anderen Richtung braucht man ein einfaches Lemma,
das man mit Hilfe einer wohlbekannten Formel für die Potenz von p, die in »! aufgeht,
leicht beweisen kann [17] :

LEMMA : Sei p eine Primzahl. Ist p'P die größte Potenz von p, die in (") aufgeht, so ist

pvp <n
KOROLLAR: Für jeden Binomialkoeffizient Q gilt

Wenn ich die Aussage des Korollars für alle Binomialkoeffizienten mit gegebenem n
•hinschreibe und diese Ungleichungen aufaddiere, so finde ich

und der Logarithmus hiervon liefert

log2
mn) >

log« log«

2 n
3 log« («>200).
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Zum Schluß möchte ich ein paar Worte über Riemanns Arbeit sagen. Riemann
hat zwar nicht den Primzahlsatz bewiesen, dafür aber etwas viel Verblüffenderes
gemacht, nämlich eine genaue Formel für n(x) gegeben. Diese Formel hat die Gestalt

jc(x) + - n{^x) + j {ntyx) H U{x) -27 Li(*e)
Q

wobei die Summe über die Wurzeln der Zetafunktion f(s) läuft [18]. Diese sind (mit
Ausnahme der sogenannten «trivialen Wurzeln» q — 2, — 4, — 6, die einen
vernachlässigbaren Beitrag liefern) komplexe Zahlen mit Realteil zwischen 0 und 1,
wovon die ersten 10 folgende Werte haben [19] :

1 1
Qi 2" + 14,134725 i, Ql — - 14,134725 i,

1 „1ßa -y + 21,022040t, g2 y - 21,022040 *,

1 1
g3 _l_ 25,010856 i; q3 -¦ - 25,010856 »,

1 _ 1
q4 + 30,424878 *, g4 30,424878 i,

Q& j + 32,935057 i q-o - 32,935057 *

Daß mit einer Wurzel immer auch die komplex Konjugierte auftritt, ist leicht zu
zeigen. Daß aber jeweils der reelle Teil der Wurzel genau gleich 1/2 ist, ist noch
unbewiesen; dies ist die berühmte Riemannsche Vermutung, die für die Primzahltheorie
äußerst wichtige Folgen hätte [20]. Man hat sie für 7 Millionen Wurzeln verifiziert.

Die Riemannsche Formel kann mit Hilfe der oben eingeführten Riemannschen
Funktion R(x) in der Gestalt

7i(x) R(x)

geschrieben werden; sie liefert also als k-te Approximation zu n(x) die Funktion

Ru{x) R(x) + Tt(x) + 7\(x) + •¦•• + Tk{x)

wobei T„(x) - RQc«») — R(x?n) der Beitrag des n-ten Wurzelpaares der
Zetafunktion ist. Für jedes n ist Tn(x) eine glatte, oszillierende Funktion von *; für die
ersten Werte von n sieht sie so aus wie in Fig. 9 abgebildet [21]. Somit ist'auch Rk(x)
für jedes k eine glatte Funktion. Bei wachsendem k nähern sich diese Funktionen n(x).
Hier sind zum Beispiel die Graphen der 10. und der 29. Approximationen (siehe Fig. 10
und 11) - und wenn man diese Kurven mit dem Graph von n(x) bis 100 (S. 4)
vergleicht, ergibt sich das in Fig. 12 gezeigte Bild.

Ich hoffe, daß ich Ihnen mit diesem und den anderen Bildern einen gewissen
Eindruck vermittelt habe von der großen Schönheit der Primzahlen und von den
endlosen Überraschungen, die sie für uns bereithalten.



0.3

0.2

0.1

0

0.1

0.2

0.3

A

1 \ 1 50 1 /

V / \

A/ \'/ \
\ -\ 100

V/
T, (x)

T, (x!

0.2

0.1

0

0.1

0.2

- fl
1

A A
l\ \ \ A/1 I V/ i / \ i

N

A 1/50 \ / \ 100

lli \ / \
J

T3 (x)

Fig. 9



Die ersten 50 Millionen Primzahlen 19

20

15

10

50

Fie. 10

100



20 D. Zagier

25

20

R29(x)

15

10

50

Fig. 11

100



Die ersten 50 Millionen Primzahlen 21

25

20

15

10

X[x)
RiO(x)

R2g(x)

j_
50

Fig. 12

100



22
D. Zagicr

ANMERKUNGEN
[1] J. M. Gandhi, Formulae for the n-th prime, Proc. Washington State Univ Conf on Number

Theory, Washington State Univ., Pullman, Wash., 1971, 96-106.
[2] J. P. Jones, Diophantine representation of the set of prime numbers, Notices of the AMS 22

