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Pierre Fermat

Pierre Fermat fut baptisé le 20 Aodt 160 1, & Beaumont de Lomagne, actuellement
chef-lieu de canton du département du Tarn et Garonne.

Son peére, Dominique Fermat, bourgeois, était second consul de Beaumont, sa mére,
Claire de Long, était d’une famille de robe. Eléve chez les Cordeliers de Beaumont, il
termina ses études & Toulouse, oi il §’inscrivit comme avoeat au Parlement. 1! fit ensuite
une carricre de magistrat, entirement a Toulouse: Commissaire aux requétes le 14
Mai 1631, Conseiller de la Chambre des enquétes le 30 Décembre 1634, Conseiller de
la Chambre de I’édit en Aotit 1648. Il s’6tait marié le 1¢* Juin 1631 avec une cousine
de sa mére, Louise de Long, dont il eut cing enfants: Clément-Samuel qui fut comme
lui magistrat et qui devait éditer partiellement ses ceuvres; Jean qui fut archidiacre de
Fimarens; Claire dont un petit-fils, Jean Gaillard, devait succéder comme conseiller &
Jean-Frangois, fils de Samuel, et Catherine et Louise qui devaient entrer toutes deux
en religion. Il mourut a Castres, oti Pappelaient souvent les devoirs de sa charge, le 12
Janvier 1665, |

Il ne nous est véritablement connu qu’a travers ses écrits et sa correspondance. Ce
qui nous reste de celle-ci débute par une lettre adressée au Pére Mersenne, le 26 Avril
1636. 11 a déja 35 ans, est en pleine possession de son génie, et a acquis une certaine
notoriété par ses travaux mathématiques. Nous ignorons donc tout de ses premiers
maitres, et de la formation scientifique qu’il a regue. Il apparait cependant comme trés
versé dans les langues anciennes, et imprégné de culture classique. Lorsque sa corres-
pondance commence il a déja profondément médité sur les mathématiciens de Vanti-
quité et a subi par ailleurs trés fortement l'influence de Vidte, aux méthodes et aux
notations duquel il restera fidéle jusqu’a la fin de sa vie. (Test un point ou il se diffé-
rencie de Descartes, plus influencé par les mathématiciens flamands, et dont les nota-
tions, plus évoluées, devaient finir par triompher.

La célébrité de Fermat, de son vivant, fut restreinte aux milieux scientiﬁqhes: milieux
universitaires en ltalie, dans les Flandres, en Angleterre, milieux d’amateurs éclairés,
en France, principalement formés de juristes et de prétres, et ol les universitaires,
comme Roberval, étaient 1’exception. Il ne fut Jamais mathématicien de métier, et
n’accordait 2 la science que ses moments de loisir, qu’elle devait partager avec les vers
latins et d’abondantes lectures, et qui étaient d’ailleurs peu nombreux pour un Parle-
mentaire chargé d’une nombreuse famille. Il n’a pour ainsi dire pas rédigé d’ouvrage
complet, et la plupart de ses essais sont demeurés manuscrits de son vivant. Il circu-
laient entre ses amis et correspondants, qui en prenaient des copies plus ou moins
fidéles. Jamais ou presque jamais il ne pousse & fond une démonstration, mais il se
contente d’en indiquer le principe et la marche générale, laissant 4 la sagacité de ses
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lecteurs le soin de développer les cas particuliers et de discuter les problémes. Cette
sorte de nonchalance lui fit parfois manquer des découvertes, comme celle des quadri-
ques réglées qu’il laissera & Wren et a Parent.

Lorsque, dans son age mar, il s’apercut que ses découvertes risquaient d’étre perdues,
il chercha des collaborateurs capables de les mettre au point et de les éditer. C’est ainsi
qu’il pensa & Carcavi, son principal correspondant a Paris et le dépositaire de la plu-
part de ses manuscrits, et & Pascal. 1l écrit & Carcavi le 9 Aoiit 1654: « J’ai été ravi
d’avoir eu des sentiments conformes & ceux de M. Pascal, car j’estime infiniment son
génie et Je le crois trés capable de venir & bout de tout ce qu’il entreprendra. L’amitié
qu’il m’offre m’est si chére et si considérable que je crois ne devoir point faire diffi-
culté d’en faire quelque usage en Uimpression de mes Traités.

«Si cela ne vous choquoit point, vous pourriez tous deux procurer cette impression,
de laquelle je consens que vous soyez les maitres; vous pourriez éclaircir ou augmenter
ce qui semble trop concis et me décharger d’un soin que mes occupations m’empéchent
de prendre. Je désire que cet Ouvrage paroisse sans mon nom, vous remettant, a cela
pres, le choix de toutes les désignations qui pourront marquer le nom de I'auteur que
vous qualifierez votre ami, »

Ces tentatives d’édition échouérent. Ce que n’avait pu réaliser Fermat lui-méme,
son fils ainé Samuel le tenta, et le réalisa en partie. Malheureusement Samuel, érudit
et lettré, n’était pas mathématicien, et ses éditions s’en ressentent. Il publia en 1670
une nouvelle édition du Diophante de Bachet de Méziriac, augmentée de remarques de
son pere, et complétée par le traité du Pére de Billy «Doctrinz analytice inventum no-
vum>. En 1679 enfin il put faire paraitre les «Varia Opera>, qui sont bien loin de con-
tenir la totalité des découvertes de Fermat.

Raconter la vie du grand mathématicien se résume a étudier ses divers écrits. Dans
Pimpossibilité de les analyser tous, nous devrons faire un choix, ne retenant que ceux
qui, 4 tort peut-étre, nous apparaissent comme les plus importants.

Une de ses premiéres ceuvres fut une reconstitution des Lieux Plans d’Apollonius,
reconstitution dont le livre deux, le plus ancien, était déja composé en 1629, alors que
'auteur n’avait que 28 ans. Il avait a sa disposition la traduction latine par Comman-
din de la Collection Mathématique de Pappus, ouvrage qui exercera sur lui une grande
influence, et o se trouvent résumés les énoncés des propositions d’Apollonius. Ce
traité, comme tous ceux qu’il composera, 4 I’exception de sa correspondance, est rédigé
en latin, Nos citations seront tirées pour ce traité comme pour les suivants de la traduc-
tion frangaise de Paul Tannery.

Les lieux plans sont des lieux géométriques qui ne comprennent que des droites et
des cercles. En langage moderne la plus grande partie du livre I de I'ouvrage d’Apollo-
nius peut se résumer ainsi: I’homothétie, la translation, la rotation, la similitude et
Finversion transforment un lieu plan en un lieu plan. Le livre II, qui fut le premier
restitué par Fermat, comprend les lieux des points dont la différence des carrés des
distances 4 deux points donnés est constante, ou dont le rapport des distances aux deux
points est constante, dont les carrés des distances & ces deux points ont entre eux une
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relation linéaire, ou dont les carrés des distances & plusieurs points ont entre eux une
relation linéaire homogéne, etc. . . .

Ce travail, commencé comme nous 1’avons signalé plus haut avant 1629, et qui
n’apporte rien de nouveau, mais qui montre déji de profondes connaissances en Géomé-
trie ancienne, semble avoir occupé Fermat 4 plusieurs reprises jusqu’en 1636. <La
question la plus difficile et la plus belle> n’a guére di étre trouvée que vers cette
époque. Il s’agit de la 7¢ du livre I: «Soient en nombre quelconque des droites données
de position, auxquelles on méne d’un point des lignes droites sous des angles donnés;
si le produit d’une ligne donnée et d’une des menées, avec le produit de la ligne don-
née et d’'une autre menée etc. . . ., est égal au produit d’une donnée et de la derniére
des menées, le point sera sur une ligne droite donnée de position>. Cette proposition
est difficile par les procédés des anciens. Fermat ne 1’établit que pour trois droites. Sa
démonstration est synthétique. Elle est pénible a suivre, et ne saurait étre une méthode
de découverte. Son intérét historique réside dans le fait qu’elle prouve qu’au moment
ou Fermat la rédigeait, moment antérieur, mais de peu, au 26 Avril 1636, il n’était
pas en possession de sa géométrie analytique. D’ailleurs il écrit lui-méme, aprés sa dé-
couverte de cette géométrie: <Si cette découverte efit précédé notre restitution déja
ancienne des deux livres des lieux plans, les constructions des théorémes et des lieux
en eussent été rendues beaucoup plus élégantes; cependant nous ne regrettons pas cette
production, quoique précoce et insuffisamment mirie. 11y a en effet pour la Science
un certain intérét a ne pas dérober 4 la postérité les travaux encore informes de ’esprit;
I'ceuvre d’abord simple et grossiére se fortifie et grandit par les nouvelles inventions.
Il est méme important pour I'étude de pouvoir contempler pleinement les progrés
cachés de l'esprit et le développement spontané de 1'art.»

