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Pierre Fermât

Pierre Fermât fut baptisé le 20 Août 1601, à Beaumont de Lomagne, actuellement
chef-lieu de canton du département du Tarn et Garonne.

Son père, Dominique Fermât, bourgeois, était second consul de Beaumont, sa mère,
Claire de Long, était d'une famille de robe. Elève chez les Cordeliers de Beaumont, il
termina ses études à Toulouse, où il s'inscrivit comme avocat au Parlement. Il fit ensuite
une carrière de magistrat, entièrement à Toulouse: Commissaire aux requêtes le 14
Mai 1631, Conseiller de la Chambre des enquêtes le 30 Décembre 1634, Conseiller de
la Chambre de l'édit en Août 1648. Il s'était marié le 1er Juin 1631 avec une cousine
de sa mère, Louise de Long, dont il eut cinq enfants: Clément-Samuel qui fut comme
lui magistrat et qui devait éditer partiellement ses œuvres; Jean qui fut archidiacre de
Fimarens; Claire dont un petit-fils, Jean Gaillard, devait succéder comme conseiller à
Jean-François, fils de Samuel, et Catherine et Louise qui devaient entrer toutes deux
en religion. Il mourut à Castres, où l'appelaient souvent les devoirs de sa charge, le 12
Janvier 1665.

Il ne nous est véritablement connu qu'à travers ses écrits et sa correspondance. Ce
qui nous reste de celle-ci débute par une lettre adressée au Père Mersenne, le 26 Avril
1636. Il a déjà 35 ans, est en pleine possession de son génie, et a acquis une certaine
notoriété par ses travaux mathématiques. Nous ignorons donc tout de ses premiers
maîtres, et de la formation scientifique qu'il a reçue. Il apparaît cependant comme très
versé dans les langues anciennes, et imprégné de culture classique. Lorsque sa
correspondance commence il a déjà profondément médité sur les mathématiciens de l'antiquité

et a subi par ailleurs très fortement l'influence de Viète, aux méthodes et aux
notations duquel il restera fidèle jusqu'à la fin de sa vie. C'est un point où il se
différencie de Descartes, plus influencé par les mathématiciens flamands, et dont les
notations, plus évoluées, devaient finir par triompher.

La célébrité de Fermât, de son vivant, fut restreinte aux milieux scientifiques: milieux
universitaires en Italie, dans les Flandres, en Angleterre, milieux d'amateurs éclairés,
en France, principalement formés de juristes et de prêtres, et où les universitaires,
comme Roberval, étaient l'exception. Il ne fut jamais mathématicien de métier, et
n'accordait à la science que ses moments de loisir, qu'elle devait partager avec les vers
latins et d'abondantes lectures, et qui étaient d'ailleurs peu nombreux pour un
Parlementaire chargé d'une nombreuse famille. Il n'a pour ainsi dire pas rédigé d'ouvrage
complet, et la plupart de ses essais sont demeurés manuscrits de son vivant. Ils circulaient

entre ses amis et correspondants, qui en prenaient des copies plus ou moins
fidèles. Jamais ou presque jamais il ne pousse à fond une démonstration, mais il se
contente d'en indiquer le principe et la marche générale, laissant à la sagacité de ses
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lecteurs le soin de développer les cas particuliers et de discuter les problèmes. Cette
sorte de nonchalance lui fit parfois manquer des découvertes, comme celle des quadri-
ques réglées qu'il laissera à Wren et à Parent.

Lorsque, dans son âge mûr, il s'aperçut que ses découvertes risquaient d'être perdues,
il chercha des collaborateurs capables de les mettre au point et de les éditer. C'est ainsi
qu'il pensa à Carcavi, son principal correspondant à Paris et le dépositaire de la
plupart de ses manuscrits, et à Pascal. Il écrit à Carcavi le 9 Août 1654: «J'ai été ravi
d'avoir eu des sentiments conformes à ceux de M. Pascal, car j'estime infiniment son
génie et je le crois très capable de venir à bout de tout ce qu'il entreprendra. L'amitié
qu'il m'offre m'est si chère et si considérable que je crois ne devoir point faire
difficulté d'en faire quelque usage en l'impression de mes Traités.

?Si cela ne vous choquoit point, vous pourriez tous deux procurer cette impression,
de laquelle je consens que vous soyez les maîtres; vous pourriez éclaircir ou augmenter
ce qui semble trop concis et me décharger d'un soin que mes occupations m'empêchent
de prendre. Je désire que cet Ouvrage paroisse sans mon nom, vous remettant, à cela
près, le choix de toutes les désignations qui pourront marquer le nom de l'auteur que
vous qualifierez votre ami."

Ces tentatives d'édition échouèrent. Ce que n'avait pu réaliser Fermât lui-même,
son fils aîné Samuel le tenta, et le réalisa en partie. Malheureusement Samuel, érudit
et lettré, n'était pas mathématicien, et ses éditions s'en ressentent. Il publia en 1670
une nouvelle édition du Diophante de Bachet de Méziriac, augmentée de remarques de

son père, et complétée par le traité du Père de Billy « Doctrinœ analyticœ inventum no-
vum». En 1679 enfin il put faire paraître les «Varia Opera», qui sont bien loin de
contenir la totalité des découvertes de Fermât.

Raconter la vie du grand mathématicien se résume à étudier ses divers écrits. Dans

l'impossibilité de les analyser tous, nous devrons faire un choix, ne retenant que ceux
qui, à tort peut-être, nous apparaissent comme les plus importants.

Une de ses premières œuvres fut une reconstitution des Lieux Plans d'Apollonius,
reconstitution dont le livre deux, le plus ancien, était déjà composé en 1629, alors que
l'auteur n'avait que 28 ans. Il avait à sa disposition la traduction latine par Comman-
din de la Collection Mathématique de Pappus, ouvrage qui exercera sur lui une grande
influence, et où se trouvent résumés les énoncés des propositions d'Apollonius. Ce

traité, comme tous ceux qu'il composera, à l'exception de sa correspondance, est rédigé
en latin. Nos citations seront tirées pour ce traité comme pour les suivants de la traduction

française de Paul Tannery.
Les lieux plans sont des lieux géométriques qui ne comprennent que des droites et

des cercles. En langage moderne la plus grande partie du livre I de l'ouvrage d'Apollonius

peut se résumer ainsi: l'homothétie, la translation, la rotation, la similitude et
l'inversion transforment un lieu plan en un lieu plan. Le livre II, qui fut le premier
restitué par Fermât, comprend les lieux des points dont la différence des carrés des
distances à deux points donnés est constante, ou dont le rapport des distances aux deux
points est constante, dont les carrés des distances à ces deux points ont entre eux une
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relation linéaire, ou dont les carrés des distances à plusieurs points ont entre eux une
relation linéaire homogène, etc.

Ce travail, commencé comme nous l'avons signalé plus haut avant 1629, et qui
n'apporte rien de nouveau, mais qui montre déjà de profondes connaissances en Géométrie

ancienne, semble avoir occupé Fermât à plusieurs reprises jusqu'en 1636. «La
question la plus difficile et la plus belle» n'a guère dû être trouvée que vers cette
époque. Il s'agit de la 7e du livre I: «Soient en nombre quelconque des droites données
de position, auxquelles on mène d'un point des lignes droites sous des angles donnés;
si le produit d'une ligne donnée et d'une des menées, avec le produit de la ligne donnée

et d'une autre menée etc. est égal au produit d'une donnée et de la dernière
des menées, le point sera sur une ligne droite donnée de position». Cette proposition
est difficile par les procédés des anciens. Fermât ne l'établit que pour trois droites. Sa
démonstration est synthétique. Elle est pénible à suivre, et ne saurait être une méthode
de découverte. Son intérêt historique réside dans le fait qu'elle prouve qu'au moment
où Fermât la rédigeait, moment antérieur, mais de peu, au 26 Avril 1636, il n'était
pas en possession de sa géométrie analytique. D'ailleurs il écrit lui-même, après sa
découverte de cette géométrie : « Si cette découverte eût précédé notre restitution déjà
ancienne des deux livres des lieux plans, les constructions des théorèmes et des lieux
en eussent été rendues beaucoup plus élégantes ; cependant nous ne regrettons pas cette
production, quoique précoce et insuffisamment mûrie. Il y a en effet pour la Science
un certain intérêt à ne pas dérober à la postérité les travaux encore informes de l'esprit;
l'œuvre d'abord simple et grossière se fortifie et grandit par les nouvelles inventions.
Il est même important pour l'étude de pouvoir contempler pleinement les progrès
cachés de l'esprit et le développement spontané de l'art. »

Un autre court traité géométrique de Fermât sur «Les Contacts Sphériques» est
difficile à dater. Il généralise à l'espace la reconstitution par Viète du traité d'Apollonius

sur les contacts. Ce mémoire traite quinze problèmes qui correspondent aux
quinze combinaisons obtenues en prenant quatre éléments parmi l'ensemble de quatre
points, quatre plans, quatre sphères. Il s'agit de construire une sphère passant par les

points et tangente aux plans et aux sphères. Fermât ne donne jamais le nombre de
solutions de chacun de ces problèmes. Il établit cinq lemmes se rapportant à la puissance
d'un point par rapport à une sphère ainsi qu'aux points de contact d'une sphère avec
deux autres ou avec une autre et un plan. Suivant son habitude, il se refuse à entrer
dans les détails, l'examen des divers cas, les discussions etc.

