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J O. Fliickenstein: Johann und Jakob Bernoulli

E I N L EITFNG

Kein Geringerer als Ernst Mach hat in seiner klassischen Geschichte der Mechanik
bemerkt, daß sich in den beiden Brüdern Bernoulli die beiden Seiten des
wissenschaftlichen Talentes, nämlich die kritische Tiefe und die schöpferische Phantasie,
verschieden verteilt vorfinden, welche, wenn in ungewöhnlicher Stärke in einem einzigen
Haupte vereinigt, die großen Genien der exakten Wissenschaften, wie Newton und
Galilei, hervorbringen. Mit dieser treffenden psychologischen Bemerkung Machs soll
nun nicht nur die gleichzeitige Behandlung zweier Mathematiker in einer gemeinsamen
Biographie gerechtfertigt, sondern zugleich auch die historische Bedeutung der beiden
Brüder Bernoulli angetönt werden. Sie reicht in der Tat fast an die der
epochemachenden Taten der Klassiker der mathematischen Wissenschaften heran, wenn man
die Leistungen der beiden Brüder zusammennimmt. Diese aber müssen zusammengenommen

werden, weil die historische Leistung der beiden Bernoulli, der mathematische
Ausbau des von Leibniz entdeckten Infinitesimalkalküls, ein gemeinsames Werk war.

Die Kenntnis des Geheimnisses der Leibnizschen Analysis des Unendlichen, welche
sich Jakob und Johann Bernoulli Schritt für Schritt eroberten, gab den beiden
Brüdern schon zu ihren Lebzeiten einen mit einem Nimbus umgebenen Namen, den
noch zwei spätere Generationen in Ehren halten sollten. Das Phänomen der
Mathematikerdynastie der Bernoulli, welches sich am ehesten mit der Musikerdynastie der Bach
vergleichen läßt, wuchs jedoch nur infolge des «Familiengeheimnisses» des Leibnizschen
Infinitesimalkalküls zu der bekannten kulturgeschichtlichen Bedeutung heran. Denn
das Phänomen einer Familiendynastie ist in der Geschichte der exakten Wissenschaften
an sich nicht so ungewöhnlich; es genügt, an die Familien der Cassini, Strove und
Gregory /u erinnern.

Dieses mathematische « Familiengewerbe » hat aber zugleich der Stadt Basel einen
unvergänglichen Ruhm gesichert. In der ersten Hälfte des achtzehnten Jahrhunderts
spielte der Kreis der Basler Mathematiker, zu denen außer den Bernoulli Jakob
Hermann und Leonhard Euler gehörten, eine noch größere Rolle als ehedem der Florentiner

Kreis der Mathematiker um Galilei oder der Pariser Kreis der kartesianischen
Akademiker im siebzehnten Jahrhundert. Ja, die Infinitesimalverfahren dieser
Mathematiker des siebzehnten Jahrhunderts erscheinen nur als ein Vorspiel zu dem großen
Konzert, welches der Basler Kreis der Bernoulli und Euler mit dem Instrument des
Leibnizschen Kalküls spielen sollte. Der Genius Eulers ist ohne die Bernoulli nicht
denkbar: Johann Bernoulli hatte ihm als sein Lehrer schon den bis ins Detail
entwickelten Infinitesimalkalkül übermittelt, welchen Euler in seiner ungeheuren
Produktionskraft auf eine Unzahl von Einzelproblemen der Mathematik, Physik und Technik

anwenden sollte. Der Keim vieler Ideen Eulers liegt in den Bernoullischen Arbeiten.
Stellt die Entdeckung des Kalküls durch Leibniz ideengeschichtlich den Abschluß der
Mathematik des siebzehnten Jahrhunderts dar, so leiten die Brüder Bernoulli durch
ihre Pioniertätigkeit der ersten Ausarbeitung dieses Kalküls zum achtzehnten
Jahrhundert über. Und indem sie den Kalkül aus dem Leibnizschen Gewand einer barocken
Metaphysik herauslösten - deren Bedeutung noch am ehesten von allen Mathematikern
Jakob Bernoulli ahnte - präparierten sie ihn zugleich zu dem Werkzeug des späteren
Jahrhunderts der Mechanistik.
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Vor diesem ideengeschichtlichen Hintergrund standen die beiden Bernoulli
eindeutig auf der Seite Leibnizens gegen den Newtonianismus der englischen Mathematiker;

eine Stellungnahme, welche übrigens sogar noch bei Euler ihre Spuren hinterlassen

hat. Da sie aber keineswegs imstande waren, den philosophischen Hintergrundder Mathematik Leibnizens zu erfassen, mußten sie automatisch in das Fahrwasser des
französischen Spätkartesianismus geraten, als dessen bedeutendste mathematische
Repräsentanten sie übrigens von der Pariser Akademie selbst empfunden wurden. Unter
ihrer Hand wurden die Leibnizschen Infinitesimalia wiederum unter das kartesische
Joch des « Gcometrismus des Extensiven» gezwungen und damit zu aktual-unendlich-
kleinen Größen deklariert. Die sich damit allerdings einstellenden logischen Schwierigkeiten

wurden durch die praktischen Ergebnisse des zwar widerspruchsvollen, aber wie
ein Zauberstab immer zu richtigen und auf anderen Wegen nicht zu erreichenden Resultaten

führenden Kalküls verdeckt. Führten diese logischen Schwierigkeiten die
Bernoulli und vor allem ihre französischen Adepten in Frankreich zwar in leidige Diskussionen

mit kartesischen Zeloten der Akademie, so darf doch nicht übersehen werden,
daß es sich dabei freilich nur um einen Hausstreit zwischen dem orthodoxen und deni
Spätkartesianismus handelte, welcher in den Bernoulli willkommene Mitstreiter
erblickte. Es ist hervorzuheben, daß es nur Mathematiker aus dem Kreise um
Malebranche waren, dessen Philosophie sich noch am ehesten den Leibnizschen Ideen
öffnen konnte, welche wie Varignon und de l'Hôpital sich für den neuen Kalkül
interessierten, während die repräsentativen Mathematiker der ersten Akademie (1666bis 1699), die de la Hire, Rolle, Galloys S. J., sich ablehnend, ja sogar feindlich
gegenüber dem «Kalkül der Ausländer» verhielten. Durch das « Einfallstor » Malebranche

wurde von den Bernoulli das trojanische Pferd der Leibnizschen Mathematik
in die Akademie des französischen Spätkartesianismus gebracht. Diese gleiche
Akademie sollte aber später nach Abkehr von der kartesischen Naturphilosophie durch die
Anwendung der formalen Prinzipien des Leibnizschen Kalküls auf den neuen Inhalt der
Newtonschen Dynamik den Siegeszug der französischen Mathematik in der zweiten
Hälfte des achtzehnten Jahrhunderts begründen, während die englische Mathematik in
ihrer Versteifung auf den Newtonschen Fluxionskalkül bis ins neunzehnte Jahrhunderthinein stagnierte. Zu diesem Erfolge der Pariser Akademie hatten die Bernoulli
entscheidend beigetragen, weshalb sie auch - viel mehr als Euler - von ihr als die «Ihren»
empfunden wurden. Gleicht der Genius Leibnizens einem abenteuerlichen Seemann,
der durch die gefährlichen Wogen und Stürme der philosophischen Spekulation steuernd
mit divinatorischer Sicherheit sein Schiff zur Landung in dem erahnten Neuland bringt,
so gleicht das Talent der beiden Bernoulli der wagemutigen Pionierarbeit der ersten
Eroberer des unerforschten Festlandes nach der geglückten Landung; jenes Land der
Infinitesimalrechnung, das später in umfassender Weise von Euler kolonisiert werden
sollte. Diese Pionierarbeit der Bernoulli muß aber auf den Hintergrund des
Spätkartesianismus abgebildet werden, um zu einer gerechten Würdigung ihrer Leistungen zu
gelangen, deren Betrachtung die vorliegende Biographie gewidmet ist.

1. Die Eroberung des Leibnizschen Kalküls
durch Jakob und Johann Bernoulli

Als Leibniz 1684 in der von ihm mitbegründeten ersten deutschen wissenschaftlichen

Zeitschrift, den Leipziger Ada Eruditorum (im folgenden A. E. abgekürzt),
unter dem Titel Nova msthodus pro maximis et minimis (A. E., Oktober 1684) seinen
Differentialkalkül veröffentlichte, wurde er von niemandem verstanden, zumal seine
Abhandlung durch sinnstörende Druckfehler entstellt und - vielleicht absichtlich -sehr unklar gehalten war. Einem allerdings gelang es, nach jahrelangem Durchdenken
des Problems, den Sinn zu erfassen, und dieser eine war kein anderer als Jakob
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Bernoulli, dessen mathematisches Talent sich schon früh geregt, aber gegen mannigfache

Widerstände durchzusetzen hatte. Auf den ausdrücklichen Wunsch des Vaters
hatte er Theologie studiert, sich im geheimen aber dem Studium der Mathematik
gewidmet, das sich freilich bei dem Fehlen des höheren mathematischen Unterrichtes
in Basel nur auf die Elementarmathematik der Antike erstrecken konnte. Erst bei
seiner zweiten Auslandsreise nach Holland und England lernte er die moderne
kartesische Geometrie und die Infinitesimalverfahren des siebzehnten Jahrhunderts
kennen. In Amsterdam erschienen dann 1682/83 seine ersten Hauptschriften Conamen
adovnandi novi systematis cometarum und die Dissertatio de gravitate aetheris. In der
ersten Schrift, welche übrigens schon in einem provisorischen deutschen Entwurf
1681 zu Basel erschienen war, rückt er vor allem dem astrologischen Aberglauben zu
Leibe, indem er die Kometen als reguläre Mitglieder des Planetensystems erklärt,
deren Bahn genau so wie die der Planeten zu berechnen sei. Allerdings verfällt Jakob
hierbei auf die merkwürdige, aber geometrisch in sich widerspruchsfrei durchzuführende

Hypothese, daß die Kometen Satelliten eines weit außerhalb der Saturnbahn
liegenden Planeten mit Kreisbahnen seien. Es ist immerhin bemerkenswert, daß aus
Gründen geometrischer Konstruktion Jakob - und zwar als Theologe - zur Hypothese
eines transsaturnischen Planeten greift, obwohl noch der Basler Syllabus Controver-
siarum von 1662 das kopernikanische Weltsystem verdammt hatte. In der Dissertation

über die «Schwere des Äthers» leitet er als überzeugter Kartesianer die Schwere
aus dem Rückstoß einer feinen elastischen Flüssigkeit, des Äthers ab. Die kartesische
Theorie modifizierend, erklärt er auch die Festigkeit der Körper aus diesem Ätherdruck,

indem nach seiner Hypothese die Körper um so fester sind, je mehr Poren sie
haben, in welche der Äther eindringen und dem äußeren Druck entgegenzuwirken
vermag.