Un autre court traité géométrique de Fermat sur «Les Contacts Sphériques> est
difficile & dater. Il généralise a I'espace la reconstitution par Viste du traité d’Apollo-
nius sur les contacts. Ce mémoire traite quinze problémes qui correspondent aux
quinze combinaisons obtenues en prenant quatre éléments parmi 'ensemble de quatre
points, quatre plans, quatre sphéres. Il s’agit de construire une sphére passant par les
points et tangente aux plans et aux sphéres. Fermat ne donne jamais le nombre de solu-
tions de chacun de ces problémes. II établit cing lemmes se rapportant i la puissance
d’un point par rapport 4 une sphére ainsi qu’aux points de contact d’une sphére avec
deux autres ou avec une autre et un plan. Suivant son habitude, il se refuse a entrer
dans les détails, I'examen des divers cas, les discussions etc. . .

Doivent étre datées de cette premiére période, ot Fermat apparait surtout comme un
bon disciple des anciens, sa construction de la parabole passant par quatre points, an-
térieure 4 1635, élégante, mais ot la raison évoquée pour existence de deux solutions
est fautive, et sa démonstration du lieu A trois droites, trés élégante elle aussi. Le lieu
a trots droites est le lieu des points dont le rapport du produit des distances a deux
droites au carré de la distance & une troisiéme est donné. C'est, avec le lieu & quatre
droites, un probléme célebre de I'antiquité, que devait reprendre Descartes dans sa

Géométrie.
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Nous arrivons & 'un des mémoires capitaux de Fermat, son <Ad locos Planos et -
Solidos Isagoge-. Il date de 1636 environ, et se trouve indépendant des méthodes ana-
logues publiées par Descartes dans sa Géométrie de 1637. En fait méme, la méthode
de Fermat est plus proche de la géométrie analytique actuelle que ne lest celle de
Descartes. Voici I'introduction de ce trés court essai:

<Que les anciens aient longuement traité des lieux, on ne peut en douter; nous le
savons par Pappus, qui, au commencement du livre VII, témoigne qu’Apollonius avait
ecrit sur les lieux plans, et Aristée sur les lieux solides. Mais, si nous ne nous trom-
pons pas, la recherche des lieux ne leur était point suffisamment aisée. Nous le conjec-
turons de ce fait que, pour nombre de lieux, ils n’ont point donné un énoncé assez
général, ainsi qu’on le verra plus loin.

<Nous soumettons donc cette théorie & une analyse qui lui est propre et particuliére,
et qui ouvre la voie générale pour la recherche des lieux.

<Toutes les fois que dans une équation finale on trouve deux quantités inconnues, on
a un lieu, 'extrémité de I'une d’elles décrivant une ligne droite ou courbe. La ligne
droite est simple et unique dans son genre, les espéces des courbes sont en nombre
indéfini, cercle, parabole, hyperbole, ellipse, etc. .

<Toutes les fois que 'extrémité de la quantité inconnue qui décrit le lieu suit une
ligne droite ou circulaire, le lieu est dit plan; si elle décrit une parabole, une hyperbole
ou une ellipse, le lieu est dit solide; pour les autres courbes, on Pappelle lieu de ligne.
Nous n’ajouterons rien sur ce dernier cas, car la connaissance du lieu de ligne se dé-
duit tres facilement, au moyen de réductions, de U'étude des lieux plans et solides.

<1l est commode, pour établir les équations, de prendre les deux quantités incon-
nues sous un angle donné, que d’ordinaire nous supposerons droit, et de se donner la
position et une extrémité de 'une d'elles; pourvu qu'ancune des deux quantités incon-
nues ne dépasse le carré, le lieu sera plan ou solide, ainsi qu’on le verra clairement ci
apres.” :

Rappelons que Fermat, disciple de Viéte, en adopte les notations. Les inconnues
sont représentées par des voyelles, les données par des consonnes. Rappelons aussi,
qu’avec tous ses contemporains, il ne manie en général que des quantités positives. Enfin,
dans ses essais, les problémes ne sont jamais discutés, et il n’indique que la solution
générale. En utilisant la similitude des triangles, puis en s’appuyant sur les Coniques
d’Apollonius, il montre que si:

D in A eequatur B in E (dx == by), le lieu est une droite, Z plano — D in A sequatur
B in E (m* — dx == by), le lieu est encore une droite.

Remarquer 'homogénéité des formules; & la fagon de Viéte, Z plano signifie que la
grandeur Z est un plan, une aire. :

A in E e&q. Z pl. (xy = m®) donne une hyperbole, ainsi que D pl. + A in E =q. R
in A+ Sin £ (m® + xy = ax -+ by). Fermat détermine le centre et les asymptotes de
cette courbe.

A q equatur D in E (x* = py) donne une parabole ainsi que Bq— Aq @q. D in E
(b® — 2% = py).
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L’équation Bq — A q ®quatur E q (6* — 2? = »%) donne une cercle, comme B q—
Din A bis — Aq =quale Eq + R in E bis (b — 2dx — x® = y* 4 2ry), mais Bq—
Aq ad Eq habeat rationem datam, [(b* — %) /y® = p/q] correspond & une ellipse,
tandis que Aq + Bq est ad Eq in data ratione correspond & une hyperbole. Tous ces
cas se ramenent en effet aisément aux définitions des diverses coniques dans Apollonius.
Fermat traite ensuite des cas plus compliqués comme Bq-—Aq bis &quatur A in E
bis + Kq (b* — 22 = 2xy + y?. 1l effectue alors un véritable changement d’axes de
coordonnées. Il ajoute: «Nous avons donc embrassé dans un exposé bref et lucide tout
ce que les anciens ont laissé inexpliqué sur les lieux plans et solides:. Enfin, <comme
couronnement a son traité>, il énonce la proposition trés générale: «Etant données de
position des droites en nombre quelconque, si d’un méme point on méne & chacune
d’elles une droite sous un angle donné, et que la somme des carrés des droites menées
soit égale 4 une aire donnée, le point est sur un lieu solide donné de position.»

Ce traité capital est d’ailleurs suivi d’un appendice aussi important, et & peu prés
contemporain: <Appendix ad Isagogen Topicam, continens solutionem problematum
solidorum per locos>. 11 y est exposé une méthode générale pour résoudre les problémes
solides c’est-d-dire dépendant d’une équation du 3¢ ou du 4° degré, par les lieux. On
notera ici encore le parallélisme des préoccupations de Fermat et de celles de Descartes
dans sa géométrie. Le premier exemple concerne la résolution de I’équation :

Ac+ Bin Aq equari Z pl. in B, Cest-d-dire x® + bx® = m?b. On égale chaque
membre 4 bxy, d’ott d’une part la parabole x® + bx = by, et d’autre part 'hyperbole
m?® = xy. L'inconnue & sera 1’abcisse d’un point commun aux deux courbes, Toute
équation du 4° degré aprés <expurgation de 1’affection sur le cube> suivant le procédé
de Viéte, c’est-d-dire apres disparition du terme en x3, se raméne & un type analogue
et donne l'intersection d’une parabole et d’un cercle ou d’une hyperbole. Choisissant
alors I'antique probléme de I'insertion de deux moyennes, qu’il raméne & ’équation
x” == a®b, Fermat en donne deux solutions: en égalant les deux membres a axy il le
résout par I'intersection d’une parabole et d’une hyperbole, et, partant de x* = a%bx,
et égalant les deux membres & a®y? par Dintersection de deux paraboles. Mieux, il
montre ensuite que tout probléme solide se résout par Dintersection d’une parabole et
d’un cercle, ce qu’il applique & plusieurs exemples, dont, une fois de plus, I'insertion
des deux moyennes. :

L’Isagoge ad locos ad Superficiem est daté de 1643. La Correspondance montre
cependant que plusieurs des propositions qu’il renferme étaient établies depuis 1636,
37 ou 38. Cest dans ce mémoire que ’on sent le mieux dans quel isolement scienti-
fique se trouvait le grand mathématicien. Le moindre disciple qui aurait travaillé a
ses chOtés, sous sa direction, aurait enrichi ce travail de découvertes précieuses, par
exemple celle des quadriques réglées. L’ouvrage est fort court, pas méme sept pages
dans I’édition des ceuvres complétes de 1891, ou il fat édité pour la premieére fois.

