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2 J O. FurckeNstEIN: Johann und Jakob Bernoull

EINLEITUNG

Kein Geringerer als ErNsT MacH hat in seiner klassischen Geschichte dev Mechanih
bemerkt, daB3 sich in den beiden Briidern BernouLLI die beiden Seiten des wissen-
schaftlichen Talentes, namlich die kritische Tiefe und die schdpferische Phantasie,
verschieden verteilt vorfinden, welche, wenn in ungewdhnlicher Stirke in einem einzigen
Haupte vereinigt, die groBen Genien der exakten Wissenschaften, wie NewTton und
GariLer, hervorbringen. Mit dieser treffenden psychologischen Bemerkung MacHs soll
nun nicht nur die gleichzeitige Behandlung zweier Mathematiker in einer gemeinsamen
Biographie gerechtfertigt, sondern zugleich auch die historische Bedeutung der beiden
Briider BrerNouLLl angetdnt werden. Sie reicht in der Tat fast an die der epoche-
machenden Taten der Klassiker der mathematischen Wissenschaften heran, wenn man
die Leistungen der beiden Briider zusammennimmt. Diese aber miissen zusammenge-
nommen werden, weil die historische Leistung der beiden BErNoULLI, der mathematische
Ausbau des von LEisNniz entdeckten Infinitesimalkalkiils, ein gemeinsames Werk war.

Die Kenntnis des Geheimnisses der Leibnizschen Analysis des Unendlichen, welche
sich Jaxos und JouANN BerNouULLI Schritt fiir Schritt eroberten, gab den beiden
Briidern schon zu ihren Lebzeiten einen mit einem Nimbus umgebenen Namen, den
noch zwei spitere Generationen in Ehren halten sollten. Das Phinomen der Mathema-
tikerdynastie der BERNOULLI, welches sich am ehesten mit der Musikerdynastie der Bacn
vergleichen 1dBt, wuchs jedoch nur infolge des « Familiengeheimnisses» des Leibnizschen
Infinitesimalkalkiils zu der bekannten kulturgeschichtlichen Bedeutung heran. Denn
das Phinomen einer Familiendynastie ist in der Geschichte der exakten Wissenschaften
an sich nicht so ungewdhnlich; es geniigt, an die Familien der CassiNi, STRUVE und
GREGORY zu erinnern.

Dieses mathematische « Familiengewerbe » hat aber zugleich der Stadt Basel einen un-
vergdnglichen Ruhm gesichert. In der ersten Hilfte des achtzehnten Jahrhunderts
spielte der Kreis der Basler Mathematiker, zu denen auBer den BERNOULLI Jagos HEr-
MANN und LEONHARD EULER gehérten, eine noch groBere Rolle als ehedem der Floren-
tiner Kreis der Mathematiker um GavriLel oder der Pariser Kreis der kartesianischen
Akademiker im siebzehnten Jahrhundert. Ja, die Infinitesimalverfahren dieser Mathe-
matiker des siebzehnten Jahrhunderts erscheinen nur als ein Vorspiel zu dem groBen
Konzert, welches der Basler Kreis der BErRNoULLI und EULER mit dem Instrument des
Leibnizschen Kalkiils spielen sollte. Der Genius EULERS ist ohne die BERNOULLT nicht
denkbar: JomanN BERNOULLI hatte ihm als sein Lehrer schon den bis ins Detail ent-
wickelten Infinitesimalkalkiil iibermittelt, welchen EULER in seiner ungeheuren Pro-
duktionskraft auf eine Unzahl von Einzelproblemen der Mathematik, Physik und Tech-
nik anwenden sollte. Der Keim vieler Ideen EULERS liegt in den Bernoullischen Arbeiten.
Stellt die Entdeckung des Kalkiils durch Leieniz ideengeschichtlich den Abschluf3 der
Mathematik des siebzehnten Jahrhunderts dar, so leiten die Briider BerNouLLT durch
ihre Pioniertitigkeit der ersten Ausarbeitung dieses Kalkiils zum achtzehnten Jahr-
hundert iiber. Und indem sie den Kalkiil aus dem Leibnizschen Gewand einer barocken
Metaphysik herauslésten — deren Bedeutung noch am ehesten von allen Mathematikern
Jaxos BERNOULLT ahnte — priparierten sie ihn zugleich zu dem Werkzeug des spiteren
Jahrhunderts der Mechanistik.
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Vor diesem ideengeschichtlichen Hintergrund standen die beiden BERNOULLI ein-
deutig auf der Seite LeiBNizENS gegen den Newtonianismus der englischen Mathema-
tiker; eine Stellungnahme, welche tibrigens sogar noch bei EULER ihre Spuren hinter-
lassen hat. Da sie aber keineswegs imstande waren, den philesophischen Hintergrund
der Mathematik LEIBN1ZENS zu erfassen, muBten sie automatisch in das Fahrwasser des
franzdsischen Spatkartesianismus geraten, als dessen bedeutendste mathematische Re-
prasentanten sie iibrigens von der Pariser Akademie selbst empfunden wurden. Unter
threr Hand wurden die Leibnizschen Infinitesimalia wiederum unter das kartesische
Joch des « Geometrismus des Extensiven» gezwungen und damit zu aktual-unendlich-
kleinen GroBen deklariert. Die sich damit allerdings einstellenden logischen Schwierig-
keiten wurden durch die praktischen Ergebnisse des zwar widerspruchsvollen, aber wie
ein Zauberstab immer zu richtigen und auf anderen Wegen nicht zu erreichenden Resul-
taten fithrenden Kalkiils verdeckt. Fiihrten diese logischen Schwierigkeiten die BeEr-
NOuLLy und vor allem ihre franzésischen Adepten in Frankreich zwar in leidige Diskus-
sionen mit kartesischen Zeloten der Akademie, so darf doch nicht iibersehen werden,
daB es sich dabei freilich nur um einen Hausstreit zwischen dem orthodoxen und dem
Spdtkartesianismus handelte, welcher in den BeErRNoULLT willkommene Mitstreiter er-
blickte. Es ist hervorzuheben, daf8 es nur Mathematiker aus dem Kreise um MarLz-
BRANCHE waren, dessen Philosophie sich noch am ehesten den Leibnizschen Ideen
6ffnen konnte, welche wie VarioNoN und pe L’HOPITAL sich fiir den neuen Kalkiil
interessierten, wahrend die reprisentativen Mathematiker der ersten Akademie (1666
bis 1699), die pr 1A Hire, RoLLE, GALLOYS S. J., sich ablehnend, ja sogar feindlich
gegeniiber dem « Kalkiil der Auslinder» verhielten. Durch das « Einfallstor» MALEBRAN-~
CHE wurde von den BERNOULLI das trojanische Pferd der Leibnizschen Mathematik
in die Akademie des franzésischen Spitkartesianismus gebracht. Diese gleiche Aka-
demie sollte aber spiter nach Abkehr von der kartesischen Naturphilosophie durch die
Anwendung der formalen Prinzipien des Leibnizschen Kalkiils auf den neuen Inhalt der
Newtonschen Dynamik den Siegeszug der franzosischen Mathematik in der zweiten
Halfte des achtzehnten Jahrhunderts begriinden, wihrend die englische Mathematik in
ihrer Versteifung auf den Newtonschen Fluxionskalkiil bis ins neunzehnte Jahrhundert
hinein stagnierte. Zu diesem Erfolge der Pariser Akademie hatten die BERNOULLI ent-
scheidend beigetragen, weshalb sie auch — viel mehr als EULER — von ihr als die « Thren »
empfunden wurden. Gleicht der Genius LEIBNIZENS einem abenteuerlichen Seemann,
der durch die gefihrlichen Wogen und Stiirme der philosophischen Spekulation steuernd
mit divinatorischer Sicherheit sein Schiff zur Landung in dem erahnten Neuland bringt,
so gleicht das Talent der beiden BErNouULLI der wagemutigen Pionierarbeit der ersten
Eroberer des unerforschten Festlandes nach der geglickten Landung; jenes Land der
Infinitesimalrechnung, das spdter in umfassender Weise von EvLER kolonisiert werden
sollte. Diese Pionierarbeit der BErRNOULLI muB aber auf den Hintergrund des Spitkar-
tesianismus abgebildet werden, um zu einer gerechten Wiirdigung ihrer Leistungen zu
gelangen, deren Betrachtung die vorliegende Biographie gewidmet ist.

1. Die Eroberung des Leibnizschen Kalkiils
durch Jakob und Johann Bernoulli

Als LE1BN1Z 1684 in der von ihm mitbegriindeten ersten deutschen wissenschaft-
lichen Zeitschrift, den Leipziger Acta Eruditorum (im folgenden A.E. abgekiirzt),
unter dem Titel Nova methodus pro maximis et minimis (A. E., Oktober 1684) seinen
Differentialkalkiil veroéffentlichte, wurde er von niemandem verstanden, zumal seine
Abhandlung durch sinnstérende Druckfehler entstellt und — vielleicht absichtlich —
schr unklar gehalten war. Einem allerdings gelang es, nach jahrelangem Durchdenken
des Problems, den Sinn zu erfassen, und dieser eine war kein anderer als JAKOB
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BernouLLI, dessen mathematisches Talent sich schon frith geregt, aber gegen mannig-
fache Widerstinde durchzusetzen hatte. Auf den ausdriicklichen Wunsch des Vaters
hatte er Theologie studiert, sich im geheimen aber dem Studium der Mathematik ge-
widmet, das sich freilich bei dem Fehlen des htheren mathematischen Unterrichtes
in Basel nur auf die Elementarmathematik der Antike erstrecken konnte. Erst bei
seiner zweiten Auslandsreise nach Holland und England lernte er die moderne
kartesische Geometrie und die Infinitesimalverfahren des siebzehnten Jahrhunderts
kennen. In Amsterdam erschienen dann 1682/83 seine ersten Hauptschriften Conamen
adovnandt novi systematis cometayum und die Dissertatio de gravitate aetheris. In der
ersten Schrift, welche {ibrigens schon in einem provisorischen deutschen Entwurf
1681 zu Basel erschienen war, riickt er vor allem dem astrologischen Aberglauben zu
Leibe, indem er die Kometen als regulidre Mitglieder des Planetensystems erklirt,
deren Bahn genau so wie die der Planeten zu berechnen sei. Allerdings verfillt Jakon
hierbel auf die merkwiirdige, aber geometrisch in sich widerspruchsfrei durchzufih-
rende Hypothese, dal3 die Kometen Satelliten eines weit auBerhalb der Saturnbahn
liegenden Planeten mit Kreisbahnen seien. Es ist immerhin bemerkenswert, daB aus
Griinden geometrischer Konstruktion Jaxos —und zwar als Theologe — zur Hypothese
eines transsaturnischen Planeten greift, obwohl noch der Basler Syllabus Controver-
starum von 1662 das kopernikanische Weltsystem verdammt hatte. In der Disser-
tation {iber die «Schwere des Athers» leitet er als fiberzeugter Kartesianer die Schwere -
aus dem RiickstoB einer feinen elastischen Fliissigkeit, des Athers ab. Die kartesische
Theorie modifizierend, erklirt er auch die Festigkeit der Korper aus diesem Ather-
druck, indem nach seiner Hypothese die Kérper um so fester sind, je mehr Poren sie
haben, in welche der Ather eindringen und dem #uBeren Druck entgegenzuwirken
vermag.