Doivent être datées de cette première période, où Fermât apparaît surtout comme un
bon disciple des anciens, sa construction de la parabole passant par quatre points,
antérieure à 1635, élégante, mais où la raison évoquée pour l'existence de deux solutions
est fautive, et sa démonstration du lieu à trois droites, très élégante elle aussi. Le lieu
à trois droites est le lieu des points dont le rapport du produit des distances à deux
droites au carré de la distance à une troisième est donné. C'est, avec le lieu à quatre
droites, un problème célèbre de l'antiquité, que devait reprendre Descartes dans sa
Géométrie.
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Nous arrivons à l'un des mémoires capitaux de Fermât, son «Ad locos Pianos et
Solidos Isagoge*. Il date de 1636 environ, et se trouve indépendant des méthodes
analogues publiées par Descartes dans sa Géométrie de 1637. En fait même, la méthode
de Fermât est plus proche de la géométrie analytique actuelle que ne l'est celle de
Descartes. Voici l'introduction de ce très court essai:

«Que les anciens aient longuement traité des lieux, on ne peut en douter; nous le
savons par Pappus, qui, au commencement du livre VII, témoigne qu'Apollonius avait
écrit sur les lieux plans, et Aristée sur les lieux solides. Mais, si nous ne nous trompons

pas, la recherche des lieux ne leur était point suffisamment aisée. Nous le conjecturons

de ce fait que, pour nombre de lieux, ils n'ont point donné un énoncé assez
général, ainsi qu'on le verra plus loin.

«Nous soumettons donc cette théorie à une analyse qui lui est propre et particulière,
et qui ouvre la voie générale pour la recherche des lieux.

«Toutes les fois que dans une équation finale on trouve deux quantités inconnues, on
a un lieu, l'extrémité de l'une d'elles décrivant une ligne droite ou courbe. La ligne
droite est simple et unique dans son genre, les espèces des courbes sont en nombre
indéfini, cercle, parabole, hyperbole, ellipse, etc.

«Toutes les fois que l'extrémité de la quantité inconnue qui décrit le lieu suit une
ligne droite ou circulaire, le lieu est dit plan; si elle décrit une parabole, une hyperbole
o,u une ellipse, le lieu est dit solide; pour les autres courbes, on l'appelle lieu de ligne.
Nous n'ajouterons rien sur ce dernier cas, car la connaissance du lieu de ligne se
déduit très facilement, au moyen de réductions, de l'étude des lieux plans et solides.

«Il est commode, pour établir les équations, de prendre les deux quantités inconnues

sous un angle donné, que d'ordinaire nous supposerons droit, et de se donner la
position et une extrémité de l'une d'elles; pourvu qu'aucune des deux quantités inconnues

ne dépasse le carré, le lieu sera plan ou solide, ainsi qu'on le verra clairement ci
après. "

Rappelons que Fermât, disciple de Viète, en adopte les notations. Les inconnues
sont représentées par des voyelles, les données par des consonnes. Rappelons aussi,
qu'avec tous ses contemporains, il ne manie en général que des quantités positives. Enfin,
dans ses essais, les problèmes ne sont jamais discutés, et il n'indique que la solution
générale. En utilisant la similitude des triangles, puis en s'appuyant sur les Coniques
d'Apollonius, il montre que si:

D in A œquatur B in E (dx by), le lieu est une droite, Z piano — D in A œquatur
B in E (m — dx by), le lieu est encore une droite.

Remarquer l'homogénéité des formules; à la façon de Viète, Z piano signifie que la
grandeur Z est un plan, une aire.

A in E seq. Z pi. (xy m2) donne une hyperbole, ainsi que D pi. + A in E œq. R
in A + S in E (m2 + xy ax + by). Fermât détermine le centre et les asymptotes de

cette courbe.

A q sequatur D in E (*2 py) donne une parabole ainsi que B q — A q aeq. D in E
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L'équation B q — A q sequatur E q (62 — x% y2) donne une cercle, comme B q —
D in A bis — Aq sequale Eq + R in E bis (b2 — 2dx — x2 y2 + 2ry), mais Bq —
Aq ad Eq habeat rationem datam, [(6ä — xs)/y2 =p/q] correspond à une ellipse,
tandis que A q + B q est ad E q in data ratione correspond à une hyperbole. Tous ces
cas se ramènent en effet aisément aux définitions des diverses coniques dans Apollonius.
Fermât traite ensuite des cas plus compliqués comme B q — A q bis œquatur A in E
bis + Eq (b2 — 2x% 2xy + y2). Il effectue alors un véritable changement d'axes de
coordonnées. Il ajoute: «Nous avons donc embrassé dans un exposé bref et lucide tout
ce que les anciens ont laissé inexpliqué sur les lieux plans et solides». Enfin, «comme
couronnement à son traité», il énonce la proposition très générale: «Etant données de
position des droites en nombre quelconque, si d'un même point on mène à chacune
d'elles une droite sous un angle donné, et que la somme des carrés des droites menées
soit égale à une aire donnée, le point est sur un lieu solide donné de position. »

Ce traité capital est d'ailleurs suivi d'un appendice aussi important, et à peu près
contemporain: «Appendix ad Isagogen Topicam, continens solutionem problematum
solidorum. per locos». Il y est exposé une méthode générale pour résoudre les problèmes
solides c'est-à-dire dépendant d'une équation du 3e ou du 4e degré, par les lieux. On
notera ici encore le parallélisme des préoccupations de Fermât et de celles de Descartes
dans sa géométrie. Le premier exemple concerne la résolution de l'équation :

Ac + B in Aq sequari Z pi. in B, c'est-à-dire x3 + bx2 m2b. On égale chaque
membre à bxy, d'où d'une part la parabole x2 + bx — by, et d'autre part l'hyperbole
mi — xy. L'inconnue x sera l'abcisse d'un point commun aux deux courbes. Toute
équation du 4e degré après «expurgation de l'affection sur le cube» suivant le procédé
de Viète, c'est-à-dire après disparition du terme en xa, se ramène à un type analogue
et donne l'intersection d'une parabole et d'un cercle ou d'une hyperbole. Choisissant
alors l'antique problème de l'insertion de deux moyennes, qu'il ramène à l'équation
x3 a2b, Fermât en donne deux solutions: en égalant les deux membres à axy il le
résout par l'intersection d'une parabole et d'une hyperbole, et, partant de *4 a2bx,
et égalant les deux membres à a2y2, par l'intersection de deux paraboles. Mieux, il
montre ensuite que tout problème solide se résout par l'intersection d'une parabole et
d'un cercle, ce qu'il applique à plusieurs exemples, dont, une fois de plus, l'insertion
des deux moyennes.

L'Isagoge ad locos ad Superficiem est daté de 1643. La Correspondance montre
cependant que plusieurs des propositions qu'il renferme étaient établies depuis 1636,
37 ou 38. C'est dans ce mémoire que l'on sent le mieux dans quel isolement scientifique

se trouvait le grand mathématicien. Le moindre disciple qui aurait travaillé à

ses côtés, sous sa direction, aurait enrichi ce travail de découvertes précieuses, par
exemple celle des quadriques réglées. L'ouvrage est fort court, pas même sept pages
dans l'édition des œuvres complètes de 1891, où il fut édité pour la première fois.