«Pour couronner 1’Introduction aux lieux plans et solides, ainsi débute Fermat, il
reste 4 traiter des lieux en surface. Les anciens n’ont fait qu’indiquer ce sujet, mais
n’ont pas enseigné de régles générales, ni méme donné quelqu’exemple célébre, & moins
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que ce ne soit enseveli depuis longtemps dans ces monuments de 'antique Géométrie

ol tant de précieuses découvertes ont été abandonnées sans défense aux insectes et

souvent anéanties sans laisser de traces,» Il pose, sans démonstrations, six lemmes:

1% Si une surface est coupée par autant de plans quelconques que ’on voudra, et que
I'intersection de cette surface et de ces plans en nombre indéfini soit toujours une
ligne droite, la surface en question sera un plan.

2° Si une surface quelconque est coupée par autant de plans quelconques que 1’on
voudra, et que intersection de cette surface et de ces plans en nombre indéfini soit
toujours un cercle, la surface en question sera une sphére. '

3% Si la section est tantdt un cercle, tantdt une ellipse, mais jamais une autre ligne, la
surface sera un sphéroide (un ellipsoide).

4° Si la section est tantdt un cercle, tantst une parabole ou une hyperbole, la surface
sera un conoide parabolique ou hyperbolique (paraboloide non réglé ou hyperbo-
loide & deux nappes).

5° Si la section est une droite, un cercle, une ellipse, une parabole ou une hyperbole,
la surface sera un cone. On voit ici que Fermat ne soupgonne pas D’existence des
quadriques réglées. |

- 6" Si la section est une droite, un cercle ou une ellipse, la surface sera un cylindre.
Mais, ajoute-t-il, il convient en plus de considérer des cylindres a base parabolique ou

hyperbolique, d’autre part, les sphéroides et les conoides d’Archiméde, qui étaient de

révolution ne suffisent pas, et il faut en considérer d’obliques. Il établit alors que le
lieu des points dont la somme des carrés des distances i des points donnés est donnée
est une sphére, lieu qu’il généralise méme. Le lieu des points dont la somme des carrés
des distances obliques, sous des angles donnés, 4 des plans donnés est donnée, est un
sphéroide. Mais, quand il généralise A une fonction linéaire quelconque des carrés des
distances, il affirme que le lieu est une des quadriques qu’il a énumérées dans ses
lemmes. Un seul cas particulier, bien étudié, lui eut cependant ouvert les yeux, par
exemple le lieu des points dont la somme des carrés des distances a deux plans sur-
passe le carré de la distance 4 un troisitme d’un carré donné. Tl trouve ensuite que si
les distances aux plans donnés ont entre elles une relation linéaire, le lieu est un plan
et détermine quelques autres lieux, tous des quadriques, avec la méme faiblesse que
plus haut. Il conclut: <Les divers cas, les conditions limites pour les données, les pro-
blémes ou théorémes locaux en nombre infini que nous avons omis pour étre plus bref,
la démonstration des lemmes énoncés et tout ce qui aurait peut-étre besoin d’une plus
longue explication, sera facilement supplée par tout géométre soigneux et réfléchi qui
aura lu ce écrit: désormais ce sujet, qui paraissait singuliérement ardu, est rendu aisé

a comprendre.>
Mais il nous faut maintenant aborder un autre aspect de 1’ceuvre multiple de Fermat,

et 1’étudier comme précurseur du Caleul Différentiel. Dés 1629 il était en possession

de sa Méthode de recherche des maxima et minima. A la suite de Montucla, beaucoup
d’historiens la font reposer a tort sur cette remarque de Képler qu’au voisinage d’un
maximum ou d’un minimum la variation est sensiblement nulle. Le point de départ, au
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témoignage méme de Fermat, est absolument différent. Il consiste en ce que, de. part
et d’autre de I'extremum, la fonction reprend la méme valeur. Prenons un des exem-
ples de I'auteur. Soit & chercher le maximum de 62x — x®. Prenons les valeurs « et
x -~ e, qui encadrent le maximum & chercher, et pour lesquelles la fonction reprend
la méme valeur. Nous avons bx — x® = b?(x + e) — (x| ¢)?, dod ble=e®
3x%e 4 3xe?, soit encore b%==3x2 -+ 3xe + e?. Aumaximum lui-méme la différence
e sera nulle, d’oi 6® =32, x — ’\/ W Dans une lettre 4 Brulart de Saint Martin,
il va plus loin, recherchant une synthése de sa méthode, pour compléter ’analyse. En
particulier il indique comment distinguer un maximum d’un minimum par un procédé
qui revient essentiellement 4 examiner le signe de la dérivée seconde. -
Parmi les applications que fit Fermat de sa méthode, la plus géniale est la détermi-
nation des tangentes. Soit une. courbe algébrique (Descartes et Fermat disaient <géo-

métrique>).

Fig. 1

Son équation s’écrit P(x, y) = o, oi P est un polynome. La tangente est un point M
de coordonnées x,, yo, coupe I'axe des x au point d’abscisse x o — s, si nous désignons
par s la sous-tangente. Le point courant N de cette tangente a donc pour coordonnées

xetym-&(x—xo+5) .
$

Portons cette valeur de y dans P (x, y). Nous obtenons un nouveau polynome en x. La
tangente restant dans la méme région par rapport @ la courbe au voisinage de M, ce
polynome, qui s’annulera pour x == x,, gardera un signe constant dans ce voisinage.
1l passera donc par un maximum ou par un minimum.en x,. En exprimant ce fait par
la méthode de Fermat on trouvera une équation qui-donnera la sous-tangente s.

Cette méthode qu’il fit connaitre en 1638, ne fut pas immédiatement comprise par
Descartes, un peu par la faute de Fermat, dont le langage mathématique fut toujours
d’une trés grande concision. Mais si quelqu’un pouvait lui en faire reproche ce n’était
certainement pas le philosophe, qui n’aimait pas plus que lui s’étendre en de trop lon-
gues explications. La querelle ne s’en envenima pas moins et fut une des plus célébres
du 17° siécle.

La méthode de Fermat, comme celle, beaucoup plus lourde, de Descartes, n’était
applicable qu’aux: courbes «géométriques:, et ne pouvait convenir aux <mécaniques>,
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nous dirions aujourd”hui aux transcendantes. Dés 1640 an plus tard, Fermat, par un
principe qui crée en fait le caleul différentiel, ’étendit a toutes les courbes. Il écrit déja
a Mersenne le 22 Octobre 1638: «Vous saurez done que cette méme méthode dont je
me sers pour les tangentes des lignes courbes, lorsque leurs appliquées {ordonnées] ou
les portions de leur diamétre [abscisses] ont relation i des lignes droites, me sert aussi,
avec un peu de changement pris de la nature de la chose, & trouver les tangentes des
courbes dont les appliquées ou les portions de leur diamétre ont relation & d’autres
courbes.> Il choisit plusieurs exemples: le développement de l'intersection d’un cylindre
et d’une sphére, une courbe dont 'ordonnée est égale 4 un arc de parabole, une autre
dont 'ordonnée est moyenne proportionnelle entre la somme de plusieurs arcs de cour-

Fac-similé d’une lettre de Fermat (Bibl. Nat.)

hes et la somme de leurs ordonnées. Le 26 Décembre de la méme année, il propose de
trouver la tangente a une courbe dont ’ordonnée est la somme de cing racines carrées
de fonctions rationnelles. En 1640 il dévoile sa technique: «Pour éviter les radicaux,
il est permis de substituer aux ordonnées des courbes, celles des tangentes » et «aux
arcs des courbes les longueurs correspondantes des tangentes trouvées». C’est véritable-
ment 1d qu’il faut voir le fondement, algorithme en moins, du calcul différentiel. Ce
n’est d’ailleurs que dans un écrit de 1660, publié¢ dans le traité de Lalouvere sur la
cycloide, que ses affirmations de 1640 sont justifiées, d’une facon suffisante pour

I’époque.
En 1636 Roberval avait soulevé la question des points d’inflexion, a propos de la
conchoide. En 1640 Fermat résout complétement le probléme: « ... Il arrive souvent

que la courbure change, comme dans la conchoide de Nicoméde et dans toutes les
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espéces, sauf la premiére, de la courbe de M. de Roberval.. . Pour trouver, par exemple,
le point H sur la figure, on cherchera d’abord la propriété de la tangente en un point
quelconque de la courbe. Puis, par la doctrine de maximis et minimis, on déterminera

Fig. 2

le point H tel qu’en menant la perpendiculaire HC, et la tangente HB, le rapport HC/CB,
soit minimum. Car ainsi angle en B sera minimum. Je dis que le point H ainsi trouvé
sera celui ot commence le changement de courbure.» |

La contribution de Fermat a la création du calcul intégral est elle aussi considérable.
Sa correspondance nous le montre dés 1636 en possession d’une grande maitrise dans
les méthodes Archimédiennes. Il a déja généralisé la notion de spirale, & partir de la
spirale d’Archimede p = a w, étudiant par exemple p = a w? qu’il a carrée et il sait
par ailleurs carrer les paraboles y = ax™, m entier positif. II indique 4 Roberval le
principe de sa méthode. Elle est fondée sur une de ses découvertes concernant les nom-
bres figurés. Il a en effet établi la formule

Cp___ m(m—1)....(m—p-}1

m p!

et ce résultat lui permet de trouver la somme des puissances de méme ordre des pre-
miers nombres naturels. D’ailleurs Roberval est arrivé au méme résultat pa_i' un procédé
-voisin, et Descartes, nous le voyons par sa correspondance, a des conceptions analogues.