Nach seiner Riickkehr ins Vaterland faBte Jaxos den definitiven EntschluB, sich
ausschlieBlich der Mathematik zu widmen. Er lehnte deshalb eine ihm angebotene
Predigerstelle in Strallburg ab und eréffnete in Basel statt dessen Vorlesungen iiber
Experimentalphysik. Unterdessen trieb er private Studien iiber die moderne Mathe-
matik, welche seit DESCARTES eine besondere Entwicklung genommen und in LEIB-
NIZENS Arbeit von 1684 einen Hohepunkt erklommen hatte. LEiBNiz hatte seinen
Infinitesimalkalkiil durch eine eigentiimliche, in den metaphysischen Tiefen seiner
Philosophie verankerte Form der Logik gefunden, welche die Relationslogik des
DEscARTES in einer Richtung konsequent weiterfithrt, indem sie den Primat der logi-
schen Relationen vor den Subjekten, zwischen denen diese bestehen, postuliert. Es
ist nun bemerkenswert, daf sich bei JaxoB BERNOULLI ein dhnlicher geistiger Ent-
wicklungsproze8, wenn auch nur in abgeschwichter Form, vollzieht. Neben einigen
physikalischen Arbeiten {iber BoreLLIS Taucheratmung, Dichtebestimmung der Luft,
Diskussionen iiber HUYGENS' Schwingungszentrum, Papinsches Perpetuum mobile
u. a. fiillen die Mehrzahl seiner Studien bis 1686 formallogische Abhandlungen aus:
Centuwm positionum philosophicarum (1684), Parallelismus ratiocinii logici et algebraici
(1685), Theses logicae (1686), Methodus ratiocinands (1686). Und wihrend bei LEIBNIZ
die mathematischen Probleme nur Spezialfille einer Universallogik darstellen, so sind
in diesen logischen Schriften JAKoBS kleine mathematische Einzelprobleme versteckt,
welche die Entwicklung des Mathematikers charakterisieren. Dann kommen wie bei
LeiBniz vor der Entdeckung des Kalkiils Abhandlungen iiber unendliche Reihen,
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zuerst die Positiones arithmeticae de seviebus infinitis. Dieser Arbeit ist ein Epigramm
vorangesetzt, das noch an die barocke Gedankenwelt LEIBNIZENS anklingt:

Ut non finitam seriem finita coercet

summula, & in nullo limite limes adest:

Sic modico immensi vestigia Numinis haerent
corpore, & in angusto limite limes abest,

Cernere in immenso parvum, dic, quanta voluptas!
In parvo immensum cernere, quanta, Deum/!

Von dieser Abhandlung erschienen noch vier Fortsetzungen (1692, 1695, 1698,
1704), welche wohl nur deshalb zeitlich so weit auseinanderliegen, weil sie Jakos
BeErNOULLL als Thesen fiir seine Doktoranden verwenden wollte. Die Respondenten
der dritten und fiinften Disputation waren die nachmals beriihmten Mathematiker
JAKOB HERMANN und Nicoraus I BerNouLLl. Von allen fiini Abhandlungen ist
die erste die wichtigste. Sie enthilt den Divergenzbeweis fiir die harmonische Reihe,
den tibrigens, wie JAKOR mitteilt, JoHANN zuerst gefunden hat. Ferner steht hier die
beriihmte Bernoullische Ungleichung

14+a)=1+mna, (n=1,2,3 ...;a =0

welche JAroB beim Vergleich von geometrischen mit arithmetischen Reihen findet.
Die Rechnungen vollziehen sich zumeist mit und an divergenten Reihen, so daB in
diesen Arbeiten unzuldssige Operationen vorgenommen werden. An den entscheiden-
den Stellen aber findet der mathematische Instinkt JAKOBS stets das Richtige. 1687
hatte JaxoB als Nachfolger MEGERLINS die mathematische Professur in Basel erhal-
ten, worauf er sich sofort in einem Schreiben an LE1BN1Z wandte und ihn um nihere
Auskunft {iber dessen schwerverstindliche Abhandlung von 1684 bat. Da LriNIz
wieder einmal auf einer seiner zahlreichen politischen Reisen war, wurde der Brief
erst nach der Riickkehr nach Hannover am 24. September 1690 beantwortet, und
JAKOR war genétigt, durch eigenes Nachdenken den Leibnizschen Kalkiil nachzu-
entdecken. Diese Nétigung mag aber nicht zuletzt Jakoss Selbstindigkeit in der
Handhabung der neuen Infinitesimalrechnung bedingt haben. Und da JAKOB schon
im Mai 1690 in den A.E. das Problem der Isochrone, welches LEIBNIZ 1686 den Kar-
tesianern zur Lésung vorgelegt und welches nur HUYGENS mit den synthetischen
Methoden gelost hatte, mit der Differentialrechnung behandelte, konnte ihm LEIBNIZ
in seinem Antwortbrief schreiben, da3 JakoB keiner Hilfe von auen mehr bediirfe, da
er den Sinn der neuen Methode vollkommen erfaf3t habe. JAKOB hatte auch seinen
Bruder, den um dreizehn Jahre jingeren JOHANN, in die eroberten Geheimnisse der
neuen Methode eingeweiht, so daBl LriBNIZ sogleich zwei Mitkdmpfer fiir seinen
Kalkiil fand. Und wihrend der Vielbeschaftigte sich der detaillierten Ausarbeitung
seiner Erfindung nicht mehr widmen konnte, sah er in Basel eine Frucht heranreifen,
welche, selbst wenn er sie selber mit Liebe gepflegt hitte, auf dem durch den DreiBig-
jahrigen Krieg verwiisteten Boden seiner Heimat kaum hitte gedeihen kénnen. Neid-
los hat er spiter deshalb das Verdienst der BERNOULLI um den neuen Kalkiil aner-
kannt, welcher den beiden Briidern ebensoviel verdanke wie ithm selbst.

Mit der Losung des Problems der Isochrone war JAKOB mit einem Schlag in die
Reihe der fithrenden Mathematiker seiner Zeit aufgeriickt. Jaxoslést die Aufgabeganz



6 JO FrECKENSTEIN: Johann und Jakob Bernoulli

im Leibnizschen Geist, indem er sich durch Anwendung der Fallgesetze GALILEIS auf
die geometrischen Proportionalbeziehungen zwischen den Differentialen die Gleichung
dy /b2y — a® = dx }/a® verschafft. Da die differentiellen Ausdriicke einander gleich
sind, «wrgo ef horum Integralia aequantur», womit zum erstenmal der Ausdruck Inte-
gral — der iibrigens von JOHANN stammt — in der Mathematik auftritt. Als Losung
der Differentialgleichung der Isochrone findet JAKOB eine semikubische Parabel:

2 h2 3 e S

AL - 28 Vbiy — a® = x|/a®.

Am SchluB dieser Abhandlung stellte nun Jaxos die Irage nach der Gestalt der
Kettenlinie, die GALILEI fiir eine Parabel hielt. Doch nicht er, sondern JoHANN loste
diese Aufgabe, der unterdessen nicht miifig geblieben war. Aufgestachelt durch den
eifersiichtigen Ehrgeiz, es dem élteren Bruder mindestens gleichzutun, war er teilweise
sogar selbstindig in den Leibnizschen Kalkiil eingedrungen, und zwar neben seinem
medizinischen Fachstudium, von dem eine Abhandlung Dissertatio de effervescentia et
fermentatione (1690) zeugt, in welcher er nach der kartesischen Theorie von den vier
Urelementen die Erscheinungen der Gé-
rung zu erkliren versuchte. Aufler thm 4
hatten nur LeisNiz und HuvyGENsS, dieser
aber noch mit der «antiken» Methode, das
Problem bewdltigt.

Die Lésung von Joumanw ldBt sich heute
wie folgt skizzieren:

Es sei A B ein beliebiges Stiick der Ket-
tenlinie, wovon die Lingeneinheit iiberall -
das Gewicht ¢ besitze. Das Kettenelement 7"
sei bei B horizontal, bei C unter dem Winkel
o' gegen die Horizontale geneigt, und der
Bogen BC habe die Linge s, so daB sein Ge-
wichit gs ist. Ferner seien die Koordinaten
so gewdhlt, da BD = yund DC = y ist. Die
Spannung der Kettenlinie in tangentieller
Richtung sei G. Man kann sie in eine horizontale Komponente § und in eine vertikale
Komponente 8 zerlegen. Nun ist wegen der Komponentendarstellung geometrisch

®

dy ; dx

@xGCOSOﬁ:@'dS”, %:Gsmoch/&;—.

Da nun in Richtung AE d(G cos x) = 0 ist, folgt § — const — ¢ a, wihrend die Vertikal-

komponente proportional der Bogenlinge — ¢gs ist. Damit folgt /B =als=dyjdx

und mit Benutzung der Beziehung ds? = dx?*+ dy? die Differentialgleichung der Ket-
tenlinie

die sich als eine Logarithmika entpuppt:

at+x+)lax+a®

die Jouany 1691 in Unkenntnis der Logarithmusfunktion freilich noch als Parabelbogen
und Hyperbelinhalt darstellt. Nur im Falle, wo s = ¢ » ist, wird die Kettenlinie zu



J. O. FreckensteIN: Johann und Jakob Bernoulli 7

einer Parabel, als welche sie GALILET ansah. Die beiden BerNOULLI l6sten das Problem
auch in dem allgemeinen Fall, wo das Gewicht ¢ eine Funktion des Kurvenpunkts ¢(x)
ist, die Kettenlinie also ungleich schwer ist.