«Pour couronner l'Introduction aux lieux plans et solides, ainsi débute Fermât, il
reste à traiter des lieux en surface. Les anciens n'ont fait qu'indiquer ce sujet, mais
n'ont pas enseigné de règles générales, ni même donné quelqu'exemple célèbre, à moins
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que ce ne soit enseveli depuis longtemps dans ces monuments de l'antique Géométrie
où tant de précieuses découvertes ont été abandonnées sans défense aux insectes et
souvent anéanties sans laisser de traces.» Il pose, sans démonstrations, six lemmes:
1° Si une surface est coupée par autant de plans quelconques que l'on voudra, et que

l'intersection de cette surface et de ces plans en nombre indéfini soit toujours une
ligne droite, la surface en question sera un plan.

2° Si une surface quelconque est coupée par autant de plans quelconques que l'on
voudra, et que l'intersection de cette surface et de ces plans en nombre indéfini soit
toujours un cercle, la surface en question sera une sphère.

3° Si la section est tantôt un cercle, tantôt une ellipse, mais jamais une autre ligne, la
surface sera un sphéroïde (un ellipsoïde).

4° Si la section est tantôt un cercle, tantôt une parabole ou une hyperbole, la surface
sera un conoïde parabolique ou hyperbolique (paraboloïde non réglé ou hyperbo-
loïde à deux nappes).

5° Si la section est une droite, un cercle, une ellipse, une parabole ou une hyperbole,
la surface sera un cône. On voit ici que Fermât ne soupçonne pas l'existence des

quadriques réglées. '

• 6° Si la section est une droite, un cercle ou une ellipse, la surface sera un cylindre.
Mais, ajoute-t-il, il convient en plus de considérer des cylindres à base parabolique ou

hyperbolique, d'autre part, les sphéroïdes et les conoïdes d'Archimède, qui étaient de

révolution ne suffisent pas, et il faut en considérer d'obliques. Il établit alors que le
lieu des points dont la somme des carrés des distances à des points donnés est donnée
est une sphère, lieu qu'il généralise même. Le lieu des points dont la somme des carrés
des distances obliques, sous des angles donnés, à des plans donnés est donnée, est un
sphéroïde. Mais, quand il généralise à une fonction linéaire quelconque des carrés des

distances, il affirme que le lieu est une des quadriques qu'il a énumérées dans ses
lemmes. Un seul cas particulier, bien étudié, lui eut cependant ouvert les yeux, par
exemple le lieu des points dont la somme des carrés des distances à deux plans
surpasse le carré de la distance à un troisième d'un carré donné. Il trouve ensuite que si
les distances aux plans donnés ont entre elles une relation linéaire, le lieu est un plan
et détermine quelques autres lieux, tous des quadriques, avec la même faiblesse que
plus haut. Il conclut: «Les divers cas, les conditions limites pour les données, les
problèmes ou théorèmes locaux en nombre infini que nous avons omis pour être plus bref,
la démonstration des lemmes énoncés et tout ce qui aurait peut-être besoin d'une plus
longue explication, sera facilement supplée par tout géomètre soigneux et réfléchi qui
aura lu ce écrit: désormais ce sujet, qui paraissait singulièrement ardu, est rendu aisé
à comprendre.»

Mais il nous faut maintenant aborder un autre aspect de l'œuvre multiple de Fermât,
et l'étudier comme précurseur du Calcul Différentiel. Dès 1629 il était en possession
de sa Méthode de recherche des maxima et minima. A la suite de Montucla, beaucoup
d'historiens la font reposer à tort sur cette remarque de Kepler qu'au voisinage d'un
maximum ou d'un minimum la variation est sensiblement nulle. Le point de départ, au
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témoignage même de Fermât, est absolument différent. Il consiste en ce que, de part
et d'autre de l'extremum, la fonction reprend la même valeur. Prenons un des exemples

de l'auteur. Soit à chercher le maximum de b2x — x3. Prenons les valeurs x et
x + e, qui encadrent le maximum à chercher, et pour lesquelles la fonction reprend
la même valeur. Nous avons b2x — x3 b2 (x + e) — (x + e)3, d'où è2e e8 +
3x2e + 3xe2, soit encore b2 3xa + 3xe + e2. Au maximum lui-même la différence

ie sera nulle, d'où b2 3x2, x — V è2 / 3. Dans une lettre à Brulart de Saint Martin,
il va plus loin, recherchant une synthèse de sa méthode, pour compléter l'analyse. En
particulier il indique comment distinguer un maximum d'un minimum par un procédé
qui revient essentiellement à examiner le signe de la dérivée seconde.

Parmi les applications que fit Fermât de sa méthode, la plus géniale est la détermination

des tangentes. Soit une courbe algébrique (Descartes et Fermât disaient
«géométrique »

Fig. 1

Son équation s'écrit P(x,y) o, où P est un polynôme. La tangente est un point M
de coordonnées i0jo, coupe l'axe des x au point d'abscisse xo — s, si nous désignons
par s la sous-tangente. Le point courant N de cette tangente a donc pour coordonnées

x et y ——(x — x0 + s)

Portons cette valeur de y dans P (x, y). Nous obtenons un nouveau polynôme en x. La
tangente restant dans la même région par rapport à la courbe au voisinage de M, ce
polynôme, qui s'annulera pour x — x0, gardera un signe constant dans ce voisinage.
// passera donc par un maximum ou par un minimum en xo. En exprimant ce fait par
la méthode de Fermât on trouvera une équation qui donnera la sous-tangente s.

Cette méthode qu'il fit connaître en 1638, ne fut pas immédiatement comprise par
Descartes, un peu par la faute de Fermât, dont le langage mathématique fut toujours
d'une très grande concision. Mais si quelqu'un pouvait lui en faire reproche ce n'était
certainement pas le philosophe, qui n'aimait pas plus que lui s'étendre en de trop
longues explications. La querelle ne s'en envenima pas moins et fut une des plus célèbres
du 17e siècle.

La méthode de Fermât, comme celle, beaucoup plus lourde, de Descartes, n'était
applicable qu'aux courbes «géométriques», et ne pouvait convenir aux «mécaniques»,
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nous dirions aujourd'hui aux transcendantes. Dès 1640 au plus tard, Fermât, par un
principe qui crée en fait le calcul différentiel, l'étendit à toutes les courbes. Il écrit déjà
à Mersenne le 22 Octobre 1638: «Vous saurez donc que cette même méthode dont je
me sers pour les tangentes des lignes courbes, lorsque leurs appliquées [ordonnées] ou
les portions de leur diamètre [abscisses] ont relation à des lignes droites, me sert aussi,
avec un peu de changement pris de la nature de la chose, à trouver les tangentes des
courbes dont les appliquées ou les portions de leur diamètre ont relation à d'autres
courbes.» Il choisit plusieurs exemples: le développement de l'intersection d'un cylindre
et d'une sphère, une courbe dont l'ordonnée est égale à un arc de parabole, une autre
dont l'ordonnée est moyenne proportionnelle entre la somme de plusieurs arcs de -¦• cour-

Fac-similé d'une lettre de Fermât (Bibl. Nat.)

bes et la somme de leurs ordonnées. Le 26 Décembre de la même année, il propose de
trouver la tangente à une courbe dont l'ordonnée est la somme de cinq racines carrées
de fonctions rationnelles. En 1640 il dévoile sa technique: «Pour éviter les radicaux,
il est permis de substituer aux ordonnées des courbes, celles des tangentes» et «aux
arcs des courbes les longueurs correspondantes des tangentes trouvées». C'est véritablement

là qu'il faut voir le fondement, algorithme en moins, du calcul différentiel. Ce
n'est d'ailleurs que dans un écrit de 1660, publié dans le traité de Lalouvère sur la
cycloïde, que ses affirmations de 1640 sont justifiées, d'une façon suffisante pour
l'époque.

En 1636 Roberval avait soulevé la question des points d'inflexion, à propos de la
conchoïde. En 1640 Fermât résout complètement le problème: «... Il arrive souvent
que la courbure change, comme dans la conchoïde de Nicomède et dans toutes les



10 J. ITARD: Pierre Fermât

espèces, sauf la première, de la courbe de M. de Roberval... Pour trouver, par exemple,
le point H sur la figure, on cherchera d'abord la propriété de la tangente en un point
quelconque de la courbe. Puis, par la doctrine de maximis et minimis, on déterminera

Fig. 2.

le point H tel qu'en menant la perpendiculaire HC, et la tangente HB, le rapport HC/C B,
soit minimum. Car ainsi l'angle en B sera minimum. Je dis que le point H ainsi trouvé
sera celui où commence le changement de courbure.»