Nach seiner Rückkehr ins Vaterland faßte Jakob den definitiven Entschluß, sich
ausschließlich der Mathematik zu widmen. Er lehnte deshalb eine ihm angebotene
Predigerstelle in Straßburg ab und eröffnete in Basel statt dessen Vorlesungen über
Experimentalphysik. Unterdessen trieb er private Studien über die moderne Mathematik,

welche seit Descartes eine besondere Entwicklung genommen und in Leib-
nizens Arbeit von 1684 einen Höhepunkt erklommen hatte. Leibniz hatte seinen
Infinitesimalkalkül durch eine eigentümliche, in den metaphysischen Tiefen seiner
Philosophie verankerte Form der Logik gefunden, welche die Relationslogik des

Descartes in einer Richtung konsequent weiterführt, indem sie den Primat der
logischen Relationen vor den Subjekten, zwischen denen diese bestehen, postuliert. Es
ist nun bemerkenswert, daß sich bei Jakob Bernoulli ein ähnlicher geistiger
Entwicklungsprozeß, wenn auch nur in abgeschwächter Form, vollzieht. Neben einigen
physikalischen Arbeiten über Borellis Taucheratmung, Dichtebestimmung der Luft,
Diskussionen über Huygens' Schwingungszentrum, Papinsches Perpetuum mobile
u. a. füllen die Mehrzahl seiner Studien bis 1686 formallogische Abhandlungen aus :

Centum ¦positionum fihilosofthicarum (1684), Parallelismus ratiocinii logici et algebraici
(1685), Theses logicae (1686), Methodus ratiocinandi (1686). Und während bei Leibniz
die mathematischen Probleme nur Spezialfälle einer Universallogik darstellen, so sind
in diesen logischen Schriften Jakobs kleine mathematische Einzelprobleme versteckt,
welche die Entwicklung des Mathematikers charakterisieren. Dann kommen wie bei
Leibniz vor der Entdeckung des Kalküls Abhandlungen über unendliche Reihen,
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zuerst die Positiones arithnieticae de seriebus infinitis. Dieser Arbeit ist ein Epigramm
vorangesetzt, das noch an die barocke Gedankenwelt Leibnizens anklingt:

Ut non finitam seriem finita coercet
summula, & in nullo limite limes adest:
Sic modico immensi vestigia Numinis haerent
corpore & in angusto limite limes abest.

ernere in immenso parvum, die, quanta völuptas!
In parvo immensum cernere, quanta, Deum!

Von dieser Abhandlung erschienen noch vier Fortsetzungen (1692, 1695, 1698,
1704). welche wohl nur deshalb zeitlich so weit auseinanderliegen, weil sie JakobBernoulli als Thesen für seine Doktoranden verwenden wollte. Die Respondent«!
der dritten und fünften Disputation waren die nachmals berühmten Mathematiker
Jakob Hermann und Nicolaus I Bernoulli. Von allen fünf Abhandlungen ist
die erste die wichtigste. Sie enthält den Divergenzbeweis für die harmonische Reihe,
den übrigens, wie Jakob mitteilt, Johann zuerst gefunden hat. Ferner steht hier die
berühmte Bernoullische Ungleichung

a)n ^ 1,2,3,

welche Jakob beim Vergleich von geometrischen mit arithmetischen Reihen findet.
Die Rechnungen vollziehen sich zumeist mit und an divergenten Reihen, so daß in
diesen Arbeiten unzulässige Operationen vorgenommen werden. An den entscheidenden

Stellen aber findet der mathematische Instinkt Jakobs stets das Richtige. 1687
hatte Jakob als Nachfolger Megerlins die mathematische Professur in Basel erhalten,

worauf er sich sofort in einem Schreiben an Leibniz wandte und ihn um nähere
Auskunft über dessen schwerverständliche Abhandlung von 1684 bat. Da Leibniz
wieder einmal auf einer seiner zahlreichen politischen Reisen war, wurde der Brief
erst nach der Rückkehr nach Hannover am 24. September 1690 beantwortet, und
Jakob war genötigt, durch eigenes Nachdenken den Leibnizschen Kalkül nachzu-
entdecken. Diese Nötigung mag aber nicht zuletzt Jakobs Selbständigkeit in der
Handhabung der neuen Infinitesimalrechnung bedingt haben. Und da Jakob schon
im Mai 1690 in den A.E. das Problem der Isochrone, welches Leibniz 1686 den Kar-
tesianern zur Losung vorgelegt und welches nur Huygens mit den synthetischen
Methoden gelöst hatte, mit der Differentialrechnung behandelte, konnte ihm Leibniz
in seinem Antwortbrief schreiben, daß Jakob keiner Hilfe von außen mehr bedürfe, da
er den Sinn der neuen Methode vollkommen erfaßt habe. Jakob hatte auch seinen
Bruder, den um dreizehn Jahre jüngeren Johann, in die eroberten Geheimnisse der
neuen Methode eingeweiht, so daß Leibniz sogleich zwei Mitkämpfer für seinen
Kalkül fand. Und während der Vielbeschäftigte sich der detaillierten Ausarbeitung
seiner Erfindung nicht mehr widmen konnte, sah er in Basel eine Frucht heranreifen,
welche, selbst wenn er sie selber mit Liebe gepflegt hätte, auf dem durch den Dreißigjährigen

Krieg verwüsteten Boden seiner Heimat kaum hätte gedeihen können. Neidlos
hat er später deshalb das Verdienst der Bernoulli um den neuen Kalkül

anerkannt, welcher den beiden Brüdern ebensoviel verdanke wie ihm selbst.
Mit der Lösung des Problems der Isochrone war Jakob mit einem Schlag in die

Reihe der führenden Mathematiker seiner Zeit aufgerückt. Jakob löst die Aufgabe ganz
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im Leibnizschen Geist, indem er sich durch Anwendung der Fallgesetze Galileis auf
die geometrischen Proportionalbeziehungen zwischen den Differentialen die Gleichung

dy ]/b2 y ~ a3 ix ]/as verschafft. Da die differentiellen Ausdrücke einander gleich
sind, «ergo et horum Integralia aequantur», womit zum erstenmal der Ausdruck Integral

— der übrigens von Johann stammt - in der Mathematik auftritt. Als Lösung
der Differentialgleichung der Isochrone findet Jakob eine semikubische Parabel:

2 62 y - 2 a3 r—-
3fe2 '

; x yas.

Àm Schluß dieser Abhandlung stellte nun Jakob die Frage nach der Gestalt der

Kettenlinie, die Galilei für eine Parabel hielt. Doch nicht er, sondern Johann löste

diese Aufgabe, der unterdessen nicht müßig geblieben war. Aufgestachelt durch den

eifersüchtigen Ehrgeiz, es dem älteren Bruder mindestens gleichzutun, war er teilweise

sogar selbständig in den Leibnizschen Kalkül eingedrungen, und zwar neben seinem

medizinischen Fachstudium, von dem eine Abhandlung Dissertatio de effervescentia et

fermentatione (1690) zeugt, in welcher er nach der kartesischen Theorie von den vier
Urelementen die Erscheinungen der

Gärung zu erklären versuchte. Außer ihm /? -

hatten nur Leibniz und Huygens, dieser

aber noch mit der «antiken» Methode, das

Problem bewältigt.
Die Lösung von Johann läßt sich heute

wie folgt skizzieren : •,
Es sei A B ein beliebiges Stück der

Kettenlinie, wovon die Längeneinheit überall :fi,
das Gewicht q besitze. Das Kettenelement y
sei bei B horizontal, bei C unter dem Winkel
a gegen die Horizontale geneigt, und der
Bogen BC habe die Länge s, so daß sein
Gewicht g s ist. Ferner seien die Koordinaten
so gewählt, daß BD x und DC y ist. Die
Spannung der Kettenlinie in tangentieller
Richtung sei £>. Man kann sie in eine horizontale Komponente § und in eine vertikale
Komponente 35 zerlegen. Nun ist wegen der Komponentendarstellung geometrisch

E

D

B

Q cos a S
dy
ds

35 S sin a S
dx
ds

Da nun in Richtung AE d(Q cos cc) 0 ist, folgt § const q a, während die
Vertikalkomponente proportional der Bogenlänge q s ist. Damit folgt §/93 ajs dyjdx
und mit Benutzung der Beziehung ds2 - dx2 -\- dy2 die Differentialgleichung der
Kettenlinie

a dx

\/2ax+ x*

die sich als eine Logarithmika entpuppt :

a + x + ]/2a x + x%

y a In

die Johann 1691 in Unkenntnis der Logarithmusfunktion freilich noch als Parabelbogen
und Hyperbelinhalt darstellt. Nur im Falle, wo s q y ist, wird die Kettenlinie zu
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einer Parabel, als welche sie Galilei ansah. Die beiden Bernoulli lösten das Problem.
auch in dem allgemeinen Fall, wo das Gewicht q eine Funktion des Kurvenpunkts q(x)
ist, die Kettenlinie also ungleich schwer ist.