JAKOB erkannte dann spiter (1691) und in der Arbeit Curvatura veli (1692), daB
auch die Segelkurve eine Kettenlinie ist. Auch JomaNN hatte die Gestalt der Segel-
kurve bestimmt, und er unterliB3t nicht, in seiner Solution du pmblémé de la courbure
que fait une voile enflée par le vent zu betonen, daB er es gewesen sei, welcher die von
JAKOB aus den mechanischen Bedingungen des Problems hergeleitete Differential-
gleichung 2. Ordnung a ds d%x = dy® hat 18sen kénnen, wihrend sie fiir JAroB zu

::__ ,,..,..‘,,.?/‘-Lt uu;z‘w"{f—l-t‘l‘ﬁékﬁﬁbl ép‘/%;z:- " ﬁwula &b
‘un Dazr‘olm&'w ‘ ar,/éi, wc—t-u— y /4'36
ya g w».//» jr ?Mjl'c e < &l,uuu; cette
I P B, n-&fﬁu In Oinf CRNLAL (g .
(V- Bizma 1 Uit sikfliedts Jlcrn) oLt iny
croyand gue ot pobin matdade, qu m\‘»&,&wu’(}z o
TR uﬂu utte ejwutm ‘ 5&7:%/@:@977%

‘ ¥y

Fend de =

Brief von Jomannx BerNoULLI an JAKOR, aus Genf, vom 17. Juni 1691. Enthilt u. a. die Integration der
Differentialgleichung der Velaria. (Basel U. B. Codex Gothanus Chart B 673, Blatt 41).

schwer gewesen sei. Auf das Dringen JAkoBs hin hatte sich JOHANN mit dieser kom-
plizierten Differentialgleichung abgegeben und plétzlich bemerkt, daB3. man die
Differentialgleichung der Kettenlinie auch auf diese Form bringen kann — und der
gewandte Formalist JoHANN schoB den Vogel ab, bevor Jakos die ihm unterdessen
auch gegliickte Losung hatte publizieren kénnen.

Mit seiner erfolgreichen Auslandsreise 1691/92 trug JoHANN keineswegs dazu bei,
die bald schon in der Offentlichkeit sich bemerkbar machenden Eifersiichteleien
zwischen den beiden Bridern zu dimpfen. JoHANN war in Paris von dem Mathemati-
kerkreis um MALEBRANCHE mit duBerster Zuvorkommenheit als ein Reprisentant des
neuen Leibnizschen Kalkiils empfangen worden ; in Basel machte es groBen Eindruck,
daB sich der illustre Marquis pE L’HéP1TAL, damals wohl der begabteste Mathemati-
ker Frankreichs, von JoHANN hatte in die Infinitesimalrechnung einfithren lassen.
Das erste Lehrbuch der Differentialrechnung, die Analyse des infiniment petits (1696),
mit welchem der Marquis seinen Namen in der Geschichte der Mathematik unsterb-
lich machte, ist aus diesen Vorlesungen Jomanns und dem anschlieBenden Brief-
wechsel entstanden. _ :

Die von CaNTOR noch angezweifelte Autorschaft JoHANNS an diesem Werk 148t
sich heute einerseits durch das Basler Manuskript seiner Differentialrechnung, das
1921 von SCHAFHEITLIN aufgefunden wurde, und andererseits durch die Korrespon-
denz JoHANNS mit dem Marquis beweisen, welche demnichst als erster Band in der
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Edition der Basler Bernoulli-Kommission erscheinen wird. CANTOR hatte wegen des
zweifellos prahlerischen Charakters Jomanns dessen Beteuerungen der Prioritdt kei-
nen Kredit gegeben; er konnte nicht wissen, daBB weniger der Wahrheitsliebe des
Basler Mathematikers zu mitrauen als seiner Geldliebe mancherlei zuzutrauen war:
gegen eine stattliche Pension hatte sich Jomann verpflichtet, ausschlieBlich dem
Marquis seine neuesten Entdeckungen in der Infinitesimalrechnung mit Erlduterungen
mitzuteilen. DaB dieser nun, anstatt sich damit zu begniigen, in Abhandlungen iiber
die neue Analysis des Unendlichen mit den Entdeckungen JoHANNS in der vordersten
Front der modernen Mathematiker zu brillieren, noch seinen Namen mit dem ersten
Lehrbuch der Differentialrechnung verewigen wollte, konnte BERNOULLI nicht ahnen,
aber er muBte zu Lebzeiten des Marquis infolge seines «Vertrages» dazu schweigen.
Erst als nach dessen Tode SAURIN bei einer Auseinandersetzung mit ROLLE die heute
noch ' Hopitalsche Regel» genannte Methode zur Bestimmung des Wertes unbestimm-
ter Ausdriicke, wie 0/0, dem Marquis zugeschrieben batte, reklamierte er difentlich in
einer Abhandlung von 1704 in den A.E. Gleichzeitig schiittete er dem Freund VARIGNON
das Herz aus und beklagte sich {iber dasithm von DE L"HépITAL widerfahrene Unrecht.
Da aber Jonann die Hintergriinde seines Schweigens zu Lebzeiten des Marquis nicht
offentlich preisgeben wollte, so kam er, als er erst nach dem Tode seines «Médzens»
reklamierte, in den Geruch eines unfairen und ruhmredigen Zeitgenossen.

Die Abhandlungen der beiden Briider BERNOULLI, mit denen sie die Leibnizsche
Infinjtesimalrechnung bis zu ihrem offenen Streite 1697 ausbauten, lassen schon die
Eigenart der Begabung der beiden Mathematiker erkennen: JoHANN entwickelt vor
allem die formale Fruchtbarkeit des neuen Kalkiils, wobel er besonders die Integral-
rechnung ausbaut, JaAxoB vertieft sich in geometrische Probleme, wobei er am Einzel-

fall allgemeine Sitze findet.
" Die geometrischen Probleme, mit denen sich Jakos abgab, betrafen vor allem die
Theorie der Evoluten, der Kata- und Diakaustiken und der Elastica. Die erfolgreiche
Behandlung dieser Kurven verdankte JAKOB einerseits der konsequenten Einfithrung
der Polarkoordinaten (Specimen calculi differentialis, A. E. 1691) in die Analysis und
andererseits seiner Kenntnis des analytischen Ausdrucks fiir den Kritmmungsradius
o = ds?/dy d®x, des Theorema aurewm (Curvatura laminae elasticae, 1694). Dieser Aus-
druck 148t sich iibrigens leicht in den gebrauchlichen umrechnen, wenn man y mit
x vertauscht und also '
as® ds®>  a*y (14732

dxdiy T A da Ty

schreibt. Zur Einfiithrung der Polarkoordinaten gelangt Jakos 1691, indem er auf die
Parabel %2 = 2 py die Transformation x =7, ¥y = ¢ ausiibt und somit aus einer
Parabel eine parabolische Spirale ableitet. Diese Transformation falit er als ein Zu-
sammenbiegen der Achse der Spirale auf, so daf} die Abszissen gekriimmt werden, die
Ordinaten aber als Radienvektoren senkrecht zu dieser Achse bleiben. In Fortsetzung
dieser Untersuchung wendet sich Jakos der logarithmischen Spirale zu (Spiwra mira-
bilis, A. E. 1692), wo er jene merkwiirdigen Eigenschaften entdeckte, die ihn so beein-
druckten, daB er sie als Motiv fiir sein kiinftiges Epitaph verwendete. Er entdeckte
bei dieser Kleinschen W-Kurve die ersten fundamentalen Invarianzeigenschaften
gegeniiber projektiven Transformationen: Die Evolute und die Kaustik der logarith-
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mischen Spirale ist wieder eine logarithmische Spirale. Auf seinem Epitaph, der heute
im Kreuzgang des Basler Miinsters zu sehen ist, steht deshalb das Epigramm: Eadem
mutata vesurgo, welches die unendliche Wiederkehr des Gleichen als Unsterblichkeits-
symbol darstellen soll.

Von Einzelheiten aus den Arbeiten Jakoss ist die parazentrische Isochrone zu er-
wihnen. Sie ist in Verallgemeinerung des Problems der Leibnizschen Isochrone — mit
welchem Jaxos iibrigens in der Infinitesimalrechnung deébiitiert hatte — die Losungs-
kurve fiir ein radialzentrisches Kraftfeld in bezug auf den Erdmittelpunkt statt des
Parallellinienkraftfeldes an der Erdoberfliche in der urspriinglichen Aufgabe. In
diesem allgemeinen Fall Jaxoss wird die Isochrone eine komplizierte Logarithmika
mit einem asymptotischen Windungspunkt im Erdzentrum. Als Hilfskurve seines
Problems fiithrt Jaxos hierbei auch die Lemniskate (x% + y%)2 = 42 (x2 — y2) (A. E.
1694) ein. Eine weitere wichtige Einzelheit ist der fiir die Ingenieurmechanik funda-
mentale Satz, den JAKOB bei seinen zahlreichen Untersuchungen tiber die elastische
Linie gefunden hat. Wenn ein elastischer Stab durch duBere Krifte gebogen wird, so
nimmt seine Achse (d.1i. der geometrische Ort der Schwerpunkte der Querschnitte)
eine solche Form an, dal das statische Moment der duBleren Krifte umgekehrt pro-
portional dem Krimmungsradius an dem betreffenden Punkt der Achsenkurve ist,
welche die «elastische Linie» genannt wird. Hierbei muB vorausgesetzt werden, daf3
bei kleinen Durchbiegungen ein ebener Querschnitt des Stabes eben bleibt.