La contribution de Fermât à la création du calcul intégral est elle aussi considérable.
Sa correspondance nous le montre dès 1636 en possession d'une grande maîtrise dans
les méthodes Archimédiennes. Il a déjà généralisé la notion de spirale, à partir de la
spirale d'Archimède p aoj, étudiant par exemple p aco2 qu'il a carrée et il sait
par ailleurs carrer les paraboles y axm, m entier positif. Il indique à Roberval le
principe de sa méthode. Elle est fondée sur une de ses découvertes concernant les nombres

figurés. Il a en effet établi la formule

„P __ m (m —1) (m—p-\- 1)

m p!

et ce résultat lui permet de trouver la somme des puissances de même ordre des
premiers nombres naturels. D'ailleurs Roberval est arrivé au même résultat par un procédé

¦voisin, et Descartes, nous le voyons par sa correspondance, a des conceptions analogues.
Plus tard, probablement même plusieurs années après, Fermât, très ingénieusement,

modifie la méthode classique et lui donne une plus grande souplesse. 11 fera connaître
ce nouveau procédé dans un écrit postérieur à 1660 « De Aequationum localium et
emendatione ad multimodam curvilineorum inter se vel cum rectilineis comparationem
cui annectitur proportionis Geometricse in quadrandis infinitis parabolis et hyperbolis
usus». Dans la recherche d'une intégrale définie (quadrature ou cubature), * variant de
oka et y =¦ Àxa, on divisait a en m parties égales; en chacune des divisions xp pa/m,
p entier compris entre o et m, et yp X aapa/ma. Pour intégrer, il fallait calculer
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et tout revenait, avant de faire tendre m vers l'infini, à sommer 2'pa. C'est ainsi
qu'entre autres procédait Fermât vers 1636. Sa nouvelle idée est la suivante: si a > o,
divisons l'intervalle o, a, en une infinité d'intervalles partiels en progression géométrique,

c'est-à-dire prenons les abscisses a, xx, x2, xp de telle sorte que a / xt
Xi/xi+i. Les intervalles a — xt, xt— x2, xi— xt + \ seront en progression
géométrique décroissante, ainsi que les ordonnées. Les produits y; (xt — xi + i) seront
aussi en progression géométrique et leur sommation sera aisée. Pour la fonction y —
Xxa, si xx ar, xi + i — Xi ar1 (1 — r), yt À aa ria, yi (xi — xi + i) io1 + "
(1 — r) ria + \ La somme d'une telle progression sera l«u"(l — r) / (1 — r" + l).

Nous aurons l'intégrale en cherchant la limite de (1 — r) / (1— ra + v), lorsque r
tend vers 1. Il restait là pour l'époque une belle difficulté. Voici comment Fermât la
résout pour a — 2/3 (II n'emploie pas en réalité d'exposants fractionnaires mais cherche
l'aire de la parabole semi-cubique y3 p x2). Si O B a et si le point d'abscisse a r

B V R E S T 0

Fig. 3

est E, intercalons deux moyens géométriques V et R entre B et E, et prolongeons la
nouvelle progression au delà de E. Si T est le cinquième point, nous devons chercher la
limite de (1 —¦ r) / (1 — ro/s) ou de BE / BT. Or « par notre méthode logarithmique »

dit Fermât, les cinq intervalles sont égaux (c'est-à-dire tendent vers l'égalité), la limite
cherchée sera donc 3/5.

Dans le cas où a est négatif, qui est en réalité celui qu'il traite en premier lieu dans

son mémoire, et qui correspond à ses hyperboles générales yp xq constante, il considère

l'espace s'étendant à l'infini entre l'hyperbole y Xxa et l'axe des x, à partir de
l'abscisse a, et prend une progression géométrique croissante déraison r > 1, xt ar,
*2 %r etc La progression à sommer a encore pour raison ra + l, et elle sera
décroissante si « < — 1. Il en résulte qu'une hyperbole, sauf celle d'Apollonius xy ~ a2,

a toujours une de ses deux branches infinies carrable, et que, par différence, on pourra
toujours carrer un quelconque de ses segments. La méthode échouera donc pour la
seule hyperbole d'Apollonius, dont le disciple de Grégoire de Saint Vincent, Sarassa,
avait montré, en explicitant les résultats de son maître publiés en 1647, mais fort
antérieurs, que sa quadrature se ramenait au calcul d'un logarithme.

A l'époque où Fermât fit connaître sa méthode à un cercle très restreint de

correspondants, les progrès du calcul des quadratures lui enlevaient bien de son intérêt. Elle
n'en avait pour ainsi dire plus lorsqu'elle fut divulguée au public dans les Varia Opera
de 1679. Elle avait cependant rendu de grands services à son inventeur, et lui avait
en particulier permis de carrer les hyperboles et de placer leurs centres de gravité,
problèmes qu'il n'aborda que vers 1646, lorsqu'il apprit les travaux des Géomètres
Italiens sur la question, et qui semblent bien être à l'origine de sa découverte.
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Cependant il restait à doter les procédés d'intégration d'un algorithme. L'écrit «de

Aequationum localium ...» dont nous venons d'analyser le début paraît un peu dans

sa seconde partie comme le testament de Fermât sur la question. Il semble avoir été

provoqué par les travaux de la jeune génération formée de Wallis, Pascal, Huygens et
leurs émules. Les mathématiciens qui conservaient le style géométrique pur, comme
toute l'école Galiléenne en Italie, Grégoire de Saint Vincent en Belgique, Pascal en
France, ne sentaient pas l'importance de la question, mais devenaient de plus en plus
pénibles à lire, à mesure qu'augmentait la complexité des problèmes. On sent au
contraire chez Fermât ce lien si fécond entre l'Algèbre et la Géométrie, qu'en prestigieux
disciple de Viète il ne cessa de cultiver. Si sa pièce est nettement inspirée des lettres
de Dettonville (Pascal), dont elle suppose connus plusieurs résultats, on est frappé de
la différence profonde des deux styles, et du progrès considérable que représente celui
de Fermât sur celui de Pascal. L'écart reste pourtant encore immense entre Fermât et
Leibniz et la parution tardive du travail du premier lui a enlevé à peu près toute influence

sur le développement de la science. Il nous révèle simplement une des méthodes
.de travail de l'auteur. Nous y voyons en effet comment, par des changements de

variables, il passe de quadratures connues à d'autres. Par exemple, dans la courbe
J2 b2 — x% il sait calculer la somme des y2. Il en déduit la quadrature de la courbe
k% x2 b2y2 — y*. De même dans y3 xB — bb x — b%, il sait calculer la somme des y3.
Il en déduit la quadrature du folium de Descartes xs + y3 b x y.

Si cet écrit des dernières années de la vie de Fermât nous rapproche d'une des deux
découvertes essentielles de Leibniz dans le calcul intégral, la constitution d'un algorithme,
un autre de ses travaux, très antérieur puisqu'il date au plus tard de 1635, nous
rapproche de l'autre, la relation entre le calcul différentiel et le calcul intégral. Depuis
Archimède la recherche des centres de gravité des aires et des volumes dépendait de

l'intégration. Fermât utilise au contraire sa méthode des Maximis et minimis. Voici une
analyse de son procédé.