Jakob erkannte dann später (1691) und in der Arbeit Curvatura veli (1692), daß
auch die Segelkurve eine Kettenlinie ist. Auch Johann hatte die Gestalt der Segelkurve

bestimmt, und er unterläßt nicht, in seiner Solution du problème de la courbure
que fait une voile enflée par le vent zu betonen, daß er es gewesen sei, welcher die von
Jakob aus den mechanischen Bedingungen des Problems hergeleitete Differentialgleichung

2. Ordnung a ds d2x dy3 hat lösen können, während sie für Jakob zu

Brief von Johann Bernoulli an Jakob, aus Genf, vom 17. Juni 1691. Enthält u. a. die Integration der
Differentialgleichung der Velaria. (Basel U. B. Codex Gothanus Chart B 673, Blatt 41).

schwer gewesen sei. Auf das Drängen Jakobs hin hatte sich Johann mit dieser
komplizierten Differentialgleichung abgegeben und plötzlich bemerkt, daß man die
Differentialgleichung der Kettenlinie auch auf diese Form bringen kann - und der
gewandte Formalist Johann schoß den Vogel ab, bevor Jakob die ihm unterdessen
auch geglückte Lösung hatte publizieren können.

Mit seiner erfolgreichen Auslandsreise 1691/92 trug Johann keineswegs dazu bei,
die bald schon in der Öffentlichkeit sich bemerkbar machenden Eifersüchteleien
zwischen den beiden Brüdern zu dämpfen. Johann war in Paris von dem Mathematikerkreis

um Malebranche mit äußerster Zuvorkommenheit als ein Repräsentant des
neuen Leibnizschen Kalküls empfangen worden ; in Basel machte es großen Eindruck,
daß sich der illustre Marquis de l'Hôpital, damals wohl der begabteste Mathematiker

Frankreichs, von Johann hatte in die Infinitesimalrechnung einführen lassen.
Das erste Lehrbuch der Differentialrechnung, die Analyse des infiniment petits (1696),
mit welchem der Marquis seinen Namen in der Geschichte der Mathematik unsterblich

machte, ist aus diesen Vorlesungen Johanns und dem anschließenden
Briefwechsel entstanden.

Die von Cantor noch angezweifelte Autorschaft Johanns an diesem Werk läßt
sich heute einerseits durch das Basler Manuskript seiner Differentialrechnung, das
1921 von Schafheitlin aufgefunden wurde, und andererseits durch die Korrespondenz

Johanns mit dem Marquis beweisen, welche demnächst als erster Band in der
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Edition der Basler Bernoulli-Kommission erscheinen wird. Cantor hatte wegen des

zweifellos prahlerischen Charakters Johanns dessen Beteuerungen der Priorität keinen

Kredit gegeben; er konnte nicht wissen, daß weniger der Wahrheitsliebe des

Basler Mathematikers zu mißtrauen als seiner Geldliebe mancherlei zuzutrauen war :

gegen eine stattliche Pension hatte sich Johann verpflichtet, ausschließlich dem

Marquis seine neuesten Entdeckungen in der Infinitesimalrechnung mit Erläuterungen
mitzuteilen. Daß dieser nun, anstatt sich damit zu begnügen, in Abhandlungen über
die neue Analysis des Unendlichen mit den Entdeckungen Johanns in der vordersten
Front der modernen Mathematiker zu brillieren, noch seinen Namen mit dem ersten

Lehrbuch der Differentialrechnung verewigen wollte, konnte Bernoulli nicht ahnen,
aber er mußte zu Lebzeiten des Marquis infolge seines «Vertrages» dazu schweigen.
Erst als nach dessen Tode Saürin bei einer Auseinandersetzung mit Rolle die heute

noch «l'Hôpitalsche Regel» genannte Methode zur Bestimmung des Wertes unbestimmter

Ausdrücke, wie 0/0, dem Marquis zugeschrieben hatte, reklamierte er öffentlich in
einer Abhandlung von 1704 in den A.E. Gleichzeitig schüttete er dem Freund Varignon
das Herz aus und beklagte sich über das ihm von de l'Hôpital widerfahrene Unrecht.
Da aber Johann die Hintergründe seines Schweigens zu Lebzeiten des Marquis nicht
öffentlich preisgeben wollte, so kam er, als er erst nach dem Tode seines «Mäzens»

reklamierte, in den Geruch eines unfairen und ruhmredigen Zeitgenossen.
Die Abhandlungen der beiden Brüder Bernoulli, mit denen sie die Leibnizsche

Infinitesimalrechnung bis zu ihrem offenen Streite 1697 ausbauten, lassen schon die

Eigenart der Begabung der beiden Mathematiker erkennen : Johann entwickelt vor
allem die formale Fruchtbarkeit des neuen Kalküls, wobei er besonders die

Integralrechnung ausbaut, Jakob vertieft sich in geometrische Probleme, wobei er am Einzelfall

allgemeine Sätze findet.
Die geometrischen Probleme, mit denen sich Jakob abgab, betrafen vor allem die

Theorie der Evoluten, der Kata- und Diakaustiken und der Elastica. Die erfolgreiche

Behandlung dieser Kurven verdankte Jakob einerseits der konsequenten Einführung
der Polarkoordinaten {Specimen calculi differentialis, A. E. 1691) in die Analysis und
andererseits seiner Kenntnis des analytischen Ausdrucks für den Krümmungsradius

q — dss/dy d2x, des Theorema aureum (Curvatura laminae elasticae, 1694). Dieser
Ausdruck läßt sich übrigens leicht in den gebräuchlichen umrechnen, wenn man y mit
x vertauscht und also

ds3
__

dss a-y _ (1+jO3'2
dxa2y dx% ' dx"1 y"

schreibt. Zur Einführung der Polarkoordinaten gelangt Jakob 1691, indem er auf die

Parabel x%=2j>y die Transformation x r, y # ausübt und somit aus einer

Parabel eine parabolische Spirale ableitet. Diese Transformation faßt er als ein

Zusammenbiegen der Achse der Spirale auf, so daß die Abszissen gekrümmt werden, die

Ordinaten aber als Radienvektoren senkrecht zu dieser Achse bleiben. In Fortsetzung
dieser Untersuchung wendet sich Jakob der logarithmischen Spirale zu (Sftira mira--

Ulis, A. E. 1692), wo er jene merkwürdigen Eigenschaften entdeckte, die ihn so

beeindruckten, daß er sie als Motiv für sein künftiges Epitaph verwendete. Er entdeckte
bei dieser Kleinschen W-Kmve die ersten fundamentalen Invarianzeigenschaften
gegenüber projektiven Transformationen : Die Evolute und die Kaustik der logarith-
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mischen Spirale ist wieder eine logarithmische Spirale. Auf seinem Epitaph, der heute
im Kreuzgang des Basler Münsters zu sehen ist, steht deshalb das Epigramm : Eadem
mutata resurgo, welches die unendliche Wiederkehr des Gleichen als Unsterblichkeitssymbol

darstellen soll.
Von Einzelheiten aus den Arbeiten Jakobs ist die parazentrische Isochrone zu

erwähnen. Sie ist in Verallgemeinerung des Problems der Leibnizschen Isochrone - mit
.welchem Jakob übrigens in der Infinitesimalrechnung debütiert hatte — die Lösungskurve

für ein radialzentriscb.es Kraftfeld in bezug auf den Erdmittelpunkt statt des

Parallellinienkraftfeldes an der Erdoberfläche in der ursprünglichen Aufgabe. In
diesem allgemeinen Fall Jakobs wird die Isochrone eine komplizierte Logarithmika
mit einem asymptotischen Windungspunkt im Erdzentrum. Als Hüfskurve seines
Problems führt Jakob hierbei auch die Lemniskate (%2 + y2)2 a2 (x2 — y2) (A. E.
1694) ein. Eine weitere wichtige Einzelheit ist der für die Ingenieurmechanik
fundamentale Satz, den Jakob bei seinen zahlreichen Untersuchungen über die elastische
Linie gefunden hat. Wenn ein elastischer Stab durch äußere Kräfte gebogen wird, so
nimmt seine Achse (d. i. der geometrische Ort der Schwerpunkte der Querschnitte)
eine solche Form an, daß das statische Moment der äußeren Kräfte umgekehrt
proportional dem Krümmungsradius an dem betreffenden Punkt der Achsenkurve ist,
welche die «elastische Linie» genannt wird. Hierbei muß vorausgesetzt werden, daß
bei kleinen Durchbiegungen ein ebener Querschnitt des Stabes eben bleibt.

In dieser Zeit erst trat Johann mit größeren mathematischen Arbeiten an die
Öffentlichkeit. [Nach seiner Rückkehr aus Paris hatte er mit einer Dissertation De motu
musculorum 1694 den medizinischen Doktorhut in Basel erworben. Diese Abhandlung
ist übrigens trotz des medizinischen Themas mathematisch und ganz im Geiste des

Iatromathematikers Borelli verfaßt. Johann entwickelt dort eine chemische Theorie
der Muskelkontraktion, die geradezu modern anmutet. Das Aufblähen der Muskelfasern

läßt er durch Gärungsprozesse entstehen, wobei er die Meridiankurve der
aufgeblähten Oberfläche der Fasern berechnet.