[3] Es gibt einen guten Grund dafür, daß so viele Zahlen auf dieser Liste von der Gestalt Mk 2* -1sind: Em auf Lucas zurückgehender Satz besagt, daß Mk (h > 2) genau dann prim ist wennMk m Lk_x aufgeht, wo die Zahlen L„ induktiv durch Lx 4, Ln+l lj„ _ 2 (also L3 =14,La 194, L4 37634,...) definiert werden, und damit kann man die Primalität von Mk sehrviel schneller testen als für eine andere Zahl derselben Größenordnung möglich wäreDle Primzahlen der Gestalt 2* - 1 (k muß dann notwendigerweise selber prim sein) heißen
Mersennesche Primzahlen (nach dem französischen Mathematiker Mersenne der im Jahre 1644
eme größtenteils richtige Liste aller solchen Primzahlen, < 10™ angegeben hat) und spielenun Zusammenhang mit einem ganz anderen Problem der Zahlentheorie eine Rolle Euklid hat
entdeckt, daß die Zahlen Zt-v (2v _ 1), we„„ 2p - 1 prim ist, «vollkommen», das heißt gleichder Summe ihrer echten Teiler sind (z. B. 6 1 + 2 + 3 28 1 + 2 + 4 + 7 + 14496 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248), und Euler zeigte, daß alle geradenvollkommenen Zahlen diese Gestalt haben. Es ist unbekannt, ob es auch ungerade vollkommene

Zahlen gibt ; sie müßten jedenfalls > 10*00 sein. Es gibt genau 24 Werte von p 2Q QQ0fur die 2^ — 1 prim ist.
[4] C. F. Gauß, Werke, II (1872), 444-447. Für eine Diskussion der Geschichte der verschiedenen

Approximationen zu n(x), wo auch dieser Brief (in englischer Übersetzung) abgedruckt wirdsiehe L. J. Goldstein, A history of the prime number theorem, Amer. Math. Monthly 80 (1973),

[5] A. M. Legendre, Essai sur la théorie de Nombres, 2. Auflage, Paris, 1808, S. 394.
[6] Genauer gesagt, gilt

Ls(*) - 1,5 < lÂ(x) < Ls(#)
das heißt, die Differenz zwischen U(#) und Ls(*) ist beschränkt. Wir erwähnen auch daß
das logarithmische Integral häufig als der Cauchy Hauptwert

U(x) H.W. / * hm Ï-JL + fJL)J logt B^o\./ logt ^ J logt}
0 0 l+e

definiert wird ; diese Definition unterscheidet sich aber von der im Text angegebenen auch nurum eme Konstante.
[7] Das Bildungsgesetz der Koeffizienten ist wie folgt: der Koeffizient von Li(»j/*) ist gleich

+ 1/k, falls n das Produkt einer geraden Anzahl verschiedener Primzahlen ist, gleich - \\nfalls n das Produkt einer ungeraden Anzahl verschiedener Primzahlen ist, und gleich 0 falls nmehrfache Primfaktoren enthält.
[8] Andere Darstellungen dieser Funktion sind

(t(s) Riemannsche Zetafunktion, r(s) Gammafunktion) und

12 x + 40 *3-~ \
(Sji Ä-te Bernoulli-Zahl; bedeutet, daß die Differenz der beiden Seiten mit wachsendem
x nach 0 strebt), die beide von Ramanujan stammen. Vgl. H. G. Hardy, Ramanujan: Twelve
Lectures on Subjects Suggested by His Life and Work, Cambridge University Press 1940
Kap. 2.



Die ersten 50 Millionen Primzahlen 23

[9] Nämlich : Für ein Paar (m, n) von zufällig gewählten Zahlen ist die Wahrscheinlichkeit, daß m
und n beide ^ 0 (mod^>) sind, offensichtlich gleich ((p — l)/^)2, während für eine zufällig
gewählte Zahl n die Wahrscheinlichkeit, daß » und n + 2 beide $ä 0 (mod p) sind, gleich 1/2 für
p — 2 und gleich (p — 2)jp int p #. 2 ist. Somit unterscheidet sich die Wahrscheinlichkeit für«
und n + 2, modulo /> ein Paar von Primzahlkandidaten darzustellen, um einen Faktor
((p — 2)jp) (p2l(p — l)2) für p gt 2 bzw. 2 fürp 2 von der entsprechenden Wahrscheinlichkeit
für zwei unabhängige Zahlen m und ». Wir haben also insgesamt unsere Chancen um einen
Faktor

JJ^J2±i ==1,32032...

p prim

verbessert. Für eine etwas sorgfältigere Durchführung dieses Arguments siehe G. H. Hardy
und E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford,
1960, § 22.20 (S. 371-373).