Il veut chercher le centre de gravité 0 du paraboloïde de révolution engendré par
le segment de parabole C AV tournant autour de son axe AI. Il pose AI 6, KO x
(nous adoptons les notations modernes). Il coupe par le plan parallèle à la base et dont
la trace sur la figure est BNR, et il pose IN e (même symbole que dans sa méthode
des maxima). Les segments de paraboloïde CAV et BAR sont entre eux comme AI2 et
AN2 (Archimède, livre sur les Sphéroïdes et les Conoïdes). D'autre part Fermât constate

que l'on pourrait montrer, comme Archimède l'a fait pour les segments de
paraboles, que dans les segments de paraboloïdes le centre de gravité divise l'axe dans un
rapport constant. C'est ce rapport qu'il faut trouver. Soit donc E le centre du paraboloïde

BAR et M celui de la tranche limitée par les plans de traces CV et BR. Les

principes de statique donnent:

OM„ Vol. AB R ji-tl' nr {b-ey
OE Vol. CAV —Vol. ABR —

2 be - e2 ' d 0U UM ~ Ut ^
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Par ailleurs ^ rA-, d'où OE=^etOM=^x -£^>îAE b 2 b e

Mais M est entre N et I, ce que Fermât pourrait exprimer par deux inégalités. Il
préfère « adégaler » à 01 6 — *, e'est-à-dire égaler par approximation (expression
qu'il emprunte à Xylander, traduction latine du Diophante). Cela lui donne, après une
simplification par e:

(b -¦ x) {2b2 — eb) o^ % (b — e)2.

En faisant e — o, Fadégalité devient égalité 2 b2 (b — x) tf x, et x 2 b/ 3.
L'intérêt de ce travail est double. C'est en effet, d'une part, un des premiers exemples

de passage à la limite chez Fermât. D'autre part c'est un lien, non aperçu d'ailleurs
par l'auteur et ses contemporains, entre les deux branches du calcul infinitésimal. Il

• eût suffi que Fermât appliquât sa méthode à la recherche, non des centres de gravité,
mais des aires des paraboles ou des volumes des paraboloïdes pour anticiper tout au
moins partiellement sur la découverte de Leibniz.

Fig. 5

Les questions sur la Cycloïde, que Pascal posa en Juin 1658 à tous les mathématiciens

de quelque renom, ont certainement incité Fermât à publier en 1660, à la suite
du traité de Lalouvère sur cette courbe, son traité «De linearum curvarum cum lineis
rectis comparatione, Auctore M.P.E. A.S. ». Le style en est cette fois géométrique, et
les méthodes sont les méthodes rigoureuses d'exhaustion. Il s'agit de la rectification
des lignes courbes. Si plusieurs des résultats avaient été trouvés par d'autres quelques
temps auparavant, l'ensemble du traité n'en reste pas moins remarquable par sa rigueur
et son élégance.

La première proposition montre que dans la figure ci-dessus le segment de tangente
I H est inférieur à l'arc R H et le segment H K supérieur à l'arc H M. En utilisant les
demandes d'Archimède on voit en effet que I H est inférieur à la corde R H elle-même
inférieure à l'arc RH, et que d'autre part la ligne brisée H K N est supérieure à l'arc
H M N. Mais on vient de voir que K N est inférieur à l'arc M N, donc le segment H K
est supérieur à l'arc H M.
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On pourra alors, pour rectifier un arc de courbe, ne se servir que des segments de

tangente et jamais des cordes.

Par exemple, sur la figure ci-dessous, divisons AD en parties égales. L'arc AP est

supérieur à UM + VN + WP, et inférieur à AX + MY + NZ. Mais UM MY
et V N N Z. La différence des deux valeurs par excès et par défaut est donc
inférieure à A X — W P et peut être rendue aussi petite qu'on le voudra.

V

<

w

M

1 1—II -

N

B C D

Fig. 6

A S C D

Fig. 7

Ce procédé très élégant de rectification des courbes convexes a été repris par Lagrange
(Théorie des fonctions analytiques). Fermât 1 utilise pour montrer que la parabole semi-

cubique y3 a x2 est rectifiable, résultat déjà trouvé par Van Heuraet et par Neil. Il
utilise ensuite une transformation qui lui est personnelle et qui permet de passer d'une
courbe rectifiable à une nouvelle également rectifiable. Si yx — ft (x) est une première
courbe, dont l'arc compris entre les abscisses o et x est st (x), il prend y2 ~ si (x)i d'arc

s2 (x), puis js s2 (x) etc... Dans l'étude de cette transformation on le voit justifier
rigoureusement le principe qu'il énonçait en 1640: on peut dans la recherche des

tangentes remplacer un élément d'arc par l'élément de tangente correspondant.
Mais l'appendice à ce court traité est encore plus important. La proposition I en

particulier établit en effet qu'une courbe et sa longueur sont parfaitement déterminées par la
seule connaissance de la pente de sa tangente en chacun de ses points. Autrement dit,
en langage fonctionnel, une fonction est déterminée à une constante près par sa fonction
dérivée. Par là se trouve résolu théoriquement le problème inverse des tangentes. Si

l'on remarque que dans le traité lui-même une rectification a été ramenée à une quadrature,

on voit combien en 1660 les mathématiciens étaient proches du calcul infinitésimal.

Avant de quitter le domaine des nouveaux calculs signalons l'application qu'en fit
Fermât à l'étude de la réfraction. Il n'était pas physicien, et il est fort probable qu'il
n'a jamais expérimenté. Lorsqu'au début de sa correspondance il dispute contre Roberval

et Etienne Pascal sur la statique, on le sent très en retard sur eux, et il paraît finir par
se rendre à leur avis. Cependant dès qu'il a connaissance de la Dioptrique de Descartes

il s'élève avec beaucoup de bon sens contre la pseudo-démonstration de la loi de la

réfraction donnée par le philosophe. Cette critique fut d'ailleurs la cause de leur brouille

et Descartes blessé chercha toutes sortes de mauvaises querelles contre la règle des

Maximis. En Août 1657, longtemps après la mort du philosophe, Fermât accuse récep-
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tion à Cureau de la Chambre, médecin du roi, de son traité sur la lumière. Il lui écrit:
?Je reconnais premièrement avec vous la vérité de ce principe, que la nature agit toir
jours par les voies les plus courtes. Vous en déduisez très bien l'égalité des angles de

réflexion et d'incidence.» De la Chambre n'innovait pas, car déjà Héron d'Alexandrie
faisait de même. 'Mais, puisqu'il a servi à la réflexion, pourrons nous en tirer quel-

qu'usage pour la réfraction? Il me semble que la chose est aisée et qu'un peu de géométrie

nous pourra tirer d'affaire.»
De la Chambre est partisan de la propagation instantanée, Fermât opterait pour une

vitesse finie, mais dit-il, avec la propagation instantanée on peut introduire une
résistance différente selon le milieu, et faire quand même le calcul. (C'est le point de vue

auquel se placera plus tard Leibniz.) « La question se réduit donc à ce problème de

Géométrie : Etant donnés les deux points C et A et la droite B D, trouver un point B

dans la droite B D auquel si vous conduisez les droites C B et B A, la somme de C B et
de la moitié de B A contienne la moindre de toutes les sommes pareillement prises, ou
bien que la somme de C B et du double de B A contienne la moindre de toutes les

sommes pareillement prises...» «Je vous garantis par avance que j'en ferai la solution

quand il vous plaira et que j'en tirerai même des conséquences qui établiront solidement

la vérité de notre opinion... De sorte que, si elle n'est pas vraie, on peut dire ce

que disoit Galilée en un sujet différent que la nature semble nous l'avoir inspirée per
pigllarsl gioco di nostri ghlribizzi. »

II est tout à fait caractéristique de la mentalité de Fermât qu'il n'ait fait le calcul

qu'en fin 1661, en constatant avec étonnement qu'il obtenait la même loi que
Descartes. « Le fruit de mon travail a été le plus extraordinaire, le plus imprévu et le

plus heureux qui fut jamais. Car, après avoir parcouru par toutes les équations,
multiplications, antithèses et autres opérations de ma méthode, et avoir enfin conclu le
problème que vous verrez dans un feuillet séparé, j'ai trouvé que mon principe donnait

justement et précisément la même proportion des réfractions que M. Descartes a

établie. »

II avait également utilisé sa science mathématique pour une autre partie capitale de

la physique, la chute des graves. Il avait eu du mal à se faire à l'argumentation de

Galilée, tout comme Descartes d'ailleurs qui, lui, ne s'était jamais rendu, et dans ses

objections il renouvelait inconsciemment les sophismes de Zenon. Partant du postulat
«Nullum motum fieri absque celeritate aliquâ corporis moti» il raisonnait alors ainsi:
Un corps est en repos en A. Il tombe jusqu'en B. Galilée dit qu'en A il est sans vitesse.