Johann betrachtete zeitlebens zwei Gebiete der Infinitesimalrechnung als seine

ureigene Domäne: die Integralrechnung und den «Exponentialkalkül». In seinem
Versuch, die Infinitesimalrechnung vor allem formal weiter auszubauen, fand er bei
Leibniz selber die vollste Unterstützung. Schon 1693 hatte Johann eine Korrespondenz

mit dem Meister begonnen, welche die umfangreichste werden sollte, die der große
Philosoph überhaupt je gepflogen hatte. Am 2. September 1694 konnte ihm Johann
mitteilen, daß es ihm gelungen sei, eine allgemeine Reihenentwicklung für Integrationen

zu finden, eine series universalissima, qae omnss quadratutas et rectificationes
gensraliter exprimit, indem

|{x)dx= x<p{x)- |j <p\x) + ^ ff"(x)
6

sei (Additamentum, A. E. 1694). Diese Reihe beruht auf dem allgemeinen Satz von
Leibniz für die Differentiation eines Produktes

m

dmu(x) g(x)} - (df + rfg)<») 2JM dm 7 d'g,
'

».-=0
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wenn man m — 1, g dx und / <p(x) setzt und weiter noch die Operatoren
P

d"p= ljdp — J einführt. Einen Großteil der Korrespondenz mit Leibniz zwischen
1694 und 1696 füllen derartige Formalismen aus.

Im Zusammenhang mit der Integralrechnung als Umkehroperation der Differentiation
stehen Johanns Bemühungen um die Integration der Differentialgleichungen.

Hatte er schon in Paris mit der anonymen Lösung des berühmten de-Beauneschen
Problems, welches seinerzeit schon dem Cartesius als erstes inverses Tangentenproblem
aufgegeben war, die Leistungsfähigkeit des Leibnizschen Kalküls demonstriert (J. d. S.

1692), so zeigte er fünf Jahre später, daß der neue Kalkül auch viel kompliziertere
Differentialgleichungen zu lösen imstande ist: Jakob hatte im Anschluß an das
de-Beaunesche Problem die Lösung der allgemeinen Differentialgleichung

--/ +P{x)y + Q{x)y'< 0,

welche man heute die Bernoullische heißt, aufgegeben und selber umständlich gelost.
Hier lief ihm der formal gewandtere Johann wiederum einmal den Rang ab, indem
letzterer diese Gleichung mit dem Ansatz löste, die gesuchte Lösungsfunktion als
Produkt zweier unbekannter Funktionen aufzufassen y — M(x) ¦ N(x), so daß man in der
dann resultierenden Gleichung

~ + d5

wegen der Willkürlichkeit der beiden Funktionen einer von ihnen, etwa M, noch die

Nebenbedingung dM/M + P(x) dx 0, woraus M e -Jp(xldx folgt, auferlegen kann.
Setzt man M in die Bedingungsgleichung ein, so ist nur noch eine lineare Differentialgleichung

in N zu lösen.

Der «Exponentialkalkül», auf den Johann so stolz war, ist nichts anderes als der
Infinitesimalkalkül der Exponentialfunktionen. Als Nieuwentiit in einer kritischen
Schrift gegen die mangelnden logischen .Grundlagen des Leibnizschen Kalküls besonders

auf das Fehlen der Differentiation der Exponentialfunktion xv im Leibnizschen
Kalkül hinwies, entwickelte Johann in einer besonderen Abhandlung (Princiftia
calculi exponentialium seu percurrentium, A. E. 1697) den «Exponentialkalkül», dessen

Grundformel in der Gleichung

d(xv) xv log x dy + xv"A dx
besteht.

2. Das Problem der Brachystochrone
und die Ursprünge der Variationsrechnung

Da Johann keine Aussichten hatte, in Basel eine mathematische Professur zu
erhalten, weil der Lehrstuhl von Jakob besetzt war, nahm er mit Freuden eine Berufung
nach Groningen an, welche ihm Huygens vermittelt hatte. Am 1. September 1695

reiste er mit seiner Frau und dem erst sieben Monate alten Sohn Nicolaus II nach
Holland ab, nicht ohne Groll gegen Jakob im Herzen, der sich mit Sticheleien an der
früheren Prahlerei Johanns bei der Differentialgleichung der Segelkurve zu rächen

begonnen hatte, indem er Johann als seinen Schüler bezeichnete, der schließlich nur
das habe zum besten geben können, was er von Jakob gelernt habe. Aus Groningen
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kam der Gegenstoß des nun auch an Rang ebenbürtig gewordenen Bruders : Schon

im Juni 1696 hatte Johann in den A. E. den Mathematikern das Problem der Bra-

chystochrone vorgelegt, die Kurve zu bestimmen, längs deren in der Vertikalebene
ein Körper am schnellsten von einem Punkt A zu einem Punkt B fällt. Da bis Ende

1696 eine Lösung nicht mehr zu erwarten war, stellte Johann auf Wunsch von
Leibniz die Aufgabe nochmals in Form eines Flugblattes, gewidmet acutissimis qui
Mo orbe floreni mathematicis, mit einer Lösungsfrist von 6 Monaten. Leibniz löste am

gleichen Tag, als er den Brief Johanns erhalten hatte, dessen «wunderschönes»

Problem der Brachystochrone und schrieb zurück, daß er außer denjenigen, welche mit
der neuen Infinitesimalrechnung vertraut seien, wie Johann, Jakob Bernoulli,
Newton und de l'Hôpital, nur dem Genius Huygens, wenn er noch lebte, und dem

Scharfsinn Huddes, wenn er sich noch mit Mathematik abgäbe, eine Lösung zutraue.

Wie Leibniz prophezeit hatte, liefen nur fünf Lösungen ein, und zwar von Johann,
Jakob, Newton, Leibniz und de l'Hôpital, wobei bemerkt werden muß, daß nur
die aktive briefliche Hilfe Johanns dem Marquis die Lösung ermöglicht hatte.

An diesem berühmten Problem offenbarte sich die verschiedenartige Begabung
der beiden Brüder in aller Öffentlichkeit. Johann löst die Aufgabe durch eine geniale

Intuition, mit der er das mechanische Problem auf ein «zufällig» schon gelöstes
optisches zurückführen kann. Jakob gibt eine gründliche, aber schwerfällige Analyse und
findet dabei in den Tiefen der Aufgabe Wurzeln einer neuen mathematischen Disziplin.

In einem offenen Brief an Basnage, Redaktor der Revue Histoire des Ouvrages

des Sçavans hat Johann (1697) alle Lösungen besprochen und dabei angedeutet, daß

Huygens' Traité de la lumière (Leyden 1691) ihn auf den Gedanken eines inneren

Zusammenhangs zwischen Mechanik und Optik gebracht habe; und so findet sich in
diesem Brief zum ersten Male, über 100 Jahre vor der Hamiltonschen Theorie, in der

mathematischen Physik der Satz ausgesprochen «que ces deux spéculations, prises de

deux si différentes parties des Mathématiques telles que sont la Dioptrique et la

Méchanique, ont entre elles une liaison absolument nécessaire et essentielle».

Für die Lichtbewegung ist nämlich das Problem der Brachystochrone nach dem

Fermatschen Prinzip schon gelöst, denn das Licht legt immer denjenigen Weg
zurück, für welchen es ein Minimum an Zeit benötigt. Diesen Lichtweg beschreibt das

Brechungsgesetz. Man braucht sich also die Fallbewegung nur durch eine entsprechende

Lichtbewegung ersetzt zu denken, indem sich das Licht in einem Medium von
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variabler Dichte, welche nach unten nach dem Gesetz v |/2 gh abnimmt, bewegt.
Zerlegt man das Medium in horizontale Schichten und bezeichnet mit a,- die Neigungswinkel

des Kurvenelements gegen die Vertikale, wobei vi die entsprechenden
Geschwindigkeiten bezeichnen, so ist infolge des Brechungsgesetzes

sin v-i sin ai+1

oder aber, wenn mit x die Vertikaltiefe unter A und die horizontale Entfernung von
A mit y bezeichnet wird,

dy[fS k oder dy2 k2 v2 (dx2 + dy2) ;

da v2 — 2 gx ist, folgt mit der Abkürzung x 1/2 g k2:

dy dx\l x
y x — x

Dies ist aber die Differentialgleichung einer Zykloide, so daß Johann dieser Kurve,
von welcher Huygens den Isochronismus oder den Tautochronismus entdeckt hatte,
noch die Eigenschaft des Brachystochronismus zufügen konnte. In seinem offenen
Brief an Basnage machte sich Johann über die schwerfälligen Deduktionen Jakobs
lustig, der selber offen zugestanden hatte, daß sie ihm manches Kopfzerbrechen
bereitet hatten. Aber Johann merkte nicht, daß Jakob mit seinem Grübeln in
der leichtfertigen Eleganz Johanns unbekannte Tiefen vorgestoßen war. Jakob
stellte nämlich zunächst fest, daß derartige Extremalprobleme von den bisher üblichen
verschieden seien, indem nicht mehr die unbekannten Extremalstellen einer Funktion,
sondern Funktionen selber, welche ein gewisses Integral zu einem Extremum machen,
zu bestimmen sind. Damit erkannte Jakob, daß es sich hier nicht um ein gewöhnliches

Extremalproblem, sondern um ein — wie wir heute sagen würden — Variationsproblem

handelt, welches besondere Lösungsprinzipien erfordert. Als ein solches
benutzt Jakob die Bedingung, daß die Extremalkurve auch in ihren kleinsten Teilen der

Eigenschaft genüge, die sie als Gesamtkurve haben soll. Daß diese Bedingung für die
Extremalkurve eines Variationsproblems ohne Nebenbedingung zwar hinreichend,
aber keineswegs notwendig ist, hat allerdings erst später Euler erkannt.