In dieser Zeit erst trat JOHANN mit groBeren mathematischen Arbeiten an die Offent-
lichkeit. Nach seiner Riickkehr aus Paris hatte er mit einer Dissertation De motu
musculorum 1694 den medizinischen Doktorhut in Basel erworben. Diese Abhandlung
ist {ibrigens trotz des medizinischen Themas mathematisch und ganz im Geiste des
Tatromathematikers BoReLLI verfallt. JoHANN entwickelt dort eine chemische Theorie
der Muskelkontraktion, die geradezu modern anmutet. Das Aufblihen der Muskel-
fasern 148t er durch Girungsprozesse entstehen, wobei er die Meridiankurve der auf-
geblahten Oberfliche der Fasern berechnet.’ '

JOHANN betrachtete zeitlebens zwei Gebiete der Infinitesimalrechnung als seine
ureigene Doméne: die Integralrechnung und den «Exponentialkalkiily. In seinem
Versuch, die Infinitesimalrechnung vor allem formal weiter auszubauen, fand er bei
Leisniz selber die vollste Unterstiitzung. Schon 1693 hatte JoHANN eine Korrespon-
denzmit dem Meister begonnen, welche die umfangreichste werden sollte, die der groBe
Philosoph iiberhaupt je gepflogen hatte. Am 2. September 1694 konnte ihm JomaNy
mitteilen, daf3 es ihm gelungen sei, eine allgemeine Reihenentwicklung fiir Integra-
tionen zu finden, eine series univer sulzsszma qae ommes quadraturas et rectificationes
generaliter exprimit, indem

X
3

[l dr=x9@) — i@+ 5y 9 -

0
sei (Additamentum, A. E. 1694). Diese Reihe beruht auf dem allgemeinen Satz von
Lemsxiz fiir die Differentiation eines Produktes

PTH) g0 = (@] - dg) = 3 farg,

v=1_
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wenn man 7= —1, g =dx und f= @(x) setzt und weiter noch die Operatoren
P
d t=1/dr = / einfithrt. Einen GroBteil der Korrespondenz mit LEIBNIZ zwischen

1694 und 1696 fiillen derartige Formalismen aus.

Im Zusammenhang mit der Integralrechnung als Umkehroperation der Differentia-
tion stehen JoHANNS Bemiihungen um die Integration der Differentialgleichungen.
Hatte er schon in Paris mit der anonymen. Losung des berithmten de-Beauneschen
Problems, welches seinerzeit schon dem CARTESIUS als erstes inverses Tangentenproblem
aufgegeben war, die Leistungsfihigkeit des Leibnizschen Kalkiils demonstriert (J. d. S.
1692), so zeigte er fiinf Jahre spdter, daBl der neue Kalkiil auch viel kompliziertere
Differentialgleichungen zu lésen imstande ist: JaxoB hatte im Anschlull an das
de-Beaunesche Problem die Losung der allgemeinen Differentialgleichung

dy P )
i g Yoy - J—
ke + Py +0Q(x)y 0,

welehe man heute die Bernoullische heifit, aufgegeben und selber umstindlich gelost.
Hier lief ihm der formal gewandtere JoHANN wiederum einmal den Rang ab, indem
letzterer diese Gleichung mit dem Ansatz loste, die gesuchte Losungsfunktion als Pro-
dukt zweier unbekannter Funktionen aufzufassen v — M{x) - N(x), so daB man in der
dann resultierenden Gleichung

aM aN

PR . n—1 =
W i N + P{x) dx+ (M- N) Q{xydy =0

wegen der Willkiirlichkeit der beiden Funktionen einer von ihnen, etwa M, noch die

Nebenbedingung dM/M 4 P(%) dx = 0, woraus M = e [Pz folgt, auferlegen kann.
Setzt man M in die Bedingungsgleichung ein, so ist nur noch eine lineare Differential-
gleichung in N zu lésen.

Der «Exponentialkalkiils, auf den JOHANN so stolz war, ist nichts anderes als der
Infinitesimalkalkiil der Exponentialfunktionen. Als NIEUWENTIIT in einer kritischen
Schrift gegen die mangelnden logischen Grundlagen des Leibnizschen Kalkiils beson-
ders auf das Fehlen der Differentiation der Exponentialfunktion x¥ im Leibnizschen
Kalkiil hinwies, entwickelte JOHANN in einer besonderen Abhandlung (Principia
caleuli exponentialium seu percurrentium, A. E. 1697) den «Exponentialkalkiil», dessen
Grundformel in der Gleichung

d(x") = 2" logx dy + 2l
besteht.

2. Das Problem der Brachystochrone
und die Urspriinge der Variationsrechnung

Da Jonann keine Aussichten hatte, in Basel eine mathematische Professur zu er-
halten, weil der Lehrstuhl von JAKOB besetzt war, nahm er mit Freuden eine Berufung
nach Groningen an, welche thm HUYGENS vermittelt hatte. Am 1. September 1695
reiste er mit seiner Frau und dem erst siecben Monate alten Sohn Nicoraus IT nach
Holland ab, nicht ohne Groll gegen Jakos im Herzen, der sich mit Sticheleien an der
fritheren Prahlerei Joranns bei der Differentialgleichung der Segelkurve zu ridchen
begonnen hatte, indem er JoHANN als seinen Schiiler bezeichnete, der schlieBlich nur
das habe zum besten geben kdénnen, was er von JAxos gelernt habe. Aus Groningen



J7.0. FLEckeNSTEIN: Johann und Jakob Bernoulli 11

kam der GegenstoB des nun auch an Rang ebenbiirtig gewordenen Bruders: Schon
im Juni 1696 hatte Joman~ in den A. E. den Mathematikern das Problem der Bra-
chystochrone vorgelegt, die Kurve zu bestimmen, lings deren in der Vertikalebene
ein Korper am schoellsten von einem Punkt 4 zu einem Punkt B filit. Da bis Ende
1696 eine Losung mnicht mehr zu erwarten war, stellte JoHANN auf Wunsch von
LersN1z die Aufgabe nochmals in Form eines Flugblattes, gewidmet acufissimis qui
toto ovbe flovent mathematicis, mit einer Losungsirist von 6 Monaten. LEIBNIZ l3ste am
gleichen Tag, als er den Brief Jonanns erhalten hatte, dessen ¢wunderschones» Pro-
blem der Brachystochrone und schrieb zuriick, daB er auBer denjenigen, welche mit
der neuen Infinitesimalrechnung vertraut seien, wie JOHANN, JAKOB BERNOULLI,
NewToN und pE LHop1TAL, nur dem Genius HUYGENS, wenn er noch lebte, und dem
Scharfsinn HUDDES, wenn er sich noch mit Mathematik abgidbe, eine Lésung zutraue.

A H
oy 4

Wie LeisNiz prophezeit hatte, liefen nur fiinf Losungen ein, und zwar von JOHANN,
Jakos, NEwToN, LEIBNIZ und DE L'HOPITAL, wobei bemerkt werden mufl, dal3 nur
die aktive briefliche Hilfe Jomanns dem Marquis die Lésung ermdglicht hatte.

An diesem berithmten Problem offenbarte sich die verschiedenartige Begabung
der beiden Briider in aller Offentlichkeit. Jouann 18st die Aufgabe durch eine geniale
Intuition, mit der er das mechanische Problem auf ein «zufillig» schon geldstes opti-
sches zuriickfithren kann. JAKOB gibt eine griindliche, aber schwerfillige Analyse und
findet dabei in den Tiefen der Aufgabe Wurzeln einer neuen mathematischen Diszi-
plin. In einem offenen Brief an BasNaGk, Redaktor der Revue Histoire des Ouvrages
des Sgavans hat Jonann (1697) alle Losungen besprochen und dabei angedeutet, dal3
HuveeNs' Traité de la lumiére (Leyden 1691) ihn auf den Gedanken eines inneren Zu-
sammenhangs zwischen Mechanik und Optik gebracht habe:; und so findet sich in
diesem Brief zum ersten Male, iiber 100 Jahre vor der Hamiltonschen Theorie, in der
mathematischen Physik der Satz ausgesprochen «que ces deux spéculations, prises de
deux si différentes parties des Mathématiques telles que sont la Dioptrique et la
Méchanique, ont entre elles une liaison absolument nécessaire et essentielle.

Fiir die Lichtbewegung ist nimlich das Problem der Brachystochrone nach dem
Fermatschen Prinzip schon geldst, denn das Licht legt immer denjenigen Weg zu-
riick, fiir welchen es ein Minimum an Zeit bendtigt. Diesen Lichtweg beschreibt das
Brechungsgesetz. Man braucht sich also die Fallbewegung nur durch eine entspre- .
chende Lichtbewegung ersetzt zu denken, indem sich das Licht in einem Medium von
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variabler Dichte, welche nach unten nach dem Gesetz v =}/ 2 gh abnimmt, bewegt.
Zerlegt man das Medium in horizontale Schichten und bezeichnet mit «, die Neigungs-
winkel des Kurvenelements gegen die Vertikale, wobei »; die entsprechenden Ge-

schwindigkeiten bezeichnen, so ist infolge des Brechungsgesetzes
sine;  Sinag, 7

v; Z

+1
oder aber, wenn mit x die Vertikaltiefe unter 4 und die horizontale Entfernung von
A mit y bezeichnet wird,
dy/ds
s

-=Fk oder dy?= k0% (dx?+ dv¥);

da v? == 2 g« ist, folgt mit der Abkiirzung » == 1/2 g k®2:

— ! ‘ x
dy = dx_l/xmx )

Dies ist aber die Differentialgleichung einer Zykloide, so dafl Jonann dieser Kurve,
von welcher HuvGeNs den Isochronismus oder den Tautochronismus entdeckt hatte,
noch die Eigenschaft des Brachystochronismus zufiigen konnte. In seinem offenen
Brief an BASNAGE machte sich JoHANN tiber die schwerfilligen Deduktionen JAKOBS
lustig, der selber offen zugestanden hatte, daBl sie ihm manches Kopfzerbrechen
bereitet hatten. Aber JomaNN merkte nicht, daB JakoB mit seinem Griibeln in
der leichtfertigen Eleganz Jomanns unbekannte Tiefen vorgestoBen war; JAKOB
stelltendmlich zundchst fest, dall derartige Extremalprobleme von den bisher iiblichen
verschieden seien, indem nicht mehr die unbekannten Extremalstellen einer Funktion,
sondern Funktionen selber, welche ein gewisses Integral zu einem Extremum machen,
zu bestimmen sind. Damit erkannte Jakos, dal es sich hier nicht um ein gewdéhn-
liches Extremalproblem, sondern um ein — wie wir heute sagen wiirden — Variations-
problem handelt, welches besondere Losungsprinzipien erfordert. Als ein solches be-
nutzt Jaxos die Bedingung, daB die Extremalkurve auch in ihren kleinsten Teilen der
Eigenschaft geniige, die sie als Gesamtkurve haben soll. Dal} diese Bedingung fiir die
Extremalkurve eines Variationsproblems ohne Nebenbedingung zwar hinreichend,
aber keineswegs notwendig ist, hat allerdings erst spiter EULER erkannt.