Or il a acquis une vitesse puisqu'il s'est déplacé. S'il a acquis une vitesse au bout d'un
certain temps, que ce soit lorqu' il est en B. Si 4 A E A B, en E il avait une vitesse

moitié, d'après la loi de Galilée. Donc en E il avait une vitesse, ce qui est contradictoire

avec l'hypothèse. Comme le mobile ne peut ainsi avoir acquis une vitesse au bout d'un
certain temps, il en avait une au départ, contrairement à ce que dit Galilée.

Il ne paraît cependant pas s'être plus obstiné dans ce paradoxe que dans ceux qu'il soutenait

en statique vers la même époque, 1636. En 1646, dans une lettre à Gassendi, il réfute
très solidement l'hypothèse de Cazré d'après laquelle la vitesse de chute serait propor-
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tionnelle à l'espace parcouru. Galilée qui s'était arrêté vers 1604 à cette même hypothèse

l'avait rejetée dans ses Discorsi en remarquant que, si elle était vraie, le mouve:
ment devrait être instantané, l'espace double devant être parcouru dans le même temps

que l'espace moitié. C'est cet argument que Fermât développe en 1646, dans un style
à la manière des anciens pour écarter toute objection, et utilisant pour la première fois

la série géométrique dans une intégration.
Comme algébriste Fermât garde toute son originalité. Nous donnons deux exemples

dé sa manière. En 1650 il envoie à son correspondant Carcavi une pièce intitulée.
* Novus secundarum et ulterioris ordinis radicum in analyticis usus ». Elle traite

essentiellement de l'élimination d'une ou de plusieurs inconnues entre plusieurs équations,"
théorie où une fois de plus notre mathématicien est un précurseur. Prenons son premier
exemple, avec les notations actuelles. Il s'agit d'éliminer y entre les deux équations
xs - r y% a, b x + y2 + c y d. Il faut isoler dans un membre de chacune des équations

les termes contenant y: y3 a — x3; js -f~ cy d — b x, écrire la proportion
{(i — x3) : y3 : : (d — b x) : (y2 -f- cy), égaler le produit des extrêmes à celui des moyens,
et simplifier par y, ce qui abaisse le degré en y de la nouvelle équation, recommencer
l'opération avec les deux équations de plus bas degrés jusqu'à ce que y ne figure plus

qu'au premier degré. On tire alors de cette équation y en fonction de x et l'on porte
dans la première.

Telle est la première méthode connue d'élimination, encore lourde, mais fort
correcte. Elle semble avoir été élaborée par Fermât vers 1648. En tout cas, contrairement
à l'opinion de plusieurs historiens, aucun document ne permet de la faire remonter

plus haut.

Dans un appendice, à la manière de Fermât aussi important, sinon plus, que le

mémoire lui-même, la méthode est utilisée pour faire disparaître les «asymmetries»,
nous dirions les radicaux. L'exemple proposé est

4" V g x — x- =¦ n

Poser y3 b x2 — x3; z2 x% + c x; t4 dxs — x4; u2 g x — x2, et éliminer y,
z, t, u successivement entre ces équations et la première y + z + t + u n.

Il y a bien là un procédé absolument général, quoique rapidement fort pénible.
Fermât signale l'utilité de sa méthode pour la résolution numérique des équations, la
méthode de Viète pour l'approximation des racines, seule connue à l'époque, ne s'appliquant
qu'aux équations entières et rationnelles. Puis il signale son application aux
problèmes abondants, où il y a plus d'équations que d'inconnues, et là, il tombe dans une

étrange erreur, fort instructive pour ceux qui cherchent à le bien connaître. Desargues
avait proposé un beau problème: placer un cercle sur un cône dont la base est une

conique donnée. « Les mathématiciens, dit Fermât, ont remarqué que ce problème est

solide », ils le traitent en cherchant un cercle s'appuyant sur cinq droites issues dir
sommet. Mais, si l'on prend une sixième droite, le problème devient surabondant, et

V
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se ramènera à une simple division! Il ne voit pas qu'il se trouve dans un cas où la
nouvelle équation est une conséquence des précédentes, et où sa méthode ne simplifie rien.

Le second exemple de la manière de Fermât comme algébriste est le court mémoire
qu'il adressa à Christian Huygens en 1661 probablement. C'est un complément au
travail de Viète sur l'équation d'Adrien Romain, équation du 45e degré qui se ramenait
à la division d'un angle en 45 parties égales. Le terme connu étant la corde d'un arc
pris sur un cercle de rayon unité, la méthode de Viète ne peut réussir que si ce terme
est inférieur à 2. Qu'arrive-t-il quand il dépasse ce nombre? S'appuyant sur le cas

simple de la trisection de l'angle où lorsque le terme connu dépasse 2, on peut trouver
la seule racine par la méthode de Cardan, Fermât remplace l'inconnue par y + 1 /y.
Tous les termes médians de l'équation d'Adrien Romain disparaissent et la solution
unique est la somme de deux racines quarante-cinquièmes. Il y a ici encore une très
belle intuition et une anticipation sur les conquêtes futures de la théorie des équations.

Mais le domaine où triomphe Fermât est celui de l'analyse indéterminée. Les
mathématiciens du 16e siècle avaient retrouvé les livres Arithmétiques deDiophante qu'avaient
traduits Xylander en latin et Stevin en français, et dont s'étaient inspirés entre autres

Bombelli, Gosselin, Viète.
Le mathématicien et humaniste Bachet de Méziriac donna en 1621, à Paris, le texte

grec des huit livres Arithmétiques, accompagné d'une traduction et d'un abondant

commentaire latins. La vogue de Diophante dura tout le dix-septième siècle, puis
s'apaisa lorsque l'attention fat accaparée par le Calcul infinitésimal. §es fidèles furent
alors peu nombreux, mais on peut citer parmi eux Euler, et Diophante est encore
cultivé de nos jours.

Il ne s'occupe que d'analyse indéterminée, où ne sont acceptées que les solutions
rationnelles des équations. Il propose par exemple, liv. II, prop. 11: «Ajouter un même
nombre à deux nombres donnés, de manière que chacun d'eux forme un carré.»

Fermât se passionna pour l'analyse Diophantienne. Le Père de Billy a consigné les

résultats qu'il obtint dans ses «nouvelles découvertes de la science de l'analyse», œuvre
latine publiée dans la réédition du Diophante de Bachet, par Samuel Fermât, en 1670,
réédition enrichie de précieuses remarques de son père. On voit dans le travail du Père
de Billy Fermât utiliser systématiquement les racines négatives des équations pour
poursuivre ses calculs et arriver ainsi à des solutions positives, méthode fort hardie à

l'époque. Nous ne pouvons nous étendre sur cet aspect de son œuvre. Voici simplement

un exemple des problèmes qu'il traite: On demande un triangle rectangle dont

l'aire, ajoutée à l'un des côtés de l'angle droit, fasse un carré. Un des triangles répondant

à la question a pour côtés

10988674 69274 2 4 85jHH)j50
2458624 '24 5 8 624'2458624'

Pour bien comprendre Fermât mathématicien il ne faut pas perdre de vue qu'il se

complaisait beaucoup plus dans de telles recherches, qui demandent beaucoup de sub-
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tilité mais nous paraissent maintenant un peu vaines, que dans ses recherches de

Géométrie pure ou analytique, ou dans les problèmes sur les tangentes et les quadratures.
Nous pouvons trouver encore plus futiles des travaux sur les carrés magiques.
Rappelons qu'un carré magique est un tableau carré dont chaque case renferme un nombre

différent, et tel que les sommes des nombres d'une même ligne, d'une même colonne,
de chacune des diagonales, soient toutes égales entre elles. Les carrés magiques dépendent

donc de l'analyse combinatoire. Fermât y régna en maître. Il s'y exerça en
particulier vers les années 40, comme le montre sa correspondance.

L'analyse combinatoire devait lui être d'ailleurs d'un grand recours lorsque, en 1654,
Pascal correspondit avec lui sur des problèmes concernant les jeux de hasard. De cette

correspondance, très courte, devait sortir le Calcul des Probabilités. Les procédés des

deux fondateurs sont différents, mais ceux de Fermât, qui utilise l'analyse combinatoire

et le principe des probabilités composées, sont nettement supérieurs à ceux de son

jeune émule.