Das Integral l dt ds/v oder, mit Berücksichtigung des Fallgesetzes, l/j/2 g / ds/y'x
soll ein Minimum sein. Da ständig dxfds cos a ist, so gilt für die beiden Nachbarpunkte

von P, Pt und Pa (bei Weglassung des konstanten Faktors l/|/2g),
x x 1 h

—!- f-f + — /" 4- —— (J^- V*- * + — -COSC^ J l/| COSa2 J |/£ COSOt! ' ' COSa2
x-h ' x

dies muß ein Minimum, die Ableitung des Ausdrucks rechter Hand also Null sein. Die
Ableitung aber ist (nur a ist jetzt variabel!)

{]/ x— ]/-x- h) s:n ^d^ {îJx+h-V'x) sina2rfa2

ces-œj cos-a2

Da nun aber y2 — y1= h (tg a2 + tg rxx) als Ordinatendifferenz P, P2 konstant ist, so
besteht noch die Bedingung

—i + _d3i__ 0
cos2aj cos2a2
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womit sich die Minimalbedîngung

()/x- ]/%- h) sina-,^ (]/x+h-]/x) sin a2

schreibt. Bringt man diese auf die Form

sin a] sinoc2

\/x+]/x-h \/x + h + \/x
'

so erkennt man, daß diese Bedingung unabhängig von h ist, daß also sin a/|/# konstant
ist, was mit sin a dy/ds die von Johann aus dem Brechungsgesetz gefundene
Differentialgleichung der Zykloide gibt.

Um Johann auf den Zahn zu fühlen und vor aller Öffentlichkeit bloßzustellen,
stellte nun Jakob am Schluß seiner Auflösung des Problems der Brachystochrone
ein neues Variationsproblem (A. E., Mai 1697) : Unter
allen durch B und .ZV gehenden Kurven von gleicher
Länge ist diej enige zu bestimmen, welche den Flächenraum

BZN zu einem Maximum macht, wenn allgemein

die Ordinate PZ der Kurve BZN eine Potenz
der Ordinate der Extremalkurve BFN ist (PZ

PFn). Diese Aufgabe stellt eine Verallgemeinerung
des Isoperimeterproblems der Antike dar, unter allen
Kurven gegebener Länge zwischen B und N diejenige
zu bestimmen, welche über der Sehne BN den groß-
ten Flächeninhalt einschließt. Johann Bernoulli
schrieb nun in seinem Brief an Basnage, es sei ihm gelungen, innert drei Minuten
das Problem zu lösen. Die Extremalkurve sei nämlich

F,s F

y
xn dx

[a Konstante)

und für « — 1, wobei die Kurve BZN BFN wird, ist in der Tat der Kreis des

Zenodorus
f x dx /~i «

y — I -;—_ a — )/«¦* — ^
die Lösung.

• Aber Johanns voreilige Lösung war nur teilweise richtig. Da Johann sein Resultat
ohne Ableitung publiziert hatte, Jakob aber seinen ehemaligen Schüler kannte, erbot
sich Jakob, erstens die Methode seines Bruders zu erraten, zweitens die Fehler in
dessen Ableitung nachzuweisen und drittens die wahre Auflösung des isoperimetrischen

Problems zu geben. Da seinerzeit bei der Stellung des Problems von einem
«Nonnemo» 50 Imperialien als Lösungspreis ausgesetzt waren, so verpflichtete er
sich, diese Summe zu zahlen, wenn er im ersten Punkte, das Doppelte, wenn er im
zweiten Punkt, und das Dreifache, wenn er im dritten Punkt seiner Kritik der Jo-
hannschen Lösung fehle.

In diesen nüchternen und ironischen Worten drückt sich die ganze Tragik der

Entzweiung der beiden Brüder aus, deren Streit schließlich in eine unerquickliche und
hier nicht im einzelnen zu schildernde Gehässigkeit ausarten sollte, so daß die
Beiden sich nicht mehr versöhnen konnten. Immerhin hatte dieser leidige Streit die
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Geburt der Variationsrechnung zur Folge, und man kann diesen geradezu als ein
Auseinanderfallen der beiden Begabungsrichtungen, der intuitiven und der systematischkritischen,

auf zwei verschiedene Personen ansehen, welche sich offen bekämpften,
als ob die Brüder sich gleichsam an der Natur rächen wollten, die, indem sie das

mathematische Genie gerecht auf zwei verteilte, dadurch gerade verhinderte, daß

jeder allein zur Klasse der allergrößten Mathematiker aufsteigen konnte. Und so tra-t

eine Auseinandersetzung an die Öffentlichkeit, welche «unter anderen Umständen
unbemerkt in derselben Person hätte austoben können», um die geniale Leistung
hervorzutreiben, wie Mach treffend bemerkt.

Johann hatte übrigens ncch geprahlt, daß er Jakobs Aufgabe auch für den
allgemeineren Fall lösen könne, daß PZ nicht nur PFn, sondern irgendeine Funktion
von PF p(x) sei. Dann sei die Gleichung der Extremalkurve

f b dx
y==J fa^b*'

wobei
t'PZdx

o / —J x

bedeute. Vielleicht hat gerade diese Verallgemeinerung Jakob die Spur in den

Gedankengang Johanns gewiesen, und er vermutet wohl mit Recht, daß Johann hier
wieder eine indirekte Methode versucht hat, die in speziellen Fällen zwar zum Ziele
führen kann, im allgemeinen aber versagt. Johann hat in seiner Antwort auf Jakobs
Wette über die drei Punkte sofort ein in der Eile begangenes Versehen zugegeben:
es müsse einfach b PZ gesetzt werden, so daß die Extremalkurve also, wenn man
b PZ setzt, die Gleichung

hat. Es führt nun in der Tat die von Jakob seinem Bruder insinuierte Überlegung
mit mechanischen Analogien zu diesem formalen Resultat, das ein Johann
Bernoulli in drei Minuten herausgefunden haben mag: Denkt man sich die Kurve BFN
mit einer Flüssigkeit von variablem spezifischem Gewicht gefüllt, so ist BFN dann

eine Extremalkurve, wenn der Schwerpunkt möglichst tief liegt. In der Ordinate
PF x soll nun das spezifische Gewicht der Flüssigkeit PZjx p{x)jx sein. Das

Gewicht eines vertikalen Fadens ist dann p dyjx und sein Moment in bezug auf BN ist

1 p dy 1
x i.... i —l x

— x -i—— — p dy,

und für die tiefste Lage des Schwerpunkts wird dann tatsächlich

~ fp-dy oder / p'(x) dy Fläche BZN

ein Maximum.
Diese Überlegung ist aber in dieser Form nicht zulässig; denn, wie Jakob bemerkt,

wird übersehen, daß mit der Variation der Kurve BFN auch das Gewicht der
Flüssigkeit variiert wird.
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An die Herausforderung Jakobs schloß sich ein hitziges Hin und Her zwischen den

beiden Brüdern an, bis den wissenschaftlichen Journalen dieser Streit schließlich so

verleidet war, daß die A.E. nur noch zum Abschluß die Lösung Jakobs publizierten,
sonst aber den beiden alle Zeitschriften für Polemiken geschlossen waren. Ein Jahr

JOHANN BERNOULLI

später gab Jakob in einem Sonderdruck unter dem Titel Analysis magni problematic

isoperimetrici (Basileae, 1701) eine detaillierte Untersuchung. Er war sich der Bedeutung

seiner Arbeit vollkommen bewußt. Mit feierlichen Worten, die den ehemaligen

Prediger verraten, schließt Jakob sein Werk ab, nachdem er es dem unvergleichlichen
mathematischen Viergespann der Leibniz, Nlwton, de l'Hôpital und Fatio gewidmet
hat. Wiederum benutzt Jakob das systematische Prinzip, daß auch das kleine Kurvenstück

FF3 die verlangte Eigenschaft der Extremalkurve habe. Er betrachtet nun vier
sukzessive Punkte F,FVF2,FS; es kann bei festgehaltenen Endpunkten aber nur dann
der Bogen F3FÎF1F so variiert werden, daß die Bogenlänge konstant bleibt, wenn man
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zwei Punkte verschiebt. Setzt man

Vi - y ys - y i ys - y\ -= h,
so folgt

(Sl - s)* (xt ~ xy -J h*; (s2 - Sl)t (#2 - %)2 + Äa; (s3 - s2)

und die Aufgabe ist, % und #2 so zu variieren, daß

- S X\

konstant bleibt. Aus dieser Bedingung leitet Jakob eine Differenzengleichung und dann
aus dieser durch Grenzübergang eine Differentialgleichung dritter Ordnung her, die ermühsam integriert und schließlich die Bedingungen für die Extremalkurve findet:

T-- j p(x)dx rFür dy=- \ J-f=-.- wird p(x)dy ein Maximum
]/ai~p(x)% J

-, r- et— t>(x) dx !'und für dy ~=r^==L=== wird / p(x) dy ein Minimum.]/Zap(x)-p{xf J

Johann hatte sich unterdessen um eine strenge Analyse des Problems bemüht und
diese am 1. Februar 1701 der Pariser Akademie durch seinen Freund Varignon in
einem versiegelten Paket übergeben lassen, welches erst nach der Publikation der
Jakobschen Lösung geöffnet werden sollte. Es wurde aber nicht sogleich nach dem
Erscheinen der Analysis magni problematis isoperimetrici, sondern, durch allerhand
mysteriöse Umstände verzögert, erst nach dem Tode Jakobs am 17 April 1706
Geöffnet; ö