Plus tard, probablement méme plusieurs années aprés, Fermat, trés ingénieusement,
modifie la méthode classique et lui donne une plus grande souplesse. Il fera connaitre
ce nouveau procédé dans un écrit postérieur & 1660 «De Aequationum localium et
emendatione ad multimodam curvilineorum inter se vel cum rectilineis comparationem
cui annectitur proportionis Geometrice in quadrandis infinitis parabolis et hyperbolis
usus>. Dans la recherche d’une intégrale définie (quadrature ou cubature), x variant de
odaety=Ax% on divisait a en m parties égales; en chacune des divisions x, = pa/m,
p entier compris entre o et m, et v, = 4 a”p®/m®. Pour intégrer, il fallait calculer

Zyp(xp“‘“'xp_i):(,{aa+l/ma+l)§pa’
1
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et tout revenait, avant de faire tendre m vers !'infini, & sommer 3 p®. Clest ainsi
qu’entre autres procédait Fermat vers 1636. Sa nouvelle idée est la suivante: si a > o,
divisons ’intervalle o, ¢, en une infinité d’intervalles partiels en progression géomé-
trique, c’est-d-dire prenons les abscisses @, %y, %3, .... %, de telle sorte que a/x, =
xi [xi41. Les intervalles @ — x;, 2 — %,, .... x; — x; + 1 seront en progression
géométrique décroissante, ainsi que les ordonnées. Les produits y; (x; — x; 4 1) seront
aussi en progression géométrique et leur sommation sera aisée. Pour la fonction y =
Ax®,slay=ar, %1 —% =ar' (1 —7r), yi =2a%r® y; (x; —x; 1) = A al+®
(1—r) ri* % La somme d’une telle progression sera 2 a' * ¢ (1 —7) /(1 —r% + 1),
Nous aurons ’intégrale en cherchant la limite de (1 —7) /(1 — r®*1), lorsque r
tend vers 1. Il restait 13 pour I’époque une belle difficulté. Voici comment Fermat la
résout pour o = 2/3 (Il n’emploie pas en réalité d’exposants fractionnaires mais cherche
Iaire de la parabole semi-cubique y* = px®). Si OB =a et si le point d’abscisse ar

i, S SR 3 Yrmi Ymmiiirmnrmm )
B V¥ RE ST 0

Fig. 3

est E, intercalons deux moyens géométriques V et R entre B et E, et prolongeons la
nouvelle progression au deld de E. Si T est le cinquiéme point, nous devons chercher la
limite de (1 —7) /(1 —7") ou de BE/BT. Or «par notre méthode logarithmique »
dit Fermat, les cinq intervalles sont égaux (c’est-d-dire tendent vers 1’égalité), la limite
cherchée sera donc 3/5.

Dans le cas ol @ est négatif, qui est en réalité celui qu’il traite en premier lieu dans
son mémoire, et qui correspond a ses hyperboles générales y? x7 = constante, il consi-
dére 'espace s’'étendant a U'infini entre I’hyperbole y == Ax“ et I’axe des x, & partir de
I'abscisse a, et prend une progression géométrique croissante de raison 7 > 1, x, = ar,
x9 = xy7 ete.... La progression & sommer a encore pour raison 7% * 1, et elle sera dé-
croissante si o < — 1. Il en résulte qu’une hyperbole, sauf celle d’Apollonius xy = a?,
a toujours une de ses deux branches infinies carrable, et que, par différence, on pourra
toujours carrer un quelconque de ses segments, La méthode échouera done pour la
seule hyperbole d’Apollonius, dont le disciple de Grégoire de Saint Vincent, Sarassa,
avait montré, en explicitant les résultats de son maitre publiés en 1647, mais fort anté-
rieurs, que sa quadrature se ramenait au calcul d’un logarithme.

A 1’époque ol Fermat fit connaitre sa méthode & un cercle trés restreint de corres-
pondants, les progrés du calcul des quadratures lui enlevaient bien de son intérét. Elle
n’en avait pour ainsi dire plus lorsqu’elle fut divulguée au public dans les Varia Opera
de 1679. Elle avait cependant rendu de grands services d son inventeur, et lui avait
en particulier permis de carrer les hyperboles et de placer leurs centres de gravité,
problémes qu’il n’aborda que vers 1646, lorsqu’il apprit les travaux des Géométres
Italiens sur la question, et qui semblent bien &tre a P'origine de sa découverte.
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Cependant il restait & doter les procédés d’intégration d’un algorithme. Lécrit <de
Aequationum localium ... dont nous venons d’analyser le début parait un peu dans
sa seconde partie comme le testament de Fermat sur la question. Il semble avoir été
provoqué par les travaux de la jeune génération formée de Wallis, Pascal, Huygens et
leurs émules. Les mathématiciens qui conservaient le style géométrique pur, comme
toute 1’école Galiléenne en Italie, Grégoire de Saint Vincent en Belgique, Pascal en
France, ne sentaient pas 'importance de la question, mais devenaient de plus en plus
pénibles & lire, 4 mesure qu’augmentait la complexité des problémes. On sent au con-
traire chez Fermat ce lien si fécond entre I’Algébre et la Géométrie, qu’en prestigieux
disciple de Viéte il ne cessa de cultiver. Si sa pidce est nettement inspirée des lettres
de Dettonville (Pascal), dont elle suppose connus plusieurs résultats, on est frappé de
la différence profonde des deux styles, et du progrés considérable que représente celui
de Fermat sur celui de Pascal. L’écart reste pourtant encore immense entre Fermat et
Leibniz et la parution tardive du travail du premier lui a enlevé a peu prés toute influ-
ence sur le développement de la science. Il nous révele simplement une des méthodes
de travail de l'auteur. Nous y voyons en effet comment, par des changements de
variables, il passe de quadratures connues i d’autres. Par exemple, dans la courbe
y? = b® — «” il sait calculer la somme des ¥ 1l en déduit la quadrature de la courbe
b* 2" = b* y* — y*. De méme dans y°® x* = b® x — b, il sait calculer la somme des y®.
Il en déduit la quadrature du folium de Descartes x* + y® = b x y.

Si cet écrit des dernidres années de la vie de Fermat nous rapproche d’une des deux
découvertes essentielles de Leibniz dans le calcul intégral, la constitution d’un algorithme,
un autre de ses travaux, trés antérieur puisqu’il date au plus tard de 1635, nous rap-
proche de 1’autre, la relation entre le calcul différentiel et le calcul intégral. Depuis
Archiméde la recherche des centres de gravité des aires et des volumes dépendait de -
I'intégration. Fermat utilise au contraire sa méthode des Maximis et minimis. Voici une
analyse de son procédé. (

Il veut chercher le centre de gravité O du paraboloide de révolution engendré par
le segment de parabole CAV tournant autour de son axe Al. 1l pose Al =5, AO = x
{nous adoptons les notations modernes). Il coupe par le plan paralléle i la base et dont
la trace sur la figure est BNR, et il pose IN == e (méme symbole que dans sa méthode
des maxima). Les segments de paraboloide CAV et BAR sont entre eux comme AI? et
AN? (Archiméde, livre sur les Sphéroides et les Conoides). D autre part Fermat cons-
tate que 1’on pourrait montrer, comme Archiméde 1’a fait pour les segments de para-
boles, que dans les segments de paraboloides le centre de gravité divise 1’axe dans un
rapport constant. C’est ce rapport qu’il faut trouver. Soit donc E le centre du parabo-
loide BAR et M celui de la tranche limitée par les plans de traces CV et BR. Les
principes de statique donnent:

OM Vol. ABR  (b—e? . - Ty
OE“Vol.CAv-vol.ABR“2bemeﬂ’d°“0M”OExzbe—,—e2
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AQ L th — e)?
Par aillears E —E ,d’ou OF = be et OM = b Rook} v ]

Mais M est entre N et I, ce que Fermat pourrait exprimer par deux inégalités. Il
préfere <adégaler> & Ol = b — x, c’est-a-dire égaler par approximation (expression
qu’il emprunte & Xylander, traduction latine du Diophante). Cela lui donne, aprés une
simplification par e:

(b —2x) (2% —eb) o x (b — ¢)2,

En faisant e = o, I'adégalité devient égalité 262 (b — x) = b2x, et x = 2 b/3.