Das Integralf dt :fds/v oder, mit Beriicksichtigung des Fallgesetzes, ]./Vé»gd/ dsf) x
soll ein Minimum sein. Da stindig dx/ds = cos « ist, so gilt fiir die beiden Nachbar-
punkte von P, P, und P, (bei Weglassung des konstanten Faktors 1/]/2” g,

1 [ dE L e 1 R — 1 S
x—h ) x _
dies muB ein Minimum, die Ableitung des Ausdrucks rechter Hand also Null sein. Die
Ableitung aber ist (nur « ist jetzt variabel!)

Var—Vx—h)sna dy N (Va+h—) %) sin o, dosy

9 ) = 0,
CC8~ oy COS" &y

Da nun aber y, — v, = % (tg a, + tg o) als Ordinatendifferenz P, £, konstant ist; so
besteht noch die Bedingung '
L .3

cos?oy cosZay,
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womit sich die Minimalbedingung

schreibt, Bringt man diese auf die Form
 singy _ sine,
Va+Vx—h  Vxsh+yz'
so erkennt man, dafl diese Bedingung unabhingig von % ist, daB also sin oc/‘/:i’ konstant

ist, was mit sin o = dy/ds die von JOHANN aus dem Brechungsgesetz gefundene Differen-
tialgleichung der Zykloide gibt.

Um Jomanx auf den Zahn zu fithlen und vor aller Offentlichkeit bloBzustellen,
stellte nun JAXOB am SchluB} seiner Auflésung des Problems der Brachystochrone
ein neues Variationsproblem (A. E., Mai 1697): Unter
allen durch B und N gehenden Kurven von gleicher Z,
Lingeist diejenige zu bestimmen, welche den Flachen- ryd
raum BZN zu einem Maximum macht, wenn allge-
mein die Ordinate PZ der Kurve BZN eine Potenz Al
der Ordinate der Extremalkurve BFN ist (PZ sl e
= PF™). Diese Aufgabe stellt eine Verallgemeinerung A i
des Isoperimeterproblems der Antike dar, unter allen %1% | x
Kurven gegebener Linge zwischen B und NV diejenige
zu bestimmen, welche iiber der Sehne BN den grif3- al ES F
ten Flidcheninhalt einschlielt. JoHANN BERNOULLI
schrieb nun in seinem Brief an BASNAGE, es sel ihm gelungen, innert drei Minuten
das Problem zu lésen. Die Extremalkurve sei ndmlich

an
¥

y = / ;/f—‘frflﬁz'““"" (a = Konstante) -
J Y arh— g2

und fiir # = 1, wobei die Kurve BZN = BFN wird, ist in der Tat der Kreis des
ZENODORUS
_xdx

y= / V=t

o

—a--}at—x%

die Losung.

Aber JoHANNS voreilige Losung war nur teilweise richtig. Da JoHANN sein Resultat
ohne Ableitung publiziert hatte, JAKOB aber seinen ehemaligen Schiiler kannte, erbot
sich JakoB, erstens die Methode seines Bruders zu erraten, zweitens die Fehler in
dessen Ableitung nachzuweisen und drittens die wahre Auflésung des isoperimetri-
schen Problems zu geben. Da seinerzeit bei der Stellung des Problems von einem
«Nonnemo» 50 Imperialien als Ldsungspreis ausgesetzt waren, so verpilichtete er
sich, diese Summe zu zahlen, wenn er im ersten Punkte, das Doppelte, wenn er im
zweiten Punkt, und das Dreifache, wenn er im dritten Punkt seiner Kritik der Jo-
hannschen Lésung fehle.

In diesen niichternen und ironischen Worten driickt sich die ganze Tragik der
Entzweiung der beiden Briider aus, deren Streit schliellich in eine unerquickliche und
hier nicht im einzelnen zu schildernde Gehiassigkeit ausarten sollte, so daB die
Beiden sich nicht mehr verséhnen konnten. Immerhin hatte dieser leidige Streit die
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Geburt der Variationsrechnung zur Folge, und man kann diesen geradezu als ein Aus-
einanderfallen der beiden Begabungsrichtungen, der intuitiven und der systematisch-
kritischen, auf zwei verschiedene Personen anschen, welche sich offen bekdmpiten,
als ob die Briider sich gleichsam an der Natur riachen wollten, die, indem sie das
‘mathematische Genie gerecht auf zwei verteilte, dadurch gerade verhinderte, daB
jeder allein zur Klasse der allergréBten Mathematiker aufsteigen konnte. Und so trat
eine Auseinandersetzung an die Offentlichkeit, welche ¢unter anderen Umstédnden
unbemerkt in derselben Person hitte austoben kénnen», um die geniale Leistung
hervorzutreiben, wie MacH treffend bemerkt.

JouaNN hatte iibrigens ncch geprahlt, da er Jakoss Aufgabe auch fiir den allge-
meineren Fall 1ésen kénne, daBB PZ nicht nur = PF?, sondern irgendeine Funktion
von PF = p(x) sei: Dann sei die Gleichung der Extremalkurve

wobet

bedeute. Vielleicht hat gerade diese Verdllgemeinerung JAKoB die Spur in den Gedan-
kengang JomanNs gewiesen, und er vermutet wohl mit Recht, daf JoHANN hier
wieder eine indirekte Methode versucht hat, die in speziellen Féllen zwar zum Ziele
fithren kann, im allgemeinen aber versagt. JoHANN hat in seiner Antwort auf JAKOBS
Wette {iber die drei Punkte sofort ein in der Eile begangenes Versehen zugegeben:
es miisse einfach b = PZ gesetzt werden, so daf3 die Extremalkurve also, wenn man
b = PZ setzt, die Gleichung
PP = foii
J Yai-PZ?

hat. Es filhrt nun in der Tat die von Jakos seinem Bruder insinuierte Uberlegung
mit mechanischen Analogien zu diesem formalen Resultat, das ein JomANN BER-
NoULLI in drei Minuten herausgefunden haben mag: Denkt man sich die Kurve BFN
mit einer Fliissigkeit von variablem spezifischem Gewicht gefiillt, so ist BN dann
eine Extremalkurve, wenn der Schwerpankt m3glichst tief liegt. In der Ordinate
PF = x soll nun das spezifische Gewicht der Flissigkeit PZ/x = p(x)/x sein. Das
Gewicht eines vertikalen Fadens ist dann pdy/x und sein Moment in bezug auf BN ist

1 pdy

: _
= pay, |
und fir die tiefste Lage des Schwerpunkts wird dann tatsichlich

—} /gb dy oder /p(x) dv = Fliche BZN
ein Maximum. ) 7 : _
 Diese Uberlegung ist.aber in dieser Form nicht zuldssig; denn, wie Jakos bemerkt,
wird {ibersehen, daB mit der Variation der Kurve BFN auch das Gewicht der Flis-
sigkeit variiert wird.
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An die Herausforderung Jaxoss schloB sich ein hitziges Hin und Her zwischen den
beiden Briidern an, bis den wissenschaftlichen Journalen dieser Streit schlieBlich so
verleidet war, daB die A.E. nur noch zum Abschlu8 die Losung Jaross publizierten,
sonst aber den beiden alle Zeitschriften fiir Polemiken geschlossen waren. Ein Jahr

JOHANN BERNOULLI

spater gab JAKOB in einem Sonderdruck unter dem Titel 4Analysis magni problematis
isopevimetrici (Basileae, 1701) eine detaillierte Untersuchung. Er war sich der Bedeu-
tung seiner Arbeit vollkommen bewuBt. Mit feierlichen Worten, die den ehemaligen
Prediger verraten, schlieBt Jaxos sein Werk ab, nachdem er es dem unvergleichlichen
mathematischen Viergespann der LEIBNIZ, NEWTON, DE L'HOPITAL und Fatio gewidmet
hat. Wiederum benutzt Jaxos das systematische Prinzip, daB3 auch das kleine Kurven-
stiick FF, die verlangte Eigenschaft der Extremalkurve habe. Er betrachtet nun vier
sukzessive Punkte F,F,, F,, Fy; es kann bei festgehaltenen Endpunkten aber nur dann
der Bogen F, 7, /' F so variiert werden, daB die Bogenlinge konstant bleibt, wenn man
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zwel Punkte verschiebt, Setzt man

Vi V= Vs V= Ya— V= A
so folgt

(8 — 8)% = (% — %)% 4 A% (5, — 5)2 = (Fp — #)% 4 A% (53— 55)% = (x5 — #p)% 1+ N2,
und die Aufgabe ist, ¥, und x, so zu variieren, daf
I$1 — stk Isy — 8] + [83 — S|

konstant bleibt. Aus dieser Bedingung leitet JAKOB eine Differenzengleichung und dann
aus dieser durch Grenziibergang eine Differentialgleichung dritter Ordnung her, die er
miihsam integriert und schlieBlich die Bedingungen fiir die Extremalkurve findet:

Fiir qdy = /pz(x)a;x}z : wird /f)(x) ady ein Maximum
Va*—plx y
und fiir dy = - ,,,Q__ P(A) dx - wird / plx) dy ein Minimum.

V2ap(x) —p(x)®

JOHANN hatte sich unterdessen um eine strenge Analyse des Problems bemiiht und
diese am 1. Februar 1701 der Pariser Akademie durch seinen Freund VARIGNON in
einem versiegeélten Paket iibergeben- lassen, welches erst nach der Publikation der
JakoBscHEN Lésung gedffnet werden sollte, Es wurde aber nicht sogleich nach dem
Erscheinen der Awnalysis magni problematis 1soperimetrici, sondern, durch allerhand
mysteridse Umstidnde verzdgert, erst nach dem Tode JAross am 17. April 1706 ge-
offnet.