Die Lösungsmethode Johanns führt nicht zum Ziel, so daß Jakob seinen Triumph
nicht mehr erlebte. Hatte Jakob schon bei seiner ersten Kritik höhnisch bemerkt,
daß Johann nur durch zwei sukzessive Fehlschlüsse', wo der nachfolgende gerade
den ersten wieder kompensiert, zum richtigen Resultat gelangt sei, so traf diese
Bemerkung erst recht bei der von Johann unterdessen nachträglich versuchten
strengen Analyse des Problems zu. Johann benutzt ebenfalls das Prinzip Jakobs.
Während dieser aber die Eckpunkte der betrachteten Approximationspolygone auf
Parallelen zur A'-Achse gleiten ließ und deshalb, um der isoperimetrischen Bedingung
zu genügen, Polygone von drei Seiten benutzen mußte, betrachtete Johann nur
drei sukzessive Punkte der variierten Kurve und verwandte also nur ein Zweiseit
von konstanter Länge, dessen variable Ecke sich auf einer Ellipse bewegt. Mit diesem
Zweiseit kann man aber prinzipiell nur zu Identitäten gelangen, und wenn Johann
trotzdem damit die Differentialgleichung der Extremalkurve herausrechnet, so
gelingt ihm dies nur, weil er in Kenntnis des Resultates zweckmäßige, aber ungerechtfertigte

Vernachlässigungen und Mitnahmen von infinitesimalen Variationen höherer
Ordnung vornahm. Johann hat später seinen Fehler eingestanden und in einer -besonders durch die Kritik von Brook Taylor provozierten - Abhandlung Retnar-
ques sur ce qu'on a donné jusqu'ici de solutions des -problèmes sur les Isoperimetres (Mém.
Acad. Sei. Paris, 1718) eine Lösung gegeben, die nicht nur streng, sondern — wieder
einmal - formal eleganter als die Jakobsche war. Die von Jakob kompliziert gewonnene

Differenzengleichung, welche auf eine Differentialgleichung dritter Ordnung
führt, formt Johann so um, daß er sofort im Limes zu einer Differentialgleichung
zweiter Ordnung gelangt, welche sogar in einer ähnlichen Form wie die Euler-Lagran-
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gesche Differentialgleichung für die Extremalkurve eines Variationsproblems

geschrieben werden kann.
Am Schluß dieser Abhandlung gibt Johann noch eine direkte Lösung des Problems

der Brachystochrone, welche nicht nur geometrisch interessant, sondern zugleich für

Variationsprobleme verallgemeinerungsfähig ist. Man braucht nur die Eigenschaft

der Zykloide zu kennen, daß die Abrollgerade des erzeugenden Kreises die

Krümmungsradien der Zykloide halbiert, um sofort die Kurve des schnellsten Falls

herzuleiten. Zeichnet man die Variationskurven zwischen A und B, so lautet die Auf-
' gäbe : Wo müssen M und m auf den

Krümmungsradien an AB in M und m liegen, damit

Mm und folglich auch AB in kürzester Zeit

durchfallen wird Wann ist mit anderen Worten

dt dsjv ein Minimum Es ist nun allgemein

v j/2-gxsina, und da ds (x + l) dx> ist, so

dt : — ¦

y 2gx s:ncc

Der Ausdruck (x + l)l\/x hat aber dann ein

Minimum, wenn x l ist. Es muß also der

Krümmungsradius OM in N resp. Ominn
halbiert werden; die Extremalkurve muß also eine Zykloide sein. Man kann dann leicht

synthetisch durch Vergleich mit den benachbarten Vergleichungskurven zeigen, daß

die Zykloidenkurve AMmB ein echtes Minimum darstellt.

Die Extremalkurve - im vorliegenden Falle die Zykloide - schneidet die beiden

benachbarten Geraden OM und Om orthogonal. Nimmt man nun allgemein statt der

Geraden eine Kurvenschar <p{x, y) ¦= A, so braucht man sie - wie Caratheodory in

seiner Dissertation (1904) «geometrisch» gezeigt hat - nur so zu wählen, daß längs

jeder Kurve <p const der Ausdruck fj{<px + y' <pv) konstant wird, damit das Integral

ff(x, y, y') dx ein Extrercum wird. Die Bedingung für / kann man dann leicht in die

Lagrangesche Differentialgleichung umwandeln:

df d / df \

dy dx \dy' )'

Johanns Gedanke enthält somit schon den Keim moderner Methoden der Variationsrechnung.

Überhaupt hat Johann durch eine Fülle von genialen und produktiv
verwertbaren Einzelerkenntnissen seine Unterlegenheit an logischer Denkkraft Jakob

gegenüber wieder wettgemacht. In diesen Zusammenhang gehört auch eine Entdek-

kung Johanns beim Variationsproblem der geodätischen Linie auf konvexen

Oberflächen: In einem Brief an Leibniz aus dem Jahre 1698 erkennt er die charakteristische

Eigenschaft der geodätischen Linien, daß drei ihrer konsekutiven Punkte eine*

Normalebene der Oberfläche bestimmen.

Der tiefschürfende Geist Jakobs hatte aber nicht nur zur Variationsrechnung,

sondern auch zur Statistik als einer neuen mathematischen Disziplin den Weg

gebahnt. Die Mathematiker des siebzehnten Jahrhunderts, vor allem Pascal und

Fermât, hatten die Kombinatorik zu einem neuen Zweig der Arithmetik entwickelt,
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der bezeichnenderweise erst in der Neuzeit erblühte, nachdem der kartesische Impuls
der Logik der Relationen die Denker erfaßt hatte. Im Anschluß an die Kombinatorik
entwickelten Fermât, Pascal und Hüygens die Prinzipien der Wahrscheinlichkeitsrechnung.

Jakob Bernoullis größte Entdeckung ist nun vielleicht sein Theorem

vom Gesetz der großen Zahlen, mit welchem er von der Wahrscheinlichkeitsbe-
stimmung « a priori» der Kombinatorik, also aus bekannten logischen Bedingungen,
zur Wahrscheinlichkeitsbestimmung «a posteriori» der Statistik, also aus bloßen
Erfahrungen bei Versuchsreihen, übergeht. Dieses Bernoullische Theorem steht in
der Ars conjectandi, welche erst acht Jahre nach Jakobs Tod als separates Buch, mit
einem Vorwort seines Neffen Niklaus I versehen, 1713 in Basel erschien. Wie'sich

1/,

Seite aus dem Tagebuch (Meditationes et annolationes) von Jakob Bernoulli. (Enthält den Schlußteil des
Beweises des Bernoullischen Theorems der Wahrscheinlichkeitsrechnung, vermutlich aus dem Jahre 1689).

(Basel U. B. Mskr. L Ia 3, Seite 191.)

aus den Manuskripten Jakobs ersehen läßt, lassen sich die wesentlichen Lehrsätze
dieses Buches aber schon vor 1690 nachweisen, so daß die Grundlagen der Statistik
von Jakob bezeichnenderweise gerade in der logischen und kombinatorischen Phase
seiner mathematischen Entwicklung gefunden wurden.

Jakob beginnt sein Werk mit den klassischen Problemen des Glücksspiels, an
denen seine Vorgänger die Prinzipien der Wahrscheinlichkeitsrechnung deduziert
hatten. Der erste der vier Teile des Buches bringt die Abhandlung von Huygens
De ratiociniis in ludo aleae mit Anmerkungen Jakobs versehen als Wiederabdruck,

welcher aber die an speziellen Zahlenbeispielen entwickelten Formeln von
Huygens in allgemeiner Buchstabenform gibt. Im zweiten Teil werden die
allgemeinen Formeln der Kombinatorik abgeleitet, um sie im dritten Teil auf die
allgemeinen Probleme der kombinatorischen Wahrscheinlichkeitsrechnung anzuwenden.
Allein durch die systematische Entwicklung der Formelsprache der Kombinatorik
stellt damit das Werk schon einen wichtigen Beitrag zur Arithmetik dar. Der Übergang

zur Statistik wird nun im vierten Teil vollzogen. Es ist durchaus möglich, daß
nur der frühzeitige Tod Jakob verhindert hat, auch auf die Schlußfolgerungen
einzugehen, die man aus den Erfahrungstatsachen einer Versuchsreihe ziehen kann,
denn die Betrachtungen dieses Teils scheinen darauf abzuzielen, nur Vorbereitungen
zu dieser Lehre von den statistischen Schlußfolgerungen zu geben. Das Werk gipfelt
und schließt mit seinem berühmten Theorem, das man in Umkehrung folgendermaßen

schreiben kann : «Sind p und q die gewöhnlichen a-priori-Wahrscheinlichkeiten
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zweier entgegengesetzter Ereignisse AunàB(p + q^ I), so ist die Wahrscheinlich-

klt dafür daß das Ereignis A in einer sehr großen Zahl von Versuchen in einer

zwischen fi j> + l und F p - X liegenden Anzahl m von Malen eintntt:

^L ff
Anders gesagt: W ist die Wahrscheinlichkeit dafür, daß die Abweichung des

Quotienten S; vom Erwartungswert *, nämlich M,)^, -ischen ^ und A/,

enthalten st Für u -> oo geht diese Wahrscheinlichkeit W in Ems über.

Jakoh£ zwar L Formel für £ nicht explizite hingeschrieben, sie kann aber aus

seinem Beweis sofort herausgeholt werden. Diesen Summenausdruck ™xzmm

sowohl de Moivre als Laplace zum Ausgangspunkt genommen und durch entsprechende

analytische Transformationen in die Form des Wahrschemhchkeitsmtegrals

mitJ
gebracht, welches heute als das Fehlerintegral der Gaußschen Glockenkurve der

Statistik zugrunde liegt.