L’intérét de ce travail est double. C’est en effet, d’une part, un des premiers exemples
de passage 4 la limite chez Fermat. D’autre part c’est un lien, non apercu d’ailleurs
par l'auteur et ses contemporains, entre les deux branches du caleul infinitésimal. 11
elit suffi que Fermat appliquat sa méthode a la recherche, non des centres de gravité,
mais des aires des paraboles ou des volumes des paraboloides pour anticiper tout au
moins partiellement sur la découverte de Leibniz.

Fig. 5 .

Les questions sur la Cycloide, que Pascal posa en Juin 1658 & tous les mathémati-
ciens de quelque renom, ont certainement incité Fermat a publier en 1660, a la suite
du traité de Lalouvere sur cette courbe, son traité “De linearum curvarum cum lineis
rectis comparatione, Auctore M.P.E.A.S.», Le style en est cette fois géométrique, et
les méthodes sont les méthodes rigoureuses d’exhaustion. 11 s "agit de la rectification
des lignes courbes. Si plusieurs des résultats avaient été trouvés par d’autres quelques
temps auparavant, I’ensemble du traité n’en reste pas moins remarquable par sa rigueur
et son élégance.

La premiére proposition montre que daus la figure ci-dessus le segment de tangente
I H est inférieur & I’arc R H et le segment H K supérieur a I’are HM. En utilisant les
demandes d’Archiméde on voit en effet que I H est inférieur a la corde R H elle-méme
inférieure & 1’arc R H, et que d’autre part la ligne brisée H K N est supérieure a 1’arc
HMN. Mais on vient de voir que K N est inférieur a Parc M N, donc le segment H K
est supérieur & I'arc H M.
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On pourra alors, pour rectifier un arc de courbe, ne se servir que des segments de
tangente et jamais des cordes.

Par exemple, sur la figure ci-dessous, divisons AD en parties égales. L’arc AP est
supérieur & UM + VN - WP, et inférieur 8 AX -+ MY - NZ. Mais UM =MY
et VN = NZ. La différence des deux valeurs par excés et par défaut est donc infé-
rieure & AX — WP et peut étre rendue aussi petite qu’on le voudra.

Fig. 6 Fig. 7

Ce procédé tres élégant de rectification des courbes convexes a été repris par Lagrange
(Théorie des fonctions analytiques). Fermat 'utilise pour montrer que la parabole semi-
cubique y® = ax” est rectifiable, résultat déja trouvé par Van Heuraet et par Neil. Il
utilise ensuite une transformation qui lui est personnelle et qui permet de passer d’une
courbe rectifiable & une nouvelle également rectifiable. Si y; = fi (x) est une premiére
courbe, dont I’arc compris entre les abscisses o et x est s, (x), il prend y, = s; (x), d’arc
sy (x), puis ys = s, (x) etc... Dans ’étude de cette transformation on le voit justifier
rigoureusement le principe qu’il énongait en 1640: on peut dans la recherche des tan-
gentes remplacer un élément d’arc par I’élément de tangente correspondant.

Mais I'appendice & ce court traité est encore plus important. La proposition | en parti-
culier établit en effet quune courbe et salongueur sont parfaitement déterminées par la
seule connaissance de la pente de sa tangente en chacun de ses points. Autrement dit,
en langage fonetionnel, une fonction est déterminée a une constante prés par sa fonction
dérivée. Par la se trouve résolu théoriquement le probléme inverse des tangentes. Si
I'on remarque que dans le traité lui-méme une rectification a été ramenée & une quadra-
ture, on voit combien en 1660 les mathématiciens étaient proches du calcul infinitésimal.

Avant de quitter le domaine des nouveaux calculs signalons 1’application qu’en fit
Fermat a 1’étude de la réfraction. Il n’était pas physicien, et il est fort probable qu’il
n’a jamais expérimenté. Lorsqu’au début de sa correspondance il dispute contre Roberval
et Etienne Pascal sur la statique, on le sent trés en retard sur eux, et il parait finir par
se rendre & leur avis. Cependant dés qu’il a connaissance de la Dioptrique de Descartes
il s’éléve avec beaucoup de bon sens contre la pseudo-démonstration de la loi de la
réfraction donnée par le philosophe. Cette critique fut d’ailleurs la cause de leur brouille
et Descartes blessé chercha toutes sortes de mauvaises querelles contre la régle des
Maximis. En Aotit 1657, longtemps aprés la mort du philosophe, Fermat accuse récep-
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tion a Cureau de la Chambre, médecin du roi, de son traité sur la lumiére. Il lui écrit:
«<Je reconnais premiérement avec vous la vérité de ce principe, que la nature agit tou-
jours par les voies les plus courtes. Vous en déduisez trés bien 1’égalité des angles de
réflexion et d’incidence.» De la Chambre n’innovait pas, car déja Héron d’Alexandrie
faisait de méme. - Mais, puisqu’il a servi & la réflexion, pourrons nous en tirer quel-
qu’usage pour la réfraction? Il me semble que la chose est aisée et qu'un peu de géomé-
trie nous pourra tirer d’affaire.>

De la Chambre est partisan de la propagation instantanée, Fermat opterait pour une
vitesse finie, mais dit-il, avec la propagation instantanée on peut introduire une résis-
tance différente selon le milieu, et faire quand méme le calcul. (C’est le point de vue
auquel se placera plus tard Leibniz.) <La question se réduit donc a ce probléme de
Géométrie: Etant donnés les deux points C et A et la droite B D, trouver un point B
dans la droite B D auquel si vous conduisez les droites CB et B A, la somme de CB et
de la moitié de B A contienne la moindre de toutes les sommes pareillement prises, ou
bien que la somme de CB et du double de BA contienne la moindre de toutes les
sommes pareillement prises...» <Je vous garantis par avance que j’en ferai la solution
quand il vous plaira et que j’en tirerai méme des conséquences qui établiront solide-
ment la vérité de notre opinion... De sorte que, si elle n’est pas vraie, on peut dire ce
que disoit Galilée en un sujet différent que la nature semble nous 1’avoir inspirée per
pigliarsi gioco di nostri ghiribizzi.»

Il est tout a fait caractéristique de la mentalité de Fermat qu’il n’ait fait le caleul
quen fin 1661, en constatant avec étonnement qu’il obtenait la méme loi que
Descartes. «Le fruit de mon travail a été le plus extraordinaire, le plus imprévu et le
plus heureux qui fut jamais. Car, aprés avoir parcouru par toutes les équations, multi-
plications, antithéses et autres opérations de ma méthode, et avoir enfin conclu le pro-
bléme que vous verrez dans un feuillet séparé, j’ai trouvé que mon principe donnait
justement et précisément la méme proportion des réfractions que M. Descartes a
établie. »

Il avait également utilisé sa science mathématique pour une autre partie capitale de
la physique, la chute des graves. Il avait eu du mal & se faire & 1’argumentation de
Galilée, tout comme Descartes d’ailleurs qui, lni, ne s’était jamais rendu, et dans ses
objections il renouvelait inconsciemment les sophismes de Zénon. Partant du postulat
«Nullum motum fieri absque celeritate aliqui corporis moti> il raisonnait alors ainsi:
Un corps est en repos en A. Il tombe jusqu’en B. Galilée dit qu’en A il est sans vitesse.
Or il a acquis une vitesse puisqu’il s’est déplacé. S’il a acquis une vitesse au bout d’un
certain temps, que ce soit lorqu’il est en B. Si 4 AE = A B, en E il avait une vitesse
moitié, d’aprés la loi de Galilée. Done en E il avait une vitesse, ce qui est contradictoire
avec I’hypothése. Comme le mobile ne peut ainsi avoir acquis une vitesse an bout d’un
certain temps, il en avait une au départ, contrairement & ce que dit Galilée.