[10] M. F. Jones, M. Lai und W. J. Blundon, Statistics on certain large primes, Math. Comp. 21

(1967), 103-107.
[11] D. Shanks, On maximal gaps between successive primes, Math. Comp. 18 (1964), 646-651. Der

Graph vong(x) wurde anhand der Tabellen aus folgenden Arbeiten gemacht: L. J. Lander und
T. R. Parkin, On first appearance of prime differences, Math. Comp. 21 (1967), 483-488;
R. P. Brent, The first occurrence of large gaps between successive primes, Math. Comp. 27
(1973), 959-963.

[12] Die Daten in diesem Graph sind aus Lehmers Primzahltabelle entnommen worden (D. N. Leh¬

mer, List of Prime Numbers from 1 to 10006721, Hafner Publishing Co., New York, 1956).
[13] Dieser und der folgende Graph wurden anhand der Werte von n(x) gemacht, die in D. C. Mapes,

Fast method for computing the number of primes less than a given limit, Math. Comp, -17

(1963), 179-185, angegeben werden. Im Gegensatz zu den im vorgehenden Graph benutzten
Daten von Lehmer wurden diese Werte mit Hilfe einer Formel für n(x) errechnet und nicht
durch Aufzählen der Primzahlen bis x.

[14] S. Skewes, On the difference n(x) - li(*) (I), J. Lond. Math, Soc. S (1933), 277-283. Diese Ab¬

schätzung hat Skewes zunächst unter Annahme der unten besprochenen Riemannschen
Vermutung bewiesen; zweiundzwanzig Jahre später (On the difference n{x) — \i(x) (II), Proc.
Lond. Math. Soc. (3) 5 (1955), 48-70) hat er ohne Hypothese, gezeigt, daß es ein x unterhalb
der (noch viel größeren) Schranke lO«'10964 gibt mit n{%) > Li (x). Diese Schranke ist von Cohen
und Mayhew auf 1010529,7 un(i von Lehman (On the difference n(x) — li(#), Acta Arithm. 11
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wo e(x) -> 0 für x —> oo und C sa 0,261497 eine Konstante ist. Dieser Ausdruck ist für x 109

kleiner als 3,3 und sogar für x lO« noch unterhalb 4.
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(1849), 397-401, 738-739. Für eine moderne Darstellung auf Deutsch des Tschebyscheffschen
Beweises siehe W. Schwarz, Einführung in Methoden und Ergebnisse der Primzahltheorie,
BI-Hochschul-Taschenbuch 278/278a, Mannheim 1969, Kap. II.4, S. 42-48.

[17] Die größte Potenz von p, die »! teilt, ist plnIP]+ l"IP'i + ¦•¦ ,wo [*] den ganzzahligen Teil von *.

bezeichnet; somit ist in der Bezeichnung des Lemmas
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In dieser Summe ist jeder Summand gleich 0 oder 1, und sicherlich gleich 0 für

> M±
logp

(da dann \njpr"\ — 0 ist), also ist

l0g"
v <

und die Behauptung folgt.
[18] Die oben angegebene Definition von £(s) als

1 +— + — + '"
hat nur da einen Sinn, wo s eine komplexe Zahl mit Realteil größer als 1 ist (da die Reihe nur
dort konvergiert), und in diesem Bereich hat £(s) keine Nullstellen. Die Funktion £(s) läßt sich
aber für alle komplexen Zahlen s definieren, so daß es einen Sinn hat, von ihren Wurzeln in
der komplexen Ebene zu sprechen. Die Erweiterung des Definitionsbereichs von 'Q(s) auf die
Halbebene Re(s) > 0 bekommt man am einfachsten, wenn man die für Re(s) > 1 gültige
Identität

benutzt und bemerkt, daß die rechtsstehende Reihe für alle s mit positivem Realteil konvergiert.
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-3£2, (_ 1)m-i JS, (_. i)n2, nf- °OS{y 1OgM) ° ' 2j J
n—l n 1

charakterisieren.
Die Summe über die Wurzeln q in der Riemannschen Formel ist nicht absolut konvergent

und muß passend vorgenommen werden [nach wachsendem Absolutbetrag von Im(g)].
Schließlich bemerken wir, daß die genaue Formel für n(x) schon 1859 von Riemann

aufgestellt wurde, erst aber 1895 von von Mangoldt bewiesen.
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x1'2 log* ist, während man gegenwärtig nicht einmal weiß, ob dieser Fehler kleiner als x" für
irgendein c < 1 ist.

[21] Dieser Graph sowie die drei folgenden sind aus der Arbeit von H. Riesel und G. Göhl, Some
calculations related to Riemann's prime number formula, Math. Comp. 24 (1970), 969-983,
entnommen worden.
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