3. Johann als Nachfolger von Jakob Bernoulli

Jakob Bernoulli starb gerade in dem Moment, als sich Johann, dem Drängen

de Schwiegervaters folgend, mit seiner Familie nach ^\h^\%^^_
ungern von Holland; als ihm noch während der Heimreise eine vorteilhafte

mathematische Professur in Utrecht angeboten wurde, schwankte er, ob er sie annehmen

Toüe oder nicht. Bei seiner Ankunft in Basel erhielt er aber den Besuch des gesamten

akademischen Senats, der ihn bat, den durch den Tod Jakobs freigewordenen Lehrstuhl

für Mathematik zu übernehmen. Am 17. November trat Johann die

Nachfolgeschaft des Bruders an. Kein geeigneterer Verwalter und Förderer des Jakobschen

Erbes als Tohann konnte gefunden werden! Nachdem der mehr introvertierte Jakob

dre Grundlagen der Infinitesimalrechnung geschaffen hatte, brachte der mehr

extravertierte Johann durch den Glanz seines Namens und seine literarische Fruchtbarkeit

den neuen Kalkül in der wissenschaftlichen Welt zur Geltung. ^Lexdeoschaft,
mit der er sich dieser Aufgabe widmete, mußte ihn geradezu notwendig in die Rolle

des Praeceptor mathematicus Europae hineindrängen.

Quantitativ nehmen die Abhandlungen Johanns während semer Basler Professur,

die er bis zu seinem Tode 1748 inne hatte, fast Dreiviertel des ¦Gesamtwerte,; en.

Wenn man den Maßstab des reinen Mathematikers an diese Abhandlungen legt so

bleiben sie qualitativ wohl etwas gegenüber den Arbeiten aus der Jugend- und Gro-

ninger Zeit zurück. Denn es sind vornehmlich Probleme der angewandten Mathematik

s^Sl der Mechanik, denen er sich seit etwa 1710 widmete. Für die Geschichte de

Mechanik sind seine Arbeiten aber nicht hoch genug anzuschlag en In d*mehr

«pädagogisch» gerichteten Basler Zeit begann er, allmählich sich mit der Arbeitsichtung

seines Freundes und langjährigen Korrespondenten Varignon zu be-
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rühren. Der Pariser Akademiker hatte angefangen, die Ableitungen in den Principia
mathematica philosophiae naturatis von Newton in die Sprache der neuen Analysis
zu übersetzen und sich infolgedessen mit der analytischen Theorie der Zentralkräfte
eingehend beschäftigt. Johann, durch die häufigen Anfragen Varignons über den
Verlauf dieser Untersuchungen unterrichtet, begann schließlich selber, sich in diese
Theorie zu vertiefen und fand bald eine Reihe von Versehen in Newtons Principia,
der Bibel der neuen Physik.

Newton hatte in seinem Theorem XI/XIII, Liber I, Sect. Ill, nur bewiesen, daß aus
den Keplerschen Gesetzen und der Huygensschen Formel für die Zentralkraft notwendig

das Gravitationsgesetz m1m2/r3 folgt. Johann bemerkte dagegen, daß die Umkehrung
dieses Satzes, daß aus dem Zentralkraftgesetz tp(r) l/r2 nur Kegelschnitte als

Bahnkurven folgen, eines besonderen Beweises bedürftig sei. Deshalb leitet Johann in
der Arbeit Extrait de la Réponse de Mr. Bernoulli à Mr. Herman (Mém. Acad. Sei. Paris
1710) aus dem Kraftgesetz mit Hilfe des Flächensatzes

r2 de x dy - y dx 2 dp cdt
und des Energieintegrals

/ dx \2 / dy \2 /"
tar) + tar) --2j

das Integral

für die gesuchte Bahnkurve her, wie es seither in den Lehrbüchern der analytischen
Mechanik üblich geworden ist.

Johann bleibt aber hierbei nicht stehen, sondern untersucht auch die
Zentralbewegung im widerstehenden Mittel, welcher Newton ein ganzes Buch (Liber II)
seines unsterblichen Werkes gewidmet hatte. Hier wird wegen der analytischen
Schwierigkeiten das sogenannte inverse Zentralkraftproblem untersucht, nämlich aus
der Form der vorgegebenen Bahnkurve r(&) das zugehörende Gesetz der wirkenden
Zentralkraft zu finden, wenn die Bewegung in einem Medium mit dem Widerstandsgesetz

R ± avn stattfindet. Bedeutet v die Geschwindigkeit, q den Krümmungsradius
der Bahnkurve, so leitet Bernoulli in der Arbeit Les forces centrales dans des

milieux resistans (Mém. Acad. Sei. Paris, 1711) für die Bewegung die Differentialgleichung

1 dv ds „ dv

j- — -iw^avds + i °

her, welche er mit seiner oben (S. 10) erwähnten Methode löst, indem er die gesuchte
Geschwindigkeit mit dem Ansatz v M{v) N(r) bestimmt und damit aus

ds

das Zentralkraftgesetz findet. Bei dieser Zentralkraftbewegung im widerstehenden
Mittel findet nun Johann eine Menge von einzelnen Versehen Newtons heraus, die

.er später mit Stolz im ersten Band seiner Opera zusammengestellt hat. In dem
Excerptum ex celeberrimi Newtoni philosophiae naturalis principia mathematica Libro
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// sect II vergleicht er die erste mit der letzten Auflage des Werkes, in welcher

Newton seine Fehler nach der Bernoullischen Kritik verbessert hat. Newton war

dabei ein Versehen unterlaufen, welches in der Folge beim Prioritätsstreit mit Leibniz

eine große Rolle spielen sollte: In der Reihenentwicklung von d\/r2 - x* hatte er die

Reihenglieder als die sukzessiven höheren Ableitungen betrachtet und damit den

Koeffizientenfehler begangen, daß er allgemein

ÎÏPz3h -JtzZ+K z»-« dz?

als das «-te Differential Ä»2* ansah. Waren diese Fehler Newtons allerdings nicht von

prinzipieller Natur, sondern bloße Versehen, so erwarb sich der Basler Mathematiker

mit seiner «tifteligen» Kritik der Einzelheiten vielleicht die Sympathie der Leibm-

zianer keinesfalls aber die Gunst der Newtonianer, die auf das Werk ihres Meisters

wie auf eine Bibel schworen. Besonders fatal war, daß Johann recht hatte und

Newton sich zu zahlreichen Verbesserungen genötigt sah, und daß erst das wachsame

Auge Johanns das unsterbliche Werk von allen mathematischen Makeln

gesäubert hatte.
Um dieselbe Zeit, als Jakobs Lehrbuch der Wahrscheinlichkeitsrechnung kaum

erschienen war, überraschte Johann das Publikum mit einem separaten Buch - auch

bei ihm das einzige - : Essai d'une nouvelle théorie de la Manœuvre des vaisseaux (1714,

Basle, J. G. König). Das Buch stellte eine Kritik der Theorie der Schiffsbewegung des

berühmten französischen Marineoffiziers Renau d'Elisagaray von 1679 dar. Hatte

schon Huygens seinerzeit dieses Werk kritisiert, so blieb Johann nicht bei einer

bloßen Kritik stehen, sondern gab seinerseits eine neue Theorie der vom Wind getriebenen

Segelschiffe. Johann wird wohl in Holland zu derartigen Fragestellungen

angeregt worden sein, da es sonst kaum zu erklären ist, daß ausgerechnet ein Schweizer

Mathematiker auf nautische Probleme verfällt. Die Kritik an Renau gab Gelegenheit,

den falschen Kraftbegriff der Kartesianer zu rügen und deren fortwährende

Verwechslung von Kraft und Energie an den Pranger zu stellen. Eine der zahlreichen

Rückfragen Renaus, die dieser durch seinen Freund Varignon an Johann gelangen

ließ war die Veranlaßung, daß Bernoulli in einem Brief vom 26. Februar 1715 an

Varignon das Gesetz der virtuellen Geschwindigkeiten formulierte: «En tout équilibre

des forces quelconques en quelque manière, qu'elles soyent appliquées et suivant

quelques directions, qu'elles agissent les unes sur les autres ou mediatement ou

immédiatement la somme des energies affirmatives sera égale à la somme des energies

negatives prises affirmativement», was man heute kurz in der Formel schreibt:

i-i
Johann hatte schon in diesem Buch ständig vom Leibnizschen Begriff der lebendigen

Kraft «!)2/2 Gebrauch gemacht. Er ist der erste, der die Bedeutung des

Lehrsatzes von der Konstanz der Energie in einem (konservativen) mechanischen System

U + (w»2/2) const erfaßt und den Terminus «Energie» im mathematisch-physikalischen

Sinn gebraucht. Weil aber das Prinzip der virtuellen Geschwindigkeiten aus

dem Energieprinzip ableitbar ist, erscheint es Johann Bernoulli als ein allgemeines

Prinzip der Mechanik, das er selber zwar meist nur auf statische Probleme anwendet.
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D'A"MBER^ s+ollt1e sPäAter den konsequenten Übergang zur Dynamik vollriehen
Knäf? ^ T ^^A Bernoullis «r das Gleichgewicht zw1SChenKräften in jedem Augenblick umschreibt in

i—i v "'
wobei

als «verlorene Kraft» (nicht in Bewegung umgesetzte Kraft) bezeichnet wird Damitkann das Bernoullische Prinzip auch für die Dynamik allgemein formuliert werdenSrÄ^^^ BCWegUng it d itll Ab ï
Es war unvermeidlich, daß der in den Leibnizschen Ideen heimische Basler

Mathematiker, der zudem noch Mängel in Newtons Hauptwerk entdeckt hatte in den
Prioritätsstreit um die Erfindung des Infinitesimalkalküls zwischen Newton und Leibniz
hineingezogen wurde. Da dieser Streit an anderer Stelle ausführlich geschildert werden
soll, mögen hier nur kurz die Abhandlungen Johanns erwähnt werden, die ihren
Ursprung dem Wettstreit der Newtonianer und Leibnizianer verdanken Um die
Leistungsfähigkeit des Fluxionskalküls von Newton und die der Differentialrechnung
von Leibniz zu erproben, stellten sich die beiden Parteien gegenseitig Aufgaben die
sie fur besonders schwierig hielten. Leibniz hatte mit dem Trajektorienproblem
begonnen; Johann erweiterte es später auch auf nichtorthogonale Trajektorien (A E
1/18). Das von Newtons getreuem «Kettenhund», dem schottischen Kämpen Keillgestellte Problem der ballistischen Kurve löste Johann für das allgemeine Wider'
Standsgesetz R av« (A. E. 1719), nachdem Newton in den Prindpia es nur für den
einfachsten Fall n 1 bewältigen konnte.