Il ne parait cependant pas s’étre plus obstiné dans ce paradoxe que dans ceux qu’il soute-
" naiten statique vers la méme époque, 1636. En 1646, dans une lettre A Gassendi, il réfute
trés solidement '’hypothése de Cazré d’aprés laquelle la vitesse de chute serait propor-
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tionnelle & 1’espace parcouru. Galilée qui sétait arrété vers 1604 i cette méme hypo-
thése 1’avait rejetée dans ses Discorsi en remarquant que, si elle était vraie, le mouve-
ment devrait étre instantané, 'espace double devant étre parcouru dans le méme temps
que 'espace moitié. C’est cet argument que Fermat développe en 1646, dans un style
4 la maniére des anciens pour écarter toute objection, et utilisant: pour la premiére fois
la série géométrique dans une intégration. '

Comme algébriste Fermat garde toute son originalité. Nous donnons deux exemples
de sa maniére. En 1650 il envoie a son correspondant Carcavi une piéce intitulée
< Novus secundarum et ulterioris ordinis radicum in analyticis usus». Elle traite essen-
tiellement de I’élimination d’une ou de plusieurs inconnues entre plusieurs équations,
théorie ot une fois de plus notre mathématicien est un précurseur. Prenons son premier
exemple, avec les notations actuelles. 1l s’agit d’éliminer y entre les deux équations
x* 4+ v =a, bx + v* -} ¢y = d. 1l faut isoler dans un membre de chacune des équa-
tions les termes contenant y:v® = a — x*; y* 4~ ¢y =d — bx, écrire la proportion
(@ —2%):y*::(d — bx): {y* + cy), égaler le produit des extrémes & celui des moyens,
et simplifier par y, ce qui abaisse le degré en y de la nouvelle équation, recommencer
l'opération avec les deux équations de plus bas degrés jusqu’a ce que y ne figure plus
qu’au premier degré. On tire alors de cette équation y en fonction de x et ’on porte
dans la premiére. ' ‘ '

Telle est la premiére méthode connue d’élimination, encore lourde, mais fort cor-
recte. Elle semble avoir été élaborée par Fermat vers 1648. En tout cas, contrairement
a D'opinion de plusieurs historiens, aucun document ne permet de la faire remonter
plus hauat.

Dans un appendice, & la maniére de Fermat aussi important, sinon plus, que le
mémoire lui-méme, la méthode est utilisée pour faire disparaitre les <asymmétries>,
nous dirions les radicaux. L’exemple proposé est

3 4
\/bxz—xgjL"\/xz—%—cij\/dﬁ—x“‘"}w Vegx—x2=n.

Poser y* =ba® — &% 2" = a® + cu; ¢t = do® — x*; u = gx — % et éliminer v,
z, t, u successivement entre ces équations et la premiére y + z + ¢t + u = n.

Il y a bien 1 un procédé absolument général, quoique rapidement fort pénible.
Fermat signale I'utilité de sa méthode pourla résolution numérique des équations, la mé-
thode de Viéte pour I'approximation des racines, seule connue a1’époque, ne s’appliquant
quaux équations entiéres et rationnelles. Puis il signale son application aux pro-
blémes abondants, ot il y a plus d’équations que d’inconnues, et 13, il tombe dans une
étrange erreur, fort instructive pour ceux qui cherchent & le bien connaitre. Desargues
avait proposé un beau probléme: placer un cercle sur un céne dont la base est une
conique donnée. «Les mathématiciens, dit Fermat, ont remarqué que ce probléme est
solide », ils le traitent en cherchant un cercle s’appuyant sur cing droites issues du
sommet. Mais, si 'on prend une sixiéme droite, le probléme devient surabondant, et
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se raménera d une simple division! Il ne voit pas qu’il se trouve dans un cas ou la
nouvelle équation est une conséquence des précédentes, et ot saméthode ne simplifie rien.

Le second exemple de la maniére de Fermat comme algébriste est le court mémoire
qu’il adressa & Christian Huygens en 1661 probablement. C’est un complément au
travail de Viete sur ’équation d’Adrien Romain, équation du 45¢ degré qui se ramenait
a la division d’un angle en 45 parties égales. Le terme connu étant la corde d’un arc
pris sur un cercle de rayon unité, la méthode de Viéte ne peut réussir que si ce terme
est inférieur 4 2. Qu’arrive-t-il quand il dépasse ce nombre? S’appuyant sur le cas
simple de la trisection de 1’angle ou lorsque le terme connu dépasse 2, on peut trouver
la seule racine par la méthode de Cardan, Fermat remplace I'inconnue par v + 1/y.
Tous les termes médians de 1’équation d’Adrien Romain disparaissent et la solution
unique est la somme de deux racines quarante-cinquiémes. Il y a ici encore une trés
belle intuition et une anticipation sur les conquétes futures de la théorie des équations.

Mais le domaine ot triomphe Fermat est celui de 'analyse indéterminée. Les mathé-
maticiens du 16° siécle avaient retrouvé les livres Arithmétiques de Diophante qu’avaient
traduits Xylander en latin et Stevin en francais, et dont s’étaient inspirés entre autres
Bombelli, Gosselin, Viéte.

Le mathématicien et humaniste Bachet de Méziriac donna en 1621, a Paris, le texte
grec des huit livres Arithmétiques, accompagné d’une traduction et d’un abondant
commentaire latins. La vogue de Diophante dura tout le dix-septiéme siécle, puis
s’apaisa lorsque I'attention fut accaparée par le Calcul infinitésimal. Ses fidéles furent
alors peu nombreux, mais on peut citer parmi eux Euler, et Diophante est encore
cultivé de nos jours. ;

I} ne s’occupe que d’analyse indéterminée, ot ne sont acceptées que les solutions
rationnelles des équations. Il propose par exemple, liv. II, prop. 11: <Ajouter un méme
nombre & deux nombres donnés, de maniére que chacun d’eux forme un carré.»

Fermat se passionna pour 'analyse Diophantienne. Le Pére de Billy a consigné les
résultats qu’il obtint dans ses <nouvelles découvertes de la science de 1’analyse>, ceuvre
latine publiée dans la réédition du Diophante de Bachet, par Samuel Fermat, en 1670,
réédition enrichie de précieuses remarques de son pére. On voit dans le travail du Pére
de Billy Fermat utiliser systématiquement les racines négatives des équations pour
poursuivre ses calculs et arriver ainsi a des solutions positives, méthode fort hardie a
I’époque. Nous ne pouvons nous étendre sur cet aspect de son ceuvre. Voici simple-
ment un exemple des problémes qu’il traite: On demande un triangle rectangle dont
aive, ajoutée a I'un des cotés de I’angle droit, fasse un carré. Un des triangles répon-
dant a la question a pour cbtés |

10988674 6927424 8530050
2458624 2458624 2458624

Pour bien comprendre Fermat mathématicien il ne faut pas perdre de vue qu’il se
complaisait beaucoup plus dans de telles recherches, qui demandent beaucoup de sub-
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tilité mais nous paraissent maintenant un peu vaines, que dans ses recherches de Géo-
métrie pure ou analytique, ou dans les problémes sur les tangentes et les quadratures.
Nous pouvons trouver encore plus futiles des travaux sur les carrés magiques. Rap-
pelons qu’un carré magique est un tableau carré dont chaque case renferme un nombre
différent, et tel que les sommes des nombres d’une méme ligne, d’'une méme colonne,
de chacune des diagonales, soient toutes égales entre elles. Les carrés magiques dépen-
dent donc de ’analyse combinatoire. Fermat y régna en maitre. Il 8’y exerca en parti-
culier vers les années 40, comme le montre sa correspondance,

L’analyse combinatoire devait lui étre d’ailleurs d’un grand recours lorsque, en 1654,
Pascal correspondit avee lui sur des problémes concernant les jeux de hasard. De cette
correspondance, trés courte, devait sortir le Calcul des Probabilités. Les procédés des
deux fondateurs sont différents, mais ceux de Fermat, qui utilise ’analyse combina-
toire et le principe des probabilités composées, sont nettement supérieurs a ceux de son
jeune émule. :

Cependant les réflexions prolongées de Fermat sur ’analyse Diophantienne, qu’il
consignait dans les marges de son exemplaire, aujoud’hui perdu, du Diophante de
Bachet, et dont il parsemait sa correspondance, devaient le conduire a créer une nou-
velle branche des mathématiques, la théorie des nombres. lci, la gloire de Fermat
s'éléve jusqu’d la légende, et ses décoavertes auraient amplement suffi 4 immortaliser
son nom,.

