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Geological transect across the Northwestern Himalaya
in eastern Ladakh and Lahul
(A model for the continental collision of India and Asia)

By Albrecht Steck, Laurent Spring, Jean-Claude Vannay, Henri Masson,
Edgar Stutz, Hugo Bûcher, Robin Marchant and Jean-Claude Tièche1)

abstract

The detailed geological mapping and structural study of a complete transect across the northwestern
Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean

opening and the Himalayan Orogeny.
The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE

Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a

Lower Permian stratigraphie unconformity, a Lower Permian granitic intrusion and middle Permian basaltic
extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The

scarcity of synsedimentary faults and the gradual increase ofthe Permian syn-rift sediment thickness towards the

NE suggest a flexural type margin.
The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the

Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of
continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by
the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly
eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul.

The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The

Nyimaling-Tsarap Nappe developed by ductile shear of the upper part ofthe subducted Indian continental margin
and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below
the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts ofthe Nyimaling-Tsarap and Shikar
Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower

greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures,
which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km.

The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral
transpression and underthrusting : the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are

interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India
relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models.

Later, a phase of NE vergent "backfolding" developed on these two zones of dextral transpression, creating
isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments.

During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent
an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic

unroofing of the amphibolite facies rocks of the Sarchu area : the Sarchu high angle Normal Fault, cutting a first
set of low angle normal faults, which have been created by reactivation of older thrust planes related to the

Nyimaling-Tsarap Nappe.

') Section des Sciences de la Terre, Université de Lausanne, BFSH2, CH-1015 Lausanne.
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RESUMÉ

Le levé géologique détaillé et l'analyse structurale d'une transversale complète de l'Himalaya nord-occidental

permettent de décrire l'évolution tectonique de la marge continentale nord de l'Inde au cours de l'ouverture de

l'océan téthysien et de l'orogenèse himalayenne. Le rifting téthysien d'un âge paléozoique tardifest associé à divers
événements tectonomagmatiques. Au Lahul supérieur et au Zanskar oriental, cette phase d'extension est

enregistrée par des failles de transtension synsédimentaires du Carbonifère inférieur, une discordance stratigraphique
du Permien inférieur, une intrusion granitique du Permien inférieur et des extrusions basaltiques du Permien

moyen (Panjal Traps). Au Ladakh oriental, une faille listrique permienne est également liée à cette phase. La rareté
de failles synsédimentaires et l'augmentation graduelle de l'épaisseur des sédiments syn-rift permiens en direction
de la suture suggère une marge continentale de type flexurale.

La collision de l'Inde et de l'Asie se caractérise par une succession de phases orogéniques contrastées. Au S

de la zone de suture, l'initiation de la nappe de Nyimaling-Tsarap de vergence SW correspond à une phase précoce
du sous-charriage continental. Au S, au Lahul, un sous-charriage opposé, situé à l'intérieur de la plaque indienne
est enregistré par le synclinal de Tandi à vergence NE. Cette structure est associée à la nappe du Shikar Beh, définie
ici pour la première fois. La surcharge due à cette nappe et à d'autres nappes érodées est responsable du fort
métamorphisme régional (faciès amphibolite) au S Lahul.

Le chevauchement principal de la nappe de Nyimaling-Tsarap a suivi la formation de la nappe de Shikar Beh.

La nappe de Nyimaling-Tsarap s'est développée par cisaillement ductile de la partie supérieure de la marge
continentale indienne subductée. Elle est responsable du métamorphisme régional progressif du Zanskar oriental,
qui a atteint le faciès amphibolite sous la partie frontale de la nappe à Sarchu. Au Haut-Lahul, les parties frontales
des nappes de Nyimaling-Tsarap et du Shikar Beh sont séparées par une zone de roches à faible métamorphisme
(faciès à pumpellyite-actinote). A un niveau structural élevé, la nappe de Nyimaling-Tsarap est caractérisée par
une structure imbriquée, passant à une large zone de cisaillement ductile en profondeur. Le raccourcissement
crustal lié à la formation de cette nappe est d'environ 87 km.