Cependant les réflexions prolongées de Fermât sur l'analyse Diophantienne, qu'il
consignait dans les marges de son exemplaire, aujoud'hui perdu, du Diophante de

Bachet, et dont il parsemait sa correspondance, devaient le conduire à créer une
nouvelle branche des mathématiques, la théorie des nombres. Ici, la gloire de Fermât
s'élève jusqu'à la légende, et ses découvertes auraient amplement suffi à immortaliser

son nom.

Lorsque commence sa correspondance, en 1636, il est à peu près ignorant de tout

en la matière. Et cependant nous le voyons, dès 1639, essayer le savoir de ses émules,

comme Frénicle, en leur proposant des problèmes qu'il sait impossibles, comme
«trouver un triangle rectangle duquel l'aire soit un nombre carré, trouver deux carrés

carrés desquels la somme soit carré carrée, trouver quatre carrés en proportion arithmétique

continue, trouver deux cubes desquels la somme soit cube».

En 1640, il est en possession des plus importantes de ses découvertes et de ses

méthodes. Il sait que ap ~1 =3 1 mod. p, pour p premier, a non divisible par p. Il a

montré que 237 — 1 n'est pas premier, mais admet le facteur 223, et établi que tout
nombre premier de la forme 4 k -\- 1 est d'une seule façon somme de deux carrés, et

il possède sa méthode de démonstration par la descente infinie.

Il résumera dans une lettre à Carcavi d'Août 1659 l'ensemble de ses découvertes:

«J'appelai cette manière de démontrer la descente infinie ou indéfinie...; je ne m'en

servis au commencement que pour démontrer les propositions négatives comme, par
exemple :

'Qu'il n'y a aucun nombre, moindre de l'unité qu'un multiple de 3, qui soit composé

d'un carré et du triple d'un autre carré;

«Qu'il n'y a aucun triangle en nombres dont l'aire soit un nombre carré.'

Interrompons ici cette citation pour donner, au sujet de cette dernière affirmation,
la traduction française de l'Observation sur Diophante où Fermât traite la même

question.
?Si l'aire d'un triangle était un carré, il y aurait deux bicarrés dont la différence
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serait un carré; il s'ensuit qu'on aurait également deux carrés dont la somme et la
différence seraient des carrés. Par conséquent, on aurait un nombre carré, somme
d'un carré et du double d'un carré, avec la condition que la somme des deux carrés,
qui servent à le composer, soit également un carré. Mais si un nombre carré est somme
d'un carré et du double d'un carré, sa racine est également somme d'un carré et du
double d'un carré, ce que je puis prouver sans difficulté. On conclura de là que cette
racine est la somme des deux côtés de l'angle droit d'un triangle rectangle, dont l'un
des carrés composants formera la base, et le double de l'autre carré la hauteur.

Ce triangle rectangle sera donc formé par deux nombres carrés, dont la somme et la
différence seront des carrés. Mais on prouvera que chacun de ces deux carrés est plus
petit que les deux premiers, dont on a également supposé que la somme et la différence
soient des carrés. Donc, si on donne deux carrés dont la somme et la différence soient
des carrés, on donne par là même, en nombres entiers, deux carrés jouissant de la même
propriété et inférieurs.

?Par le même raisonnement, on trouvera toujours des nombres entiers de plus en
plus petits satisfaisant aux mêmes conditions. Mais cela est impossible, puisqu'un nombre
entier étant donné, il ne peut y avoir une infinité de nombres entiers qui soient plus
petits... » *

?Je fus longtemps, écrit Fermât dans sa lettre à Carcavi, sans pouvoir appliquer ma
méthode aux questions affirmatives. De sorte que lorsqu'il me fallut démontrer
que tout nombre premier, qui surpasse de l'unité un multiple de 4, est composé de deux
carrés, je me trouvai en belle peine. Mais enfin une méditation diverses fois réitérée
me donna les lumières qui me manquaient, et les questions affirmatives passèrent
par ma méthode, à l'aide de quelques nouveaux principes qu'il fallut joindre par nécessité.

•Il y a infinies questions de cette espèce, mais il y en a quelques autres qui demandent
des nouveaux principes pour y appliquer la descente, Telle est la question suivante :

Tout nombre est carré ou composé de deux, de trois ou de quatre carrés». (Il avait
énoncé cette proposition plus généralement, dans une lettre datée à tort dans les
Œuvres Complètes de Septembre ou Octobre 1636, mais qu'il faut reporter à Mai
ou Juin 1638: Tout nombre est la somme de trois nombres triangulaires au plus, ou
de quatre carrés, ou de cinq pentagones, de six hexagones, sept heptagones etc...)

«Celle que j'avais proposée à M. Frénicle et autres (Wallis, Lord Brouncker) est
d aussi grande et même plus grande difficulté: Tout nombre non carré est de telle nature

* On sait depuis Euclide X, lemme 2 à la prop. 28) qu'un triangle rectangle en nombres, dont les
côtés sont premiers entre eux dans leur ensemble, ont pour côtés 2mn, m2 — «2 et m2-f~re3, m et n
premiers entre eux, de parités différentes. L'aire est donc mn{mi — n2). Si elle est un carré parfait,
m et n sont carrés ainsi que m2 — ra2. Soient m x%, n y2 ; xi — y4 est un carré, d'où x2 — y2 t'\
x2 + y2 z\ ou encore z2 t2 + 2 y2, x2 t2 + y2. Mais si z2 i" -f 2 y2, (z — t) (z + t) 2y2 d'où
z^t 4u\ z+t=2v\ et 2 »'+ 2ii', t »2-2u!, y 2 uv, x" vi + 4.vi. Donc v2 et 2 u2

sont les côtés de l'angle droit d'un triangle rectangle dont l'aire d2 v? est un carré. Chacun de ces côtés
est inférieur à z...
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qu'il y a infinis carrés qui, multipliant le dit nombre, font un carré moins 1. Je la

démontre par la descente appliquée d'une manière toute particulière. (Il s'agit de l'équation

dite à tort, depuis Euler, équation de Pell axi + 1 y8.)

«J'ai ensuite considéré certaines questions qui, bien que négatives, ne restent pas de

recevoir très grande difficulté, la méthode pour y pratiquer la descente étant tout à fait
diverse que les précédentes, comme il sera aisé d'éprouver. Telles sont les suivantes:

II- n'y a aucun cube divisible en deux cubes. Il n'y a qu'un carré en entiers qui,
augmenté du binaire, fasse un cube. Le dit carré est 25.

'H n'y a que deux carrés en entiers, lesquels, augmentés de 4, fassent un cube. Les

dits carrés sont 4 et 121.

«Toutes les puissances carrées de 2, augmentées de l'unité, sont nombres premiers...»
Ce.tte dernière proposition, que Fermât n'a cessé d'énoncer tantôt dubitativement, tantôt

comme ici, et vers la fin de sa carrière seulement, d'une façon absolue, et qui porte
sur les nombres 22 -f- 1, est fausse, comme Euler l'a vérifié pour 2 3'2 + 1 divisible

par 641. Il est curieux de constater ici l'obstination de Fermât, d'autant plus étrange

qu il avait effectué la factorisation aussi difficile de 2 37 — 1. Tant une conviction
profonde, ou un préjugé d'inventeur, peut être un obstacle insurmontable.

Mais ce qui frappera le plus dans la Correspondance de Fermât c'est que l'on n'y
rencontre jamais son grand théorème sur l'impossibilité de l'équation *n-|-yn z11

pour n > 2. Seuls y figurent les deux cas particuliers n 3 et n 4. Il y a là une
forte présomption pour croire qu'effectivement il n'avait pas de méthode pour démontrer
le cas général, sa descente infinie devenant très pénible dès n 5. C'est dans ses

remarques sur Diophante, notes personnelles écrites en marge de son exemplaire,
pieusement recueillies et publiées par son fils en 1670, que la proposition est affirmée.
Voici la traduction de sa remarque à la proposition 8 du livre II: trouver deux carrés

dont la somme soit un carré: «Au contraire, il est impossible de partager soit un cube

en deux cubes, soit un bicarré en deux bicarrés, soit en général une puissance

quelconque supérieure au carré en deux puissances de même degré; j'en ai découvert une
démonstration véritablement merveilleuse que cette marge est trop étroite pour contenir. »

Les mathématiciens doivent être reconnaisants à Samuel Fermât de son indiscrétion.
La publication de cette note personnelle, que son père n'avait jamais voulu rendre

publique, a été un des principaux stimulants pour les théoriciens du nombre et nous
lui devons la plupart des grands progrès accomplis depuis dans ce domaine.