Die Losungsmethode JoHANNS fithrt nicht zum Ziel, so daf} JAROB seinen Triumph
nicht mehr erlebte. Hatte JAKOB schon bei seiner ersten Kritik héhnisch bemerkt,
dall JomANN nur durch zwei sukzessive Fehlschliisse, wo der nachfolgende gerade
den ersten wieder kompensiert, zum richtigen Resultat gelangt sei, so traf diese
Bemerkung erst recht bei der von JoHANN unterdessen nachtriglich versuchten
strengen Analyse des Problems zu. JouANN benutzt ebenfalls das Prinzip JAKOBs.
Wihrend dieser aber die Eckpunkte der betrachteten Approximationspolygone auf
Parallelen zur X-Achse gleiten lieB und deshalb, um der 1soperimetrischen Bedingung
zu gentigen, Polygone von drei Seiten benutzen muBte, betrachtete JomANN nur
drei sukzessive Punkte der variierten Kurve und verwandte also nur ein Zweiseit
von konstanter Linge, dessen variable Ecke sich auf einer Ellipse bewegt. Mit diesem
Zweiseit kann man aber prinzipiell nur zu Identititen gelangen, und wenn JOHANN
trotzdem damit die Differentialgleichung der Extremalkurve herausrechnet, so
gelingt ihm dies nur, weil er in Kenntnis des Resultates zweckmaBige, aber ungerecht-
fertigte Vernachlissigungen und Mitnahmen von infinitesimalen Variationen hoherer
Ordnung vornahm. JOHANN hat spiter seinen Fehler eingestanden und in einer —
besonders durch die Kritik von BrRook TAYLOR provozierten — Abhandlung Remar-
ques sur ce qu’on a donné jusqu’ici de solutions des problemes sur les T soperimetres (Mém.
Acad. Sci. Paris, 1718) eine Lésung gegeben, die nicht nur streng, sondern — wieder
einmal - formal eleganter als die Jakobsche war. Die von JAKOB kompliziert gewon-
nene Differenzengleichung, welche auf eine Differentialgleichung dritter Ordnung
fiihrt, formt JoHANN so um, daB er sofort im Limes zu einer Differentialgleichung
zweiter Ordnung gelangt, welche sogar in einer dhnlichen Form wie die Euler-Lagran-
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gesche Differentialgleichung fiir die Extremalkurve eines Variationsproblems ge-
schrieben werden kann.

Am SchluB dieser Abhandlung gibt JoHANN noch eine direkte Lésung des Problems
der Brachystochrone, welche nicht nur geometrisch interessant, sondern zugleich fiir
Variationsprobleme verallgemeinerungsfahig ist. Man braucht nur die Eigenschaft
der Zykloide zu kennen, dafl die Abrollgerade des erzeugenden Kreises die Kriim-
mungsradien der Zykloide halbiert, um sofort die Kurve des schnellsten Falls her-
suleiten. Zeichnet man die Variationskurven zwischen A und B, so lautet die Auf-
gabe: Wo miissen M und m auf den Kriim-
mungsradien an A B in M und m liegen, damit o
Mm und folglich auch AB in kiirzester Zeit
durchfallen wird ? Wann ist mit anderen Worten
di — ds/v ein Minimum? Es ist nun aligemein
TR [/fé_a_c_gig&, und da ds = (x + ) ¥ ist, so

folgt N
dt - {r+h)d

_ VZ e :

Der Ausdruck (x4 1) /[/x_ hat aber dann ein Mi-
nimum, wenn x =/ ist. Es muB also der
Kriitmmungsradius OM in N resp. Om in # hal-
biert werden : die Extremalkurve muB also eine Zykloide sein. Man kann dann leicht
synthetisch durch Vergleich mit den benachbarten Vergleichungskurven zeigen, daf3
die Zykloidenkurve AMmB ein echtes Minimum darstellt.

Die Extremalkurve — im vorliegenden Falle die Zykloide — schneidet die beiden
benachbarten Geraden OM und Om orthogonal. Nimmt man nun allgemein statt der
Geraden eine Kurvenschar @(x, y) = 4, so braucht man sie - wie CARATHEODORY in
seiner Dissertation (1904) «geometrisch» gezeigt hat — nur so zu wihlen, dall lings
jeder Kurve @ = const der Ausdruck f/l@, + v @,) konstant wird, damit das Integral

f flx, v,y dx ein Extrerum wird. Die Bedingung fiir f kann man dann leicht in die
Lagrangesche Differentialgleichung umwandeln:

gt ()

Jomanns Gedanke enthélt somit schon den Keim moderner Methoden der Variations-
rechnung. Uberhaupt hat JoHANN durch eine Fiille von genialen und produktiv ver-
wertbaren Einzelerkenntnissen seine Unterlegenheit an logischer Denkkraft Jaros
gegeniiber wieder wettgemacht. In diesen Zusammenhang gehort auch eine Entdek-
kung JOHANNS beim Variationsproblem der geodatischen Linie auf konvexen Ober-
flichen : In einem Brief an LuieNiz aus dem Jahre 1698 erkennt er die charakteri-
stische Eigenschaft der geoditischen Linien, daB drei ihrer konsekutiven Punkte eine
Normalebene der Oberfliche bestimmen.

Der tiefschiirfende Geist JaxoBs hatte aber nicht nur zur Variationsrechnung,
condern auch zur Statistik als einer neuen mathematischen Disziplin den Weg ge-
bahnt. Die Mathematiker des siebzehnten Jahrhunderts, vor allem Pascar und
FERMAT, hatten die Kombinatorik zu einem neuen Zweig der Arithmetik entwickelt,
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der bezeichnenderweise erst in der Neuzeit erbliilite, nachdem der kartesische Impuls
der Logik der Relationen die Denker erfaBt hatte. Im Anschlu8 an die Kombinatorik
entwickelten FERMAT, Pascarl und Huvceens die Prinzipien der Wahrscheinlich-
keitsrechnung. JAkos BERNOULLIS gréBte Entdeckung ist nun vielleicht sein Theo-
rem vom Gesetz der grofen Zahlen, mit welchem er von der Wahrscheinlichkeitsbe-
stimmung «a priori» der Kombinatorik, also aus bekannten logischen Bedingungen,
zur Wahrscheinlichkeitsbestimmung «a posteriori» der Statistik, also aus bloBen
Erfahrungen bei Versuchsreihen, tibergeht. Dieses Bernoullische Theorem steht in
der Ars conjectandi, welche erst acht Jahre nach JakoBs Tod als separates Buch, mit
einem Vorwort seines Neffen N1grLavs I versehen, 1713 in Basel erschien. Wie sich

: Y iy iy i ooy
Wb fytrmot il LI s Ngooin phisgrann gomss (15T v
ity wdt isll’ 0 5endil fuprand e Guhal L modom Db, preoreny o i
hiand 7.«,([,,,7:7 [Assne foertpp V., f“ﬁfué'—m (200, , i fury, Ggo' s W
s Lmiter ad m;m‘} & mawln. fuxerant ma:;)m.wm il
g bows, b, W ; mieldo euanri bpbacs, /_/‘.ﬂ"’ai-' { L Y
?Z@ Ad F7re MMM,.&A‘% wpread’ f%n} h}' M:‘;’f‘ § "rC

Seite aus dem Tagebuch (Meditationes et annotationes) von Jaxos Beryourcr, (Enthilt den SchluBteil des
Beweises des Bernoullischen Theorems der W ahrscheinlichkeitsrechnung, vermutlich aus dem Jahre 1689).
(Basel U. B. Mskr. L Ia 3, Seite 191.)

aus den Manuskripten JAKOBS ersehen 148t lassen sich die wesentlichen Lehrsitze
dieses Buches aber schon vor 1690 nachweisen, so daB die Grundlagen der Statistik
von JAKOB bezeichnenderweise gerade in der logischen und kombinatorischen Phase
seiner mathematischen Entwicklung gefunden wurden.

Jakob beginnt sein Werk mit den klassischen Problemen des Gliicksspiels, an
denen seine Vorginger die Prinzipien der Wahrscheinlichkeitsrechnung deduziert
hatten. Der erste der vier Teile des Buches bringt die Abhandlung von HUYGENS
De ratiocinivs in ludo aleae mit Anmerkungen JAKOBS versehen als Wiederab-
druck, welcher aber die an speziellen Zahlenbeispielen entwickelten Formeln von
HUYGENS in allgemeiner Buchstabenform gibt. Im zweiten Teil werden die allge-
meinen Formeln der Kombinatorik abgeleitet, um sie im dritten Teil auf die allge-
meinen Probleme der kombinatorischen \?Vahrs"cheinlichkeitsrechnung anzuwenden.
Allein durch die systematische Entwicklung der Formelsprache der Kombinatorik
stellt damit das Werk schon einen wichtigen Beitrag zur Arithmetik dar. Der Uber-
gang zur Statistik wird nun im vierten Teil vollzogen. Es ist durchaus moglich, daf3
nur der frithzeitige Tod Jakow verhindert hat, auch auf die SchluBfolgerungen ein-
zugehen, die man aus den Erfahrungstatsachen einer Versuchsreihe ziehen kann,
denn die Betrachtungen dieses Teils scheinen darauf abzuzielen, nur Vorbereitungen
zu dieser Lehre von den statistischen SchluBfolgerungen zu geben. Das Werk gipfelt
und schlieBt mit seinem berithmten Theorem, das man in Umkehrung folgender-
mafen schreiben kann: «Sind # und ¢ die gewohnlichen a-priori-Wahrscheinlichkeiten
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zweier entgegengesetzter Ereignisse A und B (p + g = 1), so ist die Wahrscheinlich-
keit dafiir, daB das Ereignis 4 in einer sehr groflen Zahl p von Versuchen in einer
zwischen wp + Aund pp — 4 liegenden Anzahl m von Malen eintritt:

Anders gesagt: W ist die Wahrscheinlichkeit dafiir, daB die Abweichung des Quo-
tienten m/p vom Erwartungswert $, namlich (m/u) — P, zwischen — Aju und A/u
enthalten ist. Fiir p oo geht diese Wahrscheinlichkeit W in Eins tiber.

Jakos hat zwar die Formel fiir W nicht explizite hingeschrieben, sie kann aber aus
ceinem Beweis sofort herausgeholt werden. Diesen Summenausdruck haben nun
sowohl DE MoI1VRE als LAPLACE zum Ausgangspunkt genommen und durch entspre-
chende analytische Transformationen in die Torm des Wahrscheinlichkeitsintegrals

Vv

2 [ e eV ; A
W = e ° dé- + o mlt '}/ == g
Ve 0/ Vinppyq V2mppyg
gebracht, welches heute als das Fehlerintegral der GauBschen Glockenkurve der
Statistik zugrunde liegt.