La zone radicale et la partie frontale de cette nappe ont été affectées par la suite par deux zones de

transpression dextre (sous-charriage oblique): la zone de cisaillement dextre de Nyimaling et la zone de cisaillement

dextre de Sarchu. Ces zones de cisaillement seraient dues à la rotation antihoraire de la direction de

sous-charriage continental de l'Inde par rapport à l'Asie entre 45 et 36 Ma, en accord avec les modèles de

tectonique des plaques.
Plus tard, une phase de rétroplissement s'est développée dans les deux zones de transpression dextre, créant

des plis isoclinaux dans le Zanskar oriental et des plis plus ouverts dans le dôme de Nyimaling et dans la molasse
de l'Indus.

Au cours d'une période tardive de l'orogenèse himalayenne, la partie frontale de la nappe de Nyimaling-
Tsarap a subi une extension d'environ 15 km. Cette phase s'accompagne de deux types de structures responsables
de la denudation tectonique des roches du faciès amphibolite de la région de Sarchu: la faille normale de Sarchu,

coupant une première famille de failles normales à faible pendage, créées par réactivation de plans de chevauchement

de la nappe de Nyimaling-Tsarap.

Introduction

The geological studies of the Himalayan chain in Lahul-Zanskar are often local or
based on undetailed geological maps and vast regions are still unmapped. The aim of this
work is to establish a model for the formation of the Himalaya, based on the detailed
study of a complete transect from NE to SW. Since 1979, geologists from the University
of Lausanne studied the region situated along the Manali-Leh road, from the High
Himalayan range to the Indus Suture Zone (Fig. 1). Their investigations include a
detailed 1/50000 geological mapping and a systematic study of the tectonic structures.
This paper presents the synthesis of their observations. The plan ofthe paper is as follows :

after a summary ofthe stratigraphy and the synsedimentary pre-Tertiary structures ofthe
investigated area, the Tertiary Himalayan structures of the different tectonic units are
presented from NE to SW and the regional metamorphism is briefly discussed. From these
elements a tectonic model for the continental collision of India and Asia is proposed.
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Stratigraphy and synsedimentary tectonics

The aim of this paper is to propose a tectonic synthesis of a geological section of the
western Himalaya in Ladakh and Lahul (Fig. 1 and Plate 1). For this reason the description

of the stratigraphy is restricted to a summary. The stratigraphy of the Tethyan
Himalaya in the investigated area is resumed in four profiles (Fig. 2), compiled after
Baud et al. (1982), Fuchs (1985), Stutz (1988), Spring & Crespo (1992) and unpublished
observations by J.-C. V., H. M., A. S. and J.-C. T.

A palinspastic reconstruction of the northern continental margin of India some
54 Ma ago, at the time ofthe collision with Asia is presented in Fig. 3. Note the scarcity
of Late Paleozoic syn-sedimentary structures (Lower Carboniferous transtensional faults
in Upper Lahul and a Permian listric fault in the Nyimaling Region, Plate 1) and the
regular increase of the Permian syn-rift sediment thickness over a distance of more than
150 km, from the rift shoulder to the S to the first normal fault to the N. On the base

of these features, this N Indian continental border is interpreted as a flexural passive
margin (Wernicke 1985, Voggenreiter et al. 1988). The mechanical and rheological behavior

of the N Indian margin during the Tertiary collisional processes has been influenced
by several lithological and structural parameters, which are the consequences of its
pre-Tertiary evolution. The following observations resume these parameters:

1) In this part ofthe Himalaya the oldest known rocks have been described by Frank
et al. (1977) in the Berinag Series of the Larji-Kulu-Rampur Window, S of the studied
area (meta-rhyolites and meta-granites : Rb/Sr whole rock isochron of 1840 ± 70 Ma).