Nach dem Tode Leibnizens (1716) und Newtons (1727) war Johann der größteMathematiker seiner Zeit. Auch Brook Taylor, der noch am ehesten dem BaslerMathematiker Pari bieten konnte, war 1731 gestorben. Da nun einerseits die englischeMathematik infolge des Prioritätsstreites, sich auf den unpraktischen Fluxionskalkül
versteifend über ein Jahrhundert lang in völlige Stagnation geriet, die französische
Mathematik andererseits erst nach dem Siege der Newtonschen Physik über die
sterile Routine des Spätkartesianismus um 1750 wieder zur vollen Blüte erwachte
konnte J ohann, selbst mit nur gelegentlichen Abhandlungen die gelehrten Zeitschriften
füllend und auf den Lorbeeren ausruhend, leicht seine führende Stellung behauptenIrotzdem blieben auch ihm Enttäuschungen nicht erspart. Mit seinem Discours surLes lois de la communication du mouvement gewann er nicht den Preis der Pariser Akademie da er der Leibnizschen Dynamik huldigte, welche bei dem Unverständnis derradikalen Kartesianer in Paris verpönt war. Dagegen gewann er mit den beiden
Abhandlungen Sur le système de M. Descartes und der Nouvelle Physique céleste die Preise
der Akademie von 1730 und 1734; in beiden Arbeiten versucht er qualitativ durch
eine zweckmäßige Modifikation der kartesischen Wirbeltheorie, die Neigungen der
Planetenbahnen gegen die Ekliptik, die Bahnen und die Knotenbewegungen zu
erklaren. In den letzten fünfzehn Jahren seines Lebens hat sich Johann nur noch gele-
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gentlich mit reiner Mathematik befaßt. Der vierte Band seiner Opera enthält fast
ausschließlich Abhandlungen über Mechanik, speziell der Hydraulik.

Sorgte er durch diese Arbeiten dafür, daß sein Name in den Zeitschriften nicht

vergessen wurde, so war er aber schon zu Lebzeiten, mit dem Lorbeerkranz des Ruhmes

geschmückt, nicht nur mit väterlicher Würde, sondern zeitweilig auch mit patriarchalischem

Despotismus, einer ganzen Generation von Mathematikern, die er teilweise

aus seinen eigenen Söhnen rekrutierte, der gefeiertste Lehrer der mathematischen

Welt. Sein größter Triumph wohl war, daß er einen noch Größeren zum Schüler

hatte: Den Genius Eulers, der das von den Pionieren eroberte Neuland der

Infinitesimalrechnung zu üppiger Pracht kolonisieren sollte, ohne freilich die Giftpflanzen
darinnen zu erkennen, die erst die kritische Sonde der Analytiker des neunzehnten

Jahrhunderts zutage förderte.
J. O. Fleckenstein, Basel

ZEITTAFEL

1654 27. Dezember (A. St.) Jakob I Ber¬
noulli zu Basel geboren.

1667 27. Juli (A. St.) Johann I Bernoulli
zu Basel geboren.

.1.676 Jakob schließt sein theologisches Stu¬

dium in Basel ab und wird unter die
Kandidaten des Basler Kirchenministeriums

aufgenommen.

1676-80 Auslandsreisen Jakobs nach Genf
und Frankreich, wo er u.a. 1678 Hauslehrer

auf dem Schloß Nède (Limousin)
des Marquis de Lestanges war.

1680 Jakobs Rückkehr nach Basel. Posi¬

tionsbestimmung des Kirchschen
Kometen.

1681-82 Zweite Auslandsreise Jakobs nach
Holland und England, wo er mit
Mathematikern wie Hudde und dem Astronomen

Flamsteed bekanntwird. Conamen
novi systematic Cometarum (Amsteloda-
mi).

1683 Jakobs Dissertatio de gravitate Aelheris.

1687 Jakob wird Nachfolger Megerlins auf
dem mathematischen Lehrstuhl in
Basel. Brief an Leibniz mit der Bitte
um Aufklärung über dessen Differentialrechnung

in den Ada Eruditorum von
1684.

1690 Erste Publikation von Johann De effet-
vescentia et fermentatione.

1690 Jakob löst das Problem der Isochrone
mittels Infinitesimalkalkül und publiziert

damit nach Leibnizens Arbeiten
von 1684 und 1686 als erster über dessen

neue Methode.

1690-92 Johanns Aufenthalt in Genf und
Paris.

1691-96 Ausbau des Leibnizschen Kalküls
durch die Brüder Bernoulli. Probleme
der Kettenlinie, Segelkurve, elastische
Kurve, Loxodrome, Spiralen, Zykloiden,
Kaustiken und Evoluten.

1693 Beginn der Korrespondenz Johanns
mit Leibniz.

1694 Johanns Doktordissertation De motu
musculorum.

1695 Johann erhält durch Huygens Ver¬

mittlung die mathematische Professur
in Groningen.

1697 Problem der Brachystoehrone. Beginn
des Streites der Brüder Bernoulli um
das isoperimetrische Problem.

1699 Jakob und Johann zu auswärtigen
Mitgliedern der Pariser Akademie
ernannt, deren Zahl auf acht beschränkt
war.

1701 Analysis magni problematic isoperime-
trici von Jakob.

1705 16. August Tod von Jakob.
1706 Publikation der vermeintlichen Lösung

des isoperimetrischen Problems von
Johann in den Mémoires der Pariser
Akademie.

1710-11 Analytische Theorie der Zentral¬
kräfte von Johann und Kritik der
synthetischen Theorie derselben in Newtons

Prinzipien.
1713 Leibniz zieht durch ein Flugblatt Jo¬

hann in den i Prioritätsstreit mit Newton

hinein. Jakobs Ars conjectandi
erscheint postum.



24 J.O. Fleckenstein: Johann und Jakob Bernoulli

1715 Prinzip der virtuellen Geschwindigkei¬
ten von Johann analytisch formuliert.

1715-25 Wettstreit Johanns mit den eng¬
lischen Mathematikern, insbesondere-
Ta\lor, um die Integration von
Differentialgleichungen beim Trajektorien-
und ballistischen Problem im Anschluß
an den Prioritätsstreit zwischen dem
Leibnizschen Differential- und dem
Newtonschen Fluxionskalkül.

1730 Preis der Pariser Akademie für Jo¬
hanns Arbeit Système de Descartes et la
manière d'en déduire les orbites et les
aphélies des planètes.

1734 Johann gewinnt zusammen mit seinem
Sohn Daniel den Preis der Pariser

Akademie mit dem Essai d'une nouvelle-
physique céleste, servant à expliquer les
principaux phénomènes du ciel, et en
particulier la cause physique de l'inclinaison

des orbites des planètes par raport
au plan de l'équateur du soleil.

1742 Opera Johannis Bernoullii in 4 Bänden
(Genf, Bousquet).

1744 Opera Jacobi Bernoullii in 2 Bänden
(Genf, Bousquet).

1745 Commercium philosophicum et mathema-
ticum G. Leibnitii et Joh. Bernoullii
(Genf, Bousquet).

1748 1. Januar, Tod von Johann.

Die beiden Porlraitabbüdungen sind Reproduktionen von Ölgemälden aus der alten Aula der
Universität Basel. Das Bildnis Jakobs (Original) wurde vom Bruder Nicolaus (wahrscheinlich 1687)gemalt, das Johanns (Kopie) stammt von J. R. Huber (1740).

STAMMTAFEL DER MATHEMATIKER BERNOULLI

Nicolaus, Ratsherr in Basel
1623-1708

Jakob I, Prof. in Basel
1654-1705

/Nicolaus, Maler\
\ 1687-1769 J

Nicolaus II, Prof. in
Bern und an der

Akademie zu Petersburg
1695-1726

Johann III, Direktor
der Berliner Sternwarte,
Mitglied der Akademie in

Berlin
1744-1807

/Nicolaus, Maler \
l 1662-1716

Nicolaus I, Prof.
in Padua und Basel

1687-1759

Daniel I, Prof. in Basel
und an der Akademie in

Petersburg
1700-1784

Daniel II, Assistent des
Onkels Daniel I und

kurze Zeit Prof. in Basel
1757-1834

Christoph, Prof. in
Halle und Basel

1782- 1863

Johann I, Prof. in
Groningen und Basel

1667-1748

Johann II, Prof.
in Basel

1710-1790

Jakob II, Mitglied
der Akademie in Peters¬

burg
1759-1789
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