3. Johann als Nachfolger von Jakob Bernoulli

JAKOB BERNOULLI starb gerade in dem Moment, als sich Jouann, dem Drdngen
des Schwiegervaters folgend, mit seiner Familie nach Basel begab. Er schied sehr
ungern von Holland; als ihm noch wihrend der Heimreise eine vorteilhafte mathe-
matische Professur in Utrecht angeboten wurde, schwankte er, ob er sie annehmen
solle oder nicht. Bei seiner Ankunft in Basel erhielt er aber den Besuch des gesamten
akademischen Senats, der ihn bat, den durch den Tod JAKOBs freigewordenen Lehr- ¥
stuhl fiir Mathematik zu dbernchmen. Am 17. November trat JomANN die Nach-
folgeschaft des Bruders an. Kein geeigneterer Verwalter und Forderer des Jakobschen
Erbes als JoHANN konnte gefunden werden ! Nachdem der mehr introvertierte JAKOB
die Grundlagen der Infinitesimalrechnung geschaffen hatte, brachte der mehr extra-
vertierte Jomann durch den Glanz seines Namens und seine literarische Fruchtbar-
keit den neuen Kalkiil in der wissenschaftlichen Welt zur Geltung. Die Leidenschaft,
mit der er sich dieser-Aufgabe widmete, mufte ihn geradezu notwendig in die Rolle
des Praeceptor mathematicus Europae hineindringen.

Quantitativ nehmen die Abhandlungen JomANNs wihrend seiner Basler Professur,
die er bis zu seinem Tode 1748 inne hatte, fast Dreiviertel des Gesamtwerkes ein.
Wenn man den MaBstab des reinen Mathematikers an diese Abhandlungen legt, so
bleiben sie qualitativ wohl etwas gegeniiber den Arbeiten aus der Jugend- und Gro-
ninger Zeit zuriick. Denn es sind vornehmlich Probleme der angewandten Mathematik,
speziell der Mechanik, denen er sich seit etwa 1710 widmete. Fiir die Geschichte der
Mechanik sind seine Arbeiten aber nicht hoch genug anzuschlagen. In der mehr
«padagogisch» gerichteten Basler Zeit begann er, allmahlich sich mit der Arbeits-
richtung seines Freundes und langjihrigen Korrespondenten VARIGNON zu be-
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rithren. Der Pariser Akademiker hatte angefangen, die Ableitungen in den Principia
mathematica philosophiae naturalis von NEWTON in die Sprache der neuen Analysis
zu tibersetzen und sich infolgedessen mit der analytischen Theorie der Zentralkrifte
eingehend beschiéftigt. Jomann, durch die hiufigen Anfragen VaricNons tiber den
Verlauf dieser Untersuchungen unterrichtet, begann schlieBlich selber, sich in diese
Theorie zu vertiefen und fand bald eine Reihe von Versehen in NEWTONS Principia,
der Bibel der neuen Physik.

NEwWTON hatte in seinem Theorem XI/XIII, Liber I, Sect. I1T, nur bewiesen, daf3 aus
den Keplerschen Gesetzen und der Huygensschen Formel fiir die Zentralkraft notwen-
dig das Gravitationsgesetz m,m,/r? folgt. JomannN bemerkte dagegen, daf3 die Umkeh-
rung dieses Satzes, daB aus dem Zentralkraftgesetz @(r) =1/r? nur Kegelschnitte als
Bahnkurven folgen, eines besonderen Beweises bediirftig sei. Deshalb leitet Jomany in
der Arbeit Ixtrait de la Reponse de My. Revnoulli & Myv. Hevman (Mém. Acad. Sci. Paris,
1710) aus dem Kraftgesetz mit Hilfe des Flichensatzes

r2d9 =xdy — ydx = 2dF = cdi

und des Energieintegrals

2 2 »
(dx) + (i?) t_Z/qadU—kZ]z::Z(Uqu)

das Integral
¢ du

:y/ T/ 2(U + i) —utc

u

pr) = (p(“'—) = (u)

fiir die gesuchte Bahnkurve her, wie es seither in den Lehrbiichern der analytischen
Mechanik iiblich geworden ist.

JOHANN bleibt aber hierbei nicht stehen, sondern untersucht auch die Zentral-
bewegung im widerstehenden Mittel, welcher NEWTON ein ganzes Buch (Liber II)
seines unsterblichen Werkes gewidmet hatte. Hier wird wegen der analytischen
Schwierigkeiten das sogenannte inverse Zentralkraftproblem untersucht, nimlich aus
der Form der vorgegebenen Bahnkurve 7(9) das zugehorende Gesetz der wirkenden
Zentralkraft zu finden, wenn die Bewegung in einem Medium mit dem Widerstands-
gesetz R = - av* stattfindet. Bedeutet v die Geschwindigkeit, ¢ den Krimmungs-
radius der Bahnkurve, so leitet BERNOULLI in der Arbeit Les forces centrales dans des
malieux resistans (Mém. Acad. Sci. Paris, 1711) fiir die Bewegung die Differential-

gleichung
dv av

1 ds N v .
o v do ==L % =Y
her, welche er mit seiner oben (S. 10) erwahnten Methode 16st, indem er die gesuchte

Geschwindigkeit mit dem Ansatz v = M(v) N(r} bestimmt und damit aus

' v?  ds

o) = aw
das Zentralkraftgesetz findet. Bei dieser Zentralkraftbewegung im widerstehenden
Mittel findet nun JOHANN eine Menge von einzelnen Versehen NEWTONS heraus, die
er spdter mit Stolz im ersten Band seiner Opera zusammengestellt hat. In dem
Excerptum ex celeberrimi Newtonsi philosophiae naturalis principia mathematica Libro
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II, sect. 11 vergleicht er die erste mit der letzten Auflage des Werkes, in welcher
NEWTON seine Fehler nach der Bernoullischen Kritik verbessert hat. NEWTON war
dabei ein Versehen unterlaufen, welches in der Folge beim Priorititsstreit mit LEIBNIZ
eine groBe Rolle spielen sollte: In der Reihenentwicklung von 4 ]/é:éimymc—z hatte er die
Reihenglieder als die sukzessiven hoheren Ableitungen betrachtet und damit den
Koeffizientenfehler begangen, dafl er allgemein

lb(l‘)“ A s (p—mn 'twl)_. o1 ] D

n!

als das #-te Differential 47 2% ansah. Waren diese Fehler NEWTONS allerdings nicht von
prinzipieller Natur, sondern blofie Versehen, so erwarb sich der Basler Mathematiker
mit seiner «tifteligen» Kritik der Einzelheiten vielleicht die Sympathie der Leibni-
zianer, keinesfalls aber die Gunst der Newtonianer, die auf das Werk ihres Meisters
wie auf eine Bibel schworen. Besonders fatal war, dal JoHANN recht hatte und
NEWTON sich zu zahlreichen Verbesserungen genétigt sah, und daB erst das wach-
same Auge Jonanns das unsterbliche Werk von allen mathematischen Makeln ge- -
sdubert hatte.

Um dieselbe Zeit, als Jakoss Lehrbuch der Wahrscheinlichkeitsrechnung kaum er-
schienen war, iiberraschte JoHANN das Publikum mit einem separaten Buch — auch
bei ihm das einzige — : Essai d’une nouvelle theorie de la Manceuvre des vaisseaunx (1714,
Basle, J. G. Konig). Das Buch stellte eine Kritik der Theorie der Schiffsbewegung des
berithmten franzésischen Marineoffiziers RENAU D'ELISAGARAY Vol 1679 dar. Hatte
schon HUYGENS seinerzeit dieses Werk kritisiert, so blieb Jomaxn nicht bei einer
bloBen Kritik stehen, sondern gab seinerseits eine neue Theorie der vom Wind getrie-
benen Segelschiffe. JOHANN wird wohl in Holland zu derartigen Fragestellungen an-
geregt worden sein, da es sonst kaum zu erkliren ist, daB3 ausgerechnet ein Schweizer
Mathematiker auf nautische Probleme verfallt. Die Kritik an RENAU gab Gelegenheit,
den falschen Kraftbegriff der Kartesianer zu riigen und deren fortwihrende Ver-
wechslung von Kraft und Energie an den Pranger zu stellen. Eine der zahlreichen
Riickfragen RENAUs, die dieser durch seinen Freund VARIGNON an JOHANN gelangen
lieB, war die VeranlaBung, da BERNOULLI in einem Brief vom 26. Februar 1715 an
VaRIGNON das Gesetz der virtuellen Geschwindigkeiten formulierte: «En tout equi-
libre des forces quelconques en quelque maniere, qu’elles soyent appliquees et sulvant
quelques directions, qu’elles agissent les unes sur les autres ou mediatement ou im-
mediatement la somme des energies affirmatives sera egale 4 la somme des energies
negatives prises affirmativement», was man heute kurz in der Formel schreibt:

—

Y :Z%‘,i- ds; — 0.
ie1

JoHANN hatte schon in diesem Buch stindig vom Leibnizschen Begriff der leben-
digen Kraft mv?/2 Gebrauch gemacht. Er ist der erste, der die Bedeutung des Lehr-
satzes von der Konstanz der Energie in einem (konservativen) mechanischen System
U + (mwv?/2) = const erfaBt und den Terminus «Energie» im mathematisch-physika-
lischen Sinn gebraucht. Weil aber das Prinzip der virtuellen Geschwindigkeiten aus
dem Energieprinzip ableitbar ist, erscheint es JOHANN BERNOULLI als ein allgemeines
Prinzip der Mechanik, das er selber zwar meist nur auf statische Probleme anwendet.
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Erst D’ ALEMBERT sollte spiter den konsequenten Ubergang zutr Dynamik vollziehen,
indem er den analytischen Ausdruck BErRNOULLIS fiir das Gleichgewicht zwischen
sdmtlichen Kriften in jedem Augenblick umschreibt in

Fi3 -
= FrLIt g
2: (ﬁi” m; d’tgl*) ds; = 0,

el %

wobei
5 d% s
Kewm oo =
dt?

als «verlorene Kraft» (nicht in Bewegung umgesetzte Kraft) bezeichnet wird. Damit
kann das Bernoullische Prinzip auch fiir die Dynamik allgemein formuliert werden:
Bei der wirklich stattfindenden Bewegung ist die virtuelle Arbeit der «verlorenen»
Krifte gleich Null.