In the investigated area, the N Indian continental margin is characterized by a

continuous stratigraphie sequence, beginning with Upper Precambrian to Cambrian
sandstones and slates (Phe Fm.) and ending with calcarénites, sandstones and slates of
Eocene age. The different formations of this stratigraphie sequence have been described
by Bassoulet et al. 1983, Baud et al. 1982,1984, Bucher & Steck 1987, Fuchs 1982,1985,
Gaetani et al. 1986, 1987, 1990, Gaetani & Garzanti 1991, Garzanti & Van Haver, 1988,
Garzanti et al. 1987, Gilbert et al. 1983, Jadoul et al. 1990, Nanda & Singh 1976, Pickett
et al. 1975, Srikantia et al. 1980, Stutz 1988, Sutre 1990 and Van Haver et al. 1984. In this

part of the Himalaya, no discordance between a polymetamorphic, strongly folded
basement and monometamorphosed cover rocks is known, as it is typical for the

European Alpine Chain. Unconformities and gaps in the stratigraphie pile and synsedimentary

normal faults are related to pre-Tertiary tectonic events within the Indian continental

plate and its passive margin (Fig. 2 & 3).
2) Cambro-Ordovician granites intrude the Upper Precambrian to Lower Cambrian

Phe Fm. in Lahul and the Phe and Karsha Fms. ofthe Nyimaling Massif in eastern Ladakh.
In Lahul, Rb/Sr whole rock radiometric age determinations for the intrusive granites,
cropping out in the Chandra and Bhaga valleys, range from earliest Cambrian to early
Ordovician: Rohtang Granite, 581 ± 9 Ma, (Mehta 1977), Kade-Jispa-Rohtang Granites

495 ±16 Ma, (Frank et al. 1977). The Nyimaling Granite gave a Rb/Sr whole rock
isochron age of 460 + 8 Ma (Stutz & Thöni 1987). The high 87Sr/86Sr initial ratio of
these intrusives indicates a crustal origin for these rocks. It is important to note that the
Cambro-Ordovician granites intrude the undeformed Precambrian and Cambrian
sediments ofthe Phe and Karsha Fm. This magmatism may be related to the same extensional

tectonic event responsible for synsedimentary faults in the Ordovician Thaple Fm.
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3) In the Ordovician Thaple Fm. a NW-SE striking synsedimentary normal fault,
sealed by the overlying Devonian Muth Quartzites, has been observed in SE Zanskar,
south of the Lingti Chu (Fig. 3).

4) Synsedimentary transtensional faults, contemporaneous with deposition of the

Early Carboniferous Lipak Fm., have been observed south of the Baralacha La (Pass),
in Upper Lahul. These structures are intruded by basaltic dikes, grouped in a swarm
called the Baralacha La Dike Swarm. A geochemical study indicates these rocks are
alkalic Within Plate Basalts. Their geochemical signature differs clearly from the middle
Permian tholeiitic Panjal Traps continental flood basalts (Vannay & Spring 1993). These

Permo-Carboniferous tectono-magmatic events are most probably related to the initiation

of the Neo-Tethys rifting. The Baralacha La Dike Swarm and the Early Carboniferous

faults have been subsequently overprinted by the Tertiary Baralacha La Thrusts.
5) Stutz (1988) mapped a very important listric normal fault of Permian age in the

Nyimaling Region (Plate 1 and Fig. 3). In his 1988 paper, Stutz interpreted this structure
as a simple thrust fault. This structure is now reinterpreted as a Permian normal fault,
related to the opening ofthe Permian Tethys and reactivated by thrust movements during
Tertiary time.

6) The continental crust of Northern India was thinned during the Permian opening
of Tethys mainly as a consequence of internal ductile deformation. The distance between
the continental shelf border and the Permian rift shoulder is estimated at 200 km (Fig. 3).
The opening of the oceanic domain was achieved in early Triassic time (Bassoulet et al.

1981).
7) The rheological behavior of the different formations in the stratigraphie pile

depends mainly on the temperature. Deformed at low temperature, shales and marly
limestones represent the most ductile rocks of the stratigraphie pile and act as "décollement

zones" by simple shear processes. The Middle to Upper Cambrian Kurgiakh Fm.,
Lower Carboniferous Lipak Fm., Upper Permian Kuling Fm. and the Triassic Lilang
Group are composed of such ductile rocks (Fig. 2). With metamorphic temperatures
attained at the greenschist and amphibolite facies (Fig. 31), the rocks of the whole
stratigraphie pile have a ductile behaviour.