On peut se demander, quelle influence exerça Fermât sur le développement des

mathématiques. En Géométrie pure elle fut insignifiante. En géométrie analytique, et dans

la théorie des équations, elle fut éclipsée par celle de Descartes. Dans l'ancienne analyse

Diophantienne au contraire il fut le maître incontesté, et habituant ainsi les

spécialistes à jongler avec les fonctions rationnelles il intervint indirectement dans l'épa-.
nouissement du début du dix-huitième siècle. La méthode des Maximis et Minimis et

celle des tangentes exercèrent une action déterminante dans la naissance du calcul
différentiel. Aussi profondes qu'aient été les recherches de Format dans le domaine du calcul

intégral, son action s'y fit beaucoup moins sentir et n'eut pas le retentissement de
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celles de Cavalieri et de Pascal. Il préside avec ce dernier à la naissance du calcul des

Probabilités.
Mais il reste deux domaines des mathématiques où encore de nos jours l'influence

du grand mathématicien se fait sentir. Le premier, celui sur lequel l'attention est le
moins attirée, est le calcul des Variations et son application à la physique, même la
plus moderne. Si ce calcul fut à proprement parler créé par Lagrange en 1759, ce fut
une intuition de génie de poser en optique le principe de Fermât sur le trajet de temps
minimum, et ce fut pour l'époque un tour de force de le soumettre au calcul. Lorsque
l'on étudie la préhistoire de ce calcul des variations, au début du dix-huitième siècle,

on est frappé de voir les premiers pionniers, Leibniz et Jean Bernoulli en particulier,
ramener les divers problèmes de courbes minima aux méthodes de l'optique de Huygens
et au principe de Format. Avec Maupertuis, Euler, Lagrange, la méthode passera de

l'optique à la mécanique, et malgré les critiques d'esprits se croyant plus positifs, et

rétifs devant la métaphysique des causes finales, les principes de minimum de temps de

parcours ou de minimum d'action restent très vivants dans la science de nos jours.
En théorie des nombres, théorie qui n'avait été qu'ébauchée avant lui par l'auteur,

à jamais inconnu, des livres arithmétiques d'Euclide, Fermât exerce de nos jours, ne
disons pas une influence, mais une vraie fascination. Cela va, au delà du rationnel, du

raisonnable, jusqu'à l'idolâtrie, et tel qui, dans tout autre domaine, le considérera comme
un homme génial, mais enfin comme un homme, le dotera ici de pouvoirs magiques.

C'est surtout son Grand Théorème, celui qu'il n'a jamais fait connaître au public de son
vivant, qui lui a valu ce renom. C'est qu'il reste encore indémontré. Les plus grands
mathématiciens s'en sont cependant longuement occupés. Leibniz lui-même s'y essaya,

pour la puissance 4, au début de sa carrière. Il appliquait, comme Fermât, et comme
les mathématiciens suivants, la Descente Infinie. Euler résolut les deux cas des puissances
3 et 4, les seules, rappelons-le, sur lesquelles Fermât s'était prononcé publiquement.
Legendre et Dirichlet arrivèrent à bout, en 1825, de la puissance 5. Lamé et V. A.
Lebesgue, en 1840, triomphèrent de la puissance 7.

Mais on aboutissait à une impasse. Déjà, pour la troisième puissance, Euler faisait

appel aux nombres complexes. En 1832 Gauss avait prouvé que les lois ordinaires de

l'arithmétique s'appliquaient aux nombres a + bi, où a et b sont entiers. Il en avait fait
une brillante application dans ses recherches sur les résidus biquadratiques. Lamé,
Wantzel, Cauchy, Kummer lui-même, admettant que les nombres plus particuliers a0 +
% r + a2 t3 H~ ¦ • ¦ + an rn~} (où les a sont des entiers ordinaires et r une racine n,leme de

l'unité) jouissent eux aussi des propriétés arithmétiques courantes, croyaient arriver à

établir le théorème. C'est alors qu'en 1847, grâce à Kummer, le monde mathématique
prit définitivement conscience du fait que les entiers algébriques ne jouissent pas des

propriétés arithmétiques courantes, n'ont pas en particulier une décomposition unique
en facteurs premiers. Kummer, qui soulevait ainsi une difficulté formidable, l'écartait
aussitôt par sa géniale découverte des Idéaux. «Cette restauration d'une loi au milieu
du chaos, écrit L. E. Dickson dans son histoire de la théorie des Nombres, est un des

plus grands triomphes de la science dans le siècle dernier.» La théorie des Corps de
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nombres algébriques, qui devait prendre par la suite une si grande extension, était

fondée, et le Grand Théorème de Fermât était largement dépassé. Dépassé, mais non vaincu,

car si Kummer en a pu établir l'exactitude pour une très large classe de nombres, s'il
est vrai en particulier pour les cent premières puissances entières, la seconde exceptée

bien entendu, sa démonstration générale n'est pas encore connue.

Ainsi, comme la duplication du cube, la trisection de l'angle, la quadrature du cercle,

la résolution algébrique de l'équation générale du cinquième degré, le Grand Théorème

est un de ces paradoxes qui de tous temps ont exercé une action profonde sur le

progrès des mathématiques. Mais, et c'est ce qui le distingue des autres grands problèmes

cités, il reste au milieu du vingtième siècle une énigme non résolue de la science.

1 Jean Itard, Paris.
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LISTE ALPHABÉTIQUE DES MATHÉMATICIENS CITÉS

Apollonius, 2e moitié du 3e siècle avant J. C.

Archimède, mort en 212 avant J. C.

Aristée, 4e siècle avant J. C.

Baehet de Méziriac, érudit et mathématicien, 1581—1638.
Jean Bernoulli, 1667—1748.

Billy (le Pèrede) S. J., 1602—1679.

Bombelli, 2e moitié du 16e siècle.

Lord Brouncker, 1620—1684.
Brûlart de Saint Martin, correspondant occasionnel de Fermât.
Carcavi, de l'Académie des Sciences en 1666, mort en 1684.

Cardan, 1501—1576.

Cauchy, 1789—1857.

Cavalieri, créateur de la théorie des Indivisibles, 1598—1647.
Cazré (le Père) S. J., 1589—1664.

Commandin, célèbre traducteur des mathématiciens grecs, 1509—1575.
Cureau de la Chambre, médecin ordinaire du roi, 1597—1669.
Desargues, 1593—1662.
Descartes, 1596—1650.

Diophante, 2e partie du 3e siècle après J. C.

Dirichlet, 1805—1859.

Euclide, début du 3e siècle avant J. C.

Euler, 1707—1783.

Frénicle, membre de la première Académie des Sciences 1605—1675.
Galilée, 1564—1642.
Gauss, 1777—1855.

Gosselin, algébriste français, 2e moitié du 16e siècle.
Héron d'Alexandrie, vécut à une époque indéterminée entre 150 avant et 250 après J. C.

Van Heuraet, mathématicien flamand né en 1633.

Huygens, 1629—1695.

Kepler, 1571—1630.

Kummer, 1810-1893.
Lagrange, 1736—1813.

Lalouvère (le Père) S. J., 1600—1664.

Lamé, 1795—1870.
V. A. Lebesgue, math, français du milieu du 19e siècle.

J. M. Legendre, 1752—1834.

Leibniz, 1646—1716.

Maupertuis, 1698—1759.
Mersenne (Le Père», 1588—1648.

Montucla, historien des mathématiques, 1725—1799.

Neil, math, anglais, 1637—1670.

Nicomède, Ie moitié du 2e siècle avant J. C.

Pappus d'Alexandrie, Ie moitié du 4e siècle après J. C.

Parent, membre de l'Académie des Sciences, 1666—1716.
Biaise Pascal, 1623—1662.

Etienne Pascal, père de Biaise.

Pell, math, anglais, 1610—1685.
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Roberval, 1602—1675.

Adrien Romain, math, flamand, 1561—1615.

Grégoire de Saint Vincent (le Père) S. J., 1584—1667.

Sarassa (le Père) S. J., 1617—1667.

Stevin, 1548—1620.

Viète, 1540—1603.

Wallis, 1584—1667.

Wantzel, 1814—1848.

Wren, math, anglais, 1632—1723.

Xylander, traducteur de Diophante, 1532—1576.
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