Lorsque commence sa correspondance, en 1636, il est 4 peu prés ignorant de tout
en la matiére. Et cependant nous le voyons, dés 1639, essayer le savoir de ses émules,
comme Frénicle, en leur proposant des problémes qu’il sait impossibles, comme
<trouver un triangle rectangle duquel [aire soit un nombre carré, trouver deux carrés
carrés desquels la somme soit carré carrée, trouver quatre carrés en proportion arithmé-
tique continue, trouver deux cubes desquels la somme soit cube-.

En 1640, il est en possession des plus importantes de ses découvertes et de ses
méthodes. Il sait que a? ~! =1 mod. p, pour p premier, ¢ non divisible par p. Il a
montré que 2% — 1 n’est pas premier, mais admet le facteur 223, et établi que tout
nombre premier de la forme 4/ -+ 1 est d’une seule facon somme de deux carrés, et
il posséde sa méthode de démonstration par la descente infinie.

1l résumera dans une lettre & Carcavi d’Aoit 1659 1’ensemble de ses découvertes:
«J’appelai cette maniére de démontrer la descente infinie ou indéfinie...; je ne m’en
servis au commencement que pour démontrer les propositions négatives comme, par
exemple:

«Qu’il 'y a aucun nombre, moindre de lunité qu’un multiple de 3, qui soit composé
d’un carré et du triple d’un autre carré;

«Qu’il i’y a aucun triangle en nombres dont Uaire soit un nombre carré.»

Interrompons ici cette citation pour donner, au sujet de cette derniére affirmation,
la traduction francaise de 1’Observation sur Diophante ol Fermat traite la méme
question.

«Si l'aire d’un triangle était un carré, il y aurait deux bicarrés dont la différence
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serait un carré; il s’ensuit qu’on aurait également deux carrés dont la somme et la
différence seraient des carrés. Par conséquent, on aurait un nombre carré, somme
d’un carré et du double d’un carré, avec la condition que la somme des deux carrés,
qui servent a le composer, soit également un carré. Mais si un nombre carré est somme
d’un carré et du double d’un carré, sa racine est également somme d’un carré et du
double d’un carré, ce que je puis prouver sans difficulté. On conclura de 1a que cette
racine est la somme des deux cotés de 1’angle droit d’un triangle rectangle, dont 1’un
des carrés composants formera la base, et le double de I'autre carré la hauteur.

«Ce triangle rectangle sera donc formé par deux nombres carrés, dont la somme et la
diftérence seront des carrés. Mais on prouvera que chacun de ces deux carrés est plus
petit que les deux premiers, dont on a également supposé que la somme et la différence
soient des carrés, Donc, si on donne deux carrés dont la somme et la différence soient
des carrés, on doone par 1 méme, en nombres entiers, deux carrés jouissant de la méme
propriété et inférieurs.

<Par le méme raisonnement, on trouvera toujours des nombres entiers de plus en
plus petits satisfaisant aux mémes conditions. Mais cela est impossible, puisqu’un nombre
entier étant donné, il ne peut y avoir une infinité de nombres entiers qui soient plus
petits, . > *

<Je fus longtemps, écrit Fermat dans sa lettre 4 Carcavi, sans pouvoir appliquer ma
méthode aux questions affirmatives. ... De sorte que lorsqu’il me fallut démontrer
que tout nombre premier, qui surpasse de Uunité un multiple de 4, est composé de deux
carrés, je me trouvai en belle peine. Mais enfin une méditation diverses fois réitérée
me donna les lumiéres qui me manquaient, et les questions affirmatives passérent
par ma méthode, a P'aide de quelques nouveaux principes qu’il fallut joindre par néces-
sité. ..

<Il'y a infinies questions de cette espéce, mais il y en a quelques autres qui demandent
des nouveaux principes pour y appliquer la descente, ... Telle est la question suivante:
Tout nombre est carré ou composé de deux, de trois ou de quatre carrés>, (Il avait
énoncé cette proposition plus généralement, dans une lettre datée a tort dans les
(Euvres Complétes de Septembre ou Octobre 1636, mais qu’il faut reporter 3 Mai
ou Juin 1638: Tout nombre est la somme de trois nombres triangulaires au plus, ou
de quatre carrés, ou de cinq pentagones, de six hexagones, sept heptagones etc. . .)

<Celle que j’avais proposée 4 M. Frénicle et autres (Wallis, Lord Brouncker) est
d’aussi grande et méme plus grande difficulté : Tout nombre non carré est de telle nature

* On sait depuis Euclide (X, lemme 2 a la prop. 28) qu’un triangle rectangle en nombres, dont les
cOtés sont premiers entre eux dans leur ensemble, ont pour cotés 2mn, m* — n® et m*—+n® metn
premiers entre eux, de parités différentes. L'aire est donc mn(m* —n?). Si elle est un carré parfait,
m et n sont carrés ainsi que m*——n’, Soient m=x% n=1y%; x*-— y* est un carré, d’ont 1 —y2 =1
x*y*==2" ou encore 2 =1"—42y% x¥=¢*{ 4% Maissi 22 = 2252 (z—t) ( -t} =2y% d’otr
z—t=4u’, z--t=20" et z=0"F2u% t=0"—20u% y=2uv, x®=v*+ 4% Done v? et 2u?
sont les cotés de 'angle droit d’un triangle rectangle dont Paire v?u? est un carré. Chacun de ces cotés
est inférieur 4 z...
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qu’il v a infinis carrés qui, multipliant le dit nombre, font un carré moins 1. Je la
démontre par la descente appliquée d’'une maniére toute particuliére. (Il s’agit de Véqua-
tion dite & tort, depuis Euler, équation de Pell ax® -+ 1 = y%)

«Jal ensuite considéré certaines questions qui, bien que négatives, ne restent pas de
recevoir trés grande difficulté, la méthode pour y pratiquer la descente étant tout a fait
diverse que les précédentes, comme il sera aisé d’éprouver. Telles sont les suivantes:
Il n’y a aucun. cube divisible en deux cubes. Il n’y a qu’'un carré en entiers Qui, aug-
menté du binaire, fasse un cube. Le dit carré est 25.

Il n’y a que deux carrés en entiers, lesquels, augmentés de 4, fassent un cube. Les
dits carrés sont 4 et 121. “

«Toutes les puissances carrées de 2, augmentées de U'unité, sont nombres premiers. . .»
Cette derniére proposition, que Fermat n’a cessé d’énoncer tantdt dubitativement, tan-
t6t comme ici, et vers la fin de sa carriére seulement, d’une facon absolue, et qui porte
sur les nombres 22" - 1, est fausse, comme Kuler I’a vérifié pour 2% -+ 1 divisible
par 641. Il est curieux de constater ici I'obstination de Fermat, d’autant plus étrange
qu’il avait effectué la factorisation aussi difficile de 2% — 1. Tant une conviction pro-
fonde, ou un préjugé d’inventeur, peut étre un obstacle insurmontable.

Mais ce qui frappera le plus dans la Correspondance de Fermat c¢’est que 'on n’y
rencontre jamais son grand théoréme sur 'impossibilité de 'équation =™ 4 y* = 2"
pour n > 2. Seuls y figurent les deux cas particuliers n =3 et n = 4. Il y a 1a une
forte présomption pour croire qu’effectivement il n’avait pas de méthode pour démontrer
le cas général, sa descente infinie devenant trés pénible dés n = 5. C’est dans ses
remarques sur Diophante, notes personnelles écrites en marge de son exemplaire,
pieusement recueillies et publiées par son fils en 1670, que la proposition est affirmée.
Voici la traduction de sa remarque a la proposition 8 du livre II: trouver deux carrés
dont la somme soit un carré: «<Au contraire, il est impossible de partager soit un cube
en deux cubes, soit un bicarré en deux bicarrés, soit en général une puissance quel-
conque supérieure au carré en deux puissances de méme degré; j’en ai découvert une
démonstration véritablement merveilleuse que cette marge est trop étroite pour contenir. »

Les mathématiciens doivent étre reconnaisants 3 Samuel Fermat de son indiscrétion.
La publication de cette note personnelle, que son pére n’avait jamais voulu rendre
publique, a ét¢ un des principaux stimulants pour les théoriciens du nombre et nous
lui devons la plupart des grands progres accomplis depuis dans ce domaine.