Es war unvermeidlich, daB der in den Leibnizschen Ideen heimische Basler Mathe-
matiker, der zudem noch Mingel in NEwToNs Hauptwerk entdeckt hatte, in den Prio-
ritatsstreit um die Erfindung des Infinitesimalkalkiils zwischen NEwTON und LEeiBNizZ
hineingezogen wurde. Da dieser Streit an anderer Stelle ausfiihrlich geschildert werden
soll, mdgen hier nur kurz die Abhandlungen JoHANNS erwihnt werden, die ihren
Ursprung dem Wettstreit der Newtonianer und Leibnizianer verdanken. Um die
Leistungsfahigkeit des Fluxionskalkiils von NEWToN und die der Differentialrechnung
von LEIBNIZ zu erproben, stellten sich die beiden Parteien gegenseitig Aufgaben, die
sie fiir besonders schwierig hielten. LErBN1z hatte mit dem Trajektorienproblem be-
gonnen; JOHANN erweiterte es spiter auch auf nichtorthogonale Trajektorien (A. E.
1718). Das von NEWTONS getreuem « Kettenhund», dem schottischen Kampen KgiLL,
gestellte Problem der ballistischen Kurve léste JOHANN fiir das allgemeine Wider-
standsgesetz R = av” (A, E. 1719), nachdem NEwTON in den Principia es nur fiir den
einfachsten Fall # = 1 bewiltigen konnte.

Nach dem Tode LEIBNIZENS (1716) und NEWTONS (1727) war JOHANN der groBte
Mathematiker seiner Zeit. Auch Brook TAYLOR, der noch am ehesten dem Basler
Mathematiker Pari bieten konnte, war 1731 gestorben. Da nun einerseits die englische
Mathematik infolge des Prioritéitsstreites, sich auf den unpraktischen Fluxionskalkiil
versteifend, {iber ein Jahrhundert lang in vollige Stagnation geriet, die franzdsische
Mathematik andererseits erst nach dem Siege der Newtonschen Physik tiber die
sterile Routine des Spitkartesianismus um 1750 wieder zur vollen Bliite erwachte,
konnte Jonanw, selbst mit nur gelegentlichen Abhandlungen die gelehrten Zeitschriften
fiillend und auf den Lorbeeren ausruhend, leicht seine fithrende Stellung behaupten.

Trotzdem blieben auch ihm Enttduschungen nicht erspart. Mit seinem Discours sur
les lovs de la communication du mouvement gewann er nicht den Preis der Pariser Aka-
demie, da er der Leibnizschen Dynamik huldigte, welche bei dem Unverstiandnis der -
radikalen Kartesianer in Paris verpént war. Dagegen gewann er mit den beiden Ab-
handlungen Sur le systéme de M. Descartes und der N ouvelle Physique céleste die Preise
der Akademie von 1730 und 1734 in beiden Arbeiten versucht er qualitativ, durch
eine zweckmiBige Modifikation der kartesischen Wirbeltheorie, die Neigungen der
Planetenbahnen gegen die Ekliptik, die Bahnen und die Knotenbewegungen zu er-
kldren. In den letzten fiinfzehn Jahren seines Lebens hat sich JoHANN nur noch gele-
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gentlich mit reiner Mathematik befaBt. Der vierte Band seiner Opera enthilt fast aus-
schlieBlich Abhandlungen iiber Mechanik, speziell der Hydraulik.

Sorgte er durch diese Arbeiten dafiir, daf3 sein Name in den Zeitschriften nicht ver-
gessen wurde, so war er aber schon zu Lebzeiten, mit dem Lorbeerkranz des Ruhmes
geschmiickt, nicht nur mit viterlicher Wiirde, sondern zeitweilig auch mit patriarchali-
schem Despotismus, einer ganzen Generation von Mathematikern, die er teilweise
aus seinen eigenen Sohnen rekrutierte, der gefeiertste Lehrer der mathematischen
Welt. Sein groBter Triumph wohl war, dal er einen noch Groleren zum Schiiler
hatte: Den Genius EuLERrs, der das von den Pionieren eroberte Neuland der Infini-
tesimalrechnung zu {ippiger Pracht kolonisieren sollte, ohne freilich die Giftptlanzen
darinnen zu erkennen, die erst die kritische Sonde der Analytiker des neunzehnten

Jahrhunderts zutage forderte.

J. O. FLECKENSTEIN, Basel

ZEITTAFEL

1654 27. Dezember (A. St.) Jaxos 1 BER-
NOULLI zu Basel geboren.

1667 27. Juli (A. St.) Jornaxn I BERNOULLI
zu Basel geboren.

1676 Jaxos schlieBt sein theologisches Stu-
dium in Basel ab und wird unter die
Kandidaten des Basler Kirchenmini-
steriums aufgenommen.

1676-80 Auslandsreisen Jaxkoss nach Genf
und Frankreich, wo er u.a. 1678 Haus-
lehrer auf dem Schlof Néde (Limousin)
des Marquis DE LLESTANGES war.

1680 Jaxoss Rickkehr nach Basel. Posi-
tionsbestimmung des Kirchschen Ko-
meten.

168182 Zweite Auslandsreise JAKOBS nach
Holland und England, wo er mit Mathe-
matikern wie HUDDE und dem Astrono-
men FLAMSTEED bekannt wird. Conamen
novi svstematts Cometarum (Amsteloda-
mi).

1683 Jarows Disseriatio de gravitate Aetheris.

1687 Jaxkor wird Nachfolger MEGERLINS auf
dem mathematischen Lehrstuhl in
Basel. Brief an Lemsniz mit der Bitte
um Aufklirung iiber dessen Differential-
rechnung in den Acta Eruditorum von
1684.

1690 Erste Publikation von JoHaNN De ¢ffer-
vescentia et fermenialione.

1690 Jakop lsst das Problem der Isochrone
mittels Infinitesimalkalkil und publi-
ziert damit nach Leibnizens Arbeiten
von 1684 und 1686 als erster iiber dessen
neue Methode.

1690-92 JjoHaNNs Aufenthait in Genf und
Paris.

1691-96 Ausbau des Leibnizschen Kalkiils
duarch die Briider BerNovLLI. Probleme
der Kettenlinie, Segelkurve, elastische
Kurve, Loxodrome, Spiralen, Zykloiden,
Kaustiken und Evoluten.

1693 Beginn der Korrespondenz JOHANNS
mit LEIBNIZ.

1694 Jomanns Doktordissertation De mofu
musculorum.

1695 JoumaNwn erhdlt durch Huvcens Ver-
mittlung die mathematische Professur
in Groningen.

1697 Problem der Brachystochrone. Beginn
des Streites der Brilder BERNOULLT um
das isoperimetrische Problem.

1699 Jaxkor und JOHANN zu auswirtigen
Mitgliedern der Pariser Akademie er-
nannt, deren Zahl auf acht beschriankt
war.

1701 Analvsis wmagni problematis isopevime-
trici von JAKOB.

1705 16. August Tod von JAKOBE.

1706 Publikation der vermeintlichen Lésung
des isoperimetrischen Problems wvon
Jouan~ in den Mémoires der Pariser
Akademie.

1710-11 Analytische Theorie der Zentral-
krifte von JoHanN und Kritik der syn-
thetischen Theorie derselben in New-
TONS Prinzipien.

1713 LzieNiz zieht durch ein Flugblatt jo-
HANN in den: Prioritiitsstreit mit NEw-
TON hinein. JAROBS Ars conjectands er-
scheint postum.
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1715 Prinzip der virtuellen Geschwindigkei-

ten von JoHANN analytisch formuliert.

1715-25 Wettstreit JoHANNs mit den eng-

lischen Mathematikern, insbesondere
TAavLor, um die Integration von Diffe-
rentialgleichungen beim Trajektorien-

Akademie mit dem Essai d’une nouvelle
physique céleste, sevvant & expliquer les
principaux phenoménes du ciel, et en
particulier la cause physique de U'incli-
natson des orbiles des planetes par raport
au plan de I'équateur du soleil.

und ballistischen Problem im Anschlufd
an den Prioritdtsstreit zwischen dem
Leibnizschen Differential- und dem
Newtonschen Fluxionskalkiil,

1730 Preis der Pariser Akademie fiir Jo-
HANNS Arbeit Systéme de Descartes ef la
maniéve d’'en déduire les orbiles ef les
aphélies des planites,

1734 JoHANN gewinnt zusammen mit seinem
Sohn DANTEL den Preis der Pariser

1742 Opera fohannis Bernoullii in 4 Binden
(Genf, Bousquet).

1744 Opera Jacobi Bernowllii in 2 Binden
(Genf, Bousquet).

1745 Commercium philosophicum et mathema-
ticum G. Leibnitii et Joh. Bernoullii
(Genf, Bousquet).

1748 1. Januar, Tod von JOHANN.

Die beiden Portvaitabbildungen sind Reproduktionen von Olgemdlden aus dev alten Aula der Uni-
versitdt Basel. Das Bildnis Jakobs (Original) wurde vom Bruder Nicolaus (wahvscheinlich 1657)
gemalt, das Johanns (Kopie) stammt von J-R. Huber (1740).

STAMMTAFEL DER MATHEMATIKER BERNOULLI

Nricoraus, Ratsherr in Basel

. 1623 —-1708
Jaxes I, Prof. in Basel NICOLAUS, Maler Jorann I, Prof. in
16541705 1662—1716 Groningen und Basel

l l 16671748

Nicoraus, Maler Nicorauvs I, Prof.
1687—1769 in Padua und Basel
1687—1759

v v | Y

Nicoravs 1II, Prof. in Danier I, Prof. in Basel JorANN II, Prof.

Bern und an der Aka- ~und an der Akademie in in Basel
demie zu Petersburg Petersburg 1710—1790
1695—-1726 1700—-1784

v

DanNieL 11, Assistent des
Onkels Daniel T und

Jouann ITI, Direktor

Jaxos I, Mitglied
der Berliner Sternwarte,

der Akademie in Peters-

Mitglied der Akademie in kurze Zeit Prof, in Basel burg
Berlin 1757—1834 1759—1789
1744—1807 _ ‘1'

CuristorH, Prof. in
Halle und Basel
1782 — 1863
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