On peut se demander, quelle influence exerca Fermat sur le développement des ma-
thématiques. En Géométrie pure elle fut insignifiante. En géométrie analytique, et dans
la théorie des équations, elle fut éclipsée par celle de Descartes. Dans I’ancienne ana-
lyse Diophantienne au contraire il fut le maitre incontesté, et habituant ainsi les spé-
cialistes a jongler avec les fonctions rationnelles il intervint indirectement dans 1’épa-
nouissement du début du dix-huitiéme siécle. La méthode des Maximis et Minimis et
celle des tangentes exercérent une action déterminante dans la naissance du caleul diffé-
rentiel. Aussi profondes qu’aient été les recherches de Format dans le domaine du cal-
cal intégral, son action s’y fit beaucoup moins sentir et n’eut pas le retentissement de
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celles de Cavalieri et de Pascal. Il préside avec ce dernier i la naissance du calcul des
Probabilités. '

Mais il reste deux domaines des mathématiques ot encore de nos jours I'influence
du grand mathématicien se fait sentir. Le premier, celui sur lequel 1’attention est le
moins attirée, est le calcul des Variations et son application 4 la physique, méme la
plus moderne. Si ce caleul fut & proprement parler créé par Lagrange en 1759, ce fut
une intuition de génie de poser en optique le principe de Fermat sur le trajet de temps
minimum, et ce fut pour 'époque un tour de force de le soumettre au calcul. Lorsque
Ion étudie la préhistoire de ce calcul des variations, au début du dix-huitiéme siécle,
on est frappé de voir les premiers pionniers, Leibniz et Jean Bernoulli en particulier,
ramener les divers problémes de courbes minima aux méthodes de I'optique de Huygens
et au principe de Format. Avec Maupertuis, Euler, Lagrange, la méthode passera de
I'optique 4 la mécanique, et malgré les critiques d’esprits se croyant plus positifs, et
rétifs devant la métaphysique des causes finales, les principes de minimum de temps de
parcours ou de minimum d’action restent trés vivants dans la science de nos jours.

En théorie des nombres, théorie qui n’avait été qu'ébauchée avant lui par Iauteur,
4 jamais inconnu, des livres arithmétiques d’Euclide, Fermat exerce de nos jours, ne
disons pas une influence, mais une vraie fascination. Cela va, au deld du rationnel, du
raisonnable, jusqu’a I'idolatrie, et tel qui, dans tout autre domaine, le considérera comme
un homme génial, mais enfin comme un homme, le dotera ici de pouvoirs magiques.

(est surtout son Grand Théoréme, celui qu’il n’a jamais fait connaitre au public de son
vivant, qui lui a valu ce renom. C’est qu’il reste encore indémontré. Les plus grands
mathématiciens s’en sont cependant longuement occupés. Leibniz lui-méme s’y essaya,
pour la puissance 4, au début de sa carriére. Il appliquait, comme Fermat, et comme
les mathématiciens suivants, la Descente Infinie. Euler résolut les deux cas des puissances
3 et 4, les seules, rappelons-le, sur lesquelles Fermat s’était prononcé publiquement.
Legendre et Dirichlet arrivérent & bout, en 1825, de la puissance 5. Lamé et V. A.
Lebesgue, en 1840, triomphérent de la puissance 7.

Mais on aboutissait 4 une impasse. Déja, pour la troisiéme puissance, Euler faisait
appel aux nombres complexes. En 1832 Gauss avait prouvé que les lois ordinaires de
Iarithmétique s’appliquaient aux nombres a - bi, ol ¢ et b sont entiers. Il en avait fait
une brillante application dans ses recherches sur les résidus biquadratiques. Lamé,
Wantzel, Cauchy, Kummer lui-méme, admettant que les nombres plus particuliers a, +
ayr+agr®+ ... -F @™ ! (oil les a sont des entiers ordinaires et r une racine n'*™® de
l'unité) jouissent eux aussi des propriétés arithmétiques courantes, croyaient arriver a
établir le théoréme. C’est alors quen 1847, grace 3 Kummer, le monde mathématique
- prit définitivement conscience du fait que les entiers algébriques ne jouissent pas des
propriétés arithmétiques courantes, n’ont pas en particulier une décomposition unique
en facteurs premiers. Kummer, qui soulevait ainsi une difficulté formidable, 'écartait
aussit6t par sa géniale découverte des Idéaux. <Cette restauration d’une loi au milieu
du chaos, écrit L. E. Dickson dans son histoire de la théorie des Nombres, est un des
plus grands triomphes de la science dans le siécle dernier.> La théorie des Corps de
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nombres algébriques, qui devait prendre par la suite une si grande extension, était fon-
dée, et le Grand Théoréme de Fermat était largement dépassé. Dépassé, mais non vaincu,
car si Kummer en a pu établir Uexactitude pour une trés large classe de nombres, §’il
est vrai en particulier pour les cent premiéres puissances entiéres, la seconde exceptée
bien entendu, sa démonstration générale n’est pas encore connue.

Ainsi, comme la duplication du cube, la trisection de I’angle, la quadrature du cercle,
la résolution algébrique de ’équation générale du cinquiéme degré, le Grand Théoréme
est un de ces paradoxes qui de tous temps ont exercé une action profonde sur le pro-
grés des mathématiques. Mais, et c’est ce qui le distingue des antres grands problémes
cités, il reste au milieu du vingtiéme siécle une énigme non résolue de la science.

‘ Jean ItarD, Paris.
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LISTE ALPHABETIQUE DES MATHEMATICIENS CITES

Apollonius, 2¢ moitié du 3e siécle avant J. C.

Archimeéde, mort en 212 avant J. C.

Aristée, 42 siécle avant J. C.

Bachet de Méziriace, érudit et mathématicien, 1581 —1638,
Jean Bernoulli, 1667—1748.

Billy (le Pérede) S. J., 1602—1679.

Bombelli, 28 moitié du 16¢ sidcle.

Lord Brouncker, 1620—1684.

Bralart de Saint Martin, correspondant occasionnel de Fermat.
Carcavi, de ’Académie des Sciences en 1666, mort en 1684,
Cardan, 15011576,

Cauchy, 1789--1857.

Cavalieri, créateur de la théorie des Indivisibles, 15981647,
Cazré (le Pere) S. J., 15891664,

Commandin, célébre traducteur des mathématiciens grecs, 1509~-1575.
Cureau de la Chambre, médecin ordinaire du roi, 1597 1669.
Desargues, 1593—1662.

Descartes, 1596—1650.

Diophante, 2¢ partie du 3¢ siécle aprés J. C.7

Dirichlet, 1805—1859.

Euclide, début du 3¢ siécle avant J. C.

Euler, 1707--1783.

Frénicle, membre de la premiére Académie des Sciences 1605—1675.
Galilée, 1564—1642,

Gauss, 1777—1855.

Gosselin, algébriste francais, 22 moitié du 16¢ sidcle.

Héron d’Alexandrie, vécut & une époque indéterminée entre 150 avant et 250 aprés J. C,
Van Heuraet, mathématicien flamand né en 1633.

Huygens, 1629—1695.

Képler, 1571—1630.

Kummer, 1810 —1893.

Lagrange, 1736—1813.

Lalouvere (le Pére) S. J., 1600-—1664.

Lamé, 1795—1870. :

V. A. Lebesgue, math. francais du milieu du 19¢ siécle.

J. M. Legendre, 1752—1834.

Leibniz, 1646—1716.

Maupertuis, 1698—1759.

Mersenne (Le Pére), 1588—1648.

Montucla, historien des mathématiques, 1725—1799,

Neil, math. anglais, 1637-—1670.

Nicoméde, 18 moitié du 2¢ sigele avant J. C.

Pappus d’Alexandrie, 1¢ moitié du 4¢ sidcle aprés J. C.
Parent, membre de ’Académie des Sciences, 1666—1716.
Blaise Pascal, 1623—1662.

Etienne Pascal, pére de Blaise.

Pell, math. anglais, 1610-—1685.
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Roberval, 1602—1675.

Adrien Romain, math. flamand, 1561—1615.

Grégoire de Saint Vineent (le Pere) S. ], 1584—1667.
Sarassa (le Pére) S.J., 1617—1667.

Stevin, 1548—1620.

Viéte, 1540—1603.

Wallis, 1584—1667.

Wantzel, 1814—1848.

Wren, math. anglais, 1632—1723.

Xylander, traducteur de Diophante, 1532——1576.
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