Himalayan tectonics

The Indus Molasse

The Lower Tertiary sediments of the Indus Molasse have been deposited in an
intramontane basin, developed behind the fore-arc basin of the convergent margin of
Asia, south ofthe Ladakh Batholith (Garzanti et al. 1987). Near Upshi, 45 km SE of Leh
in the upper Indus Valley, the conglomerates ofthe Indus Molasse overlie the intrusives
of the Ladakh Batholith (Frank et al. 1979 and Fig. 4). On the southern slope of the
Indus Valley, thrust planes of the Hemis Thrust indicate an overthrust of the Molasse
sediments toward the NE (Fig. 4 and 5 and Frank et al. op. cit.).

Farther to the S, in the Martselang-Gongmaru La section, the structural style of the
Indus Molasse is characterized by open synclines and anticlines, like the spectacular
syncline of Hemis Gompa (Fig. 4 and Frank et al. 1977, Fig. 9). Fault structures as

drawn on the sections of Baud et al. (1982), Van Haver et al. (1984), Garzanti & Van
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Haver (1988) and Frank et al. (1987) have not been observed. Geological mapping shows
that these structures rather correspond to strongly deformed zones characterized by
disharmonie deformation on lithological boundaries (Bûcher & Steck 1987).

A detailed structural analysis allows us to distinguish up to 3 generations of NE
vergent folds and two schistosities. Fig. 6 represents a palinspastic reconstruction of the
Indus Molasse section and Fig. 7 a kinematic model for the post-Eocene folding and
thrusting ofthe Indus Molasse Basin. The relations of superposed folds and schistosities
show that they have been created during a rotational deformation, related to a progressive

overthrust ofthe Molasse sediments toward the NE (Figs. 5-10). The first schistosity

is restricted to the very ductile Chogdo Flysch, in the lowest part of the Molasse

sequence. In the southern part of the section, between Gongmaru La and Sumdo, the
second and main schistosity (S2) is the axial surface structure (A2) of F2 folds. To the N,
the main schistosity (S2) becomes the axial surface structure (AJ of the less deformed
Hemis Syncline (FJ (Figs. 4 and 7). The metamorphic grade ofthe Molasse sediments
decreases from prehnite - pumpellyite facies between the Gongmaru La and Sumdo to
very low grade in the Indus Valley. From SW to NE, the intensity of the main schistosity
S2 decreases in the same way with a "schistosity front" about 1 km south of Martselang
(Figs. 4 and 7). These observations indicate that the deformation and metamorphism are
related to a late NE vergent overthrust of the Tertiary Himalayan Chain onto the
Molasse basin (Baud etal. 1982, Van Haver etal. 1984, Searle etal. 1990).

The Indus Suture

The Indus Suture is a major Cretaceous and Tertiary structure of the Himalaya and
it had a long and complicated geological history (Plate 1 and Fig. 11). It marks the
vertical contact ofthe Indus Molasse with the sediments ofthe root zone ofthe
Nyimaling-Tsarap Nappe (Zanskar Nappes). The latest movements on the Indus Suture corre-
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spond to an uplift of the Nyimaling Dome relative to the Molasse sediments. In this

zone, root equivalents of the Spongtang Ophiolites and other nappes existing as

"klippes" on top of the Zanskar nappes have been observed as tectonic slices farther to
the NW, in the Markha Valley. It is beyond the aim of this paper to propose a model for
the kinematics ofthe Indus Suture. This subject is discussed by Bassoulet et al. (1983),
Gilbert et al. (1983), Honegger et al. (1982), Trommsdorff et al. (1983), Sutre (1990) and
Talon (Ph.D. thesis, in preparation).

The Nyimaling Dome

The Nyimaling Dome forms the north-western end of the so called "Tso Morari
Crystalline" (Berthelsen 1953, Baud et al. 1982, Thakur 1983 a & b, Stutz & Steck 1986

and Stutz 1988). Figs. 11 and 12 show the structural outlines, represented on horizontal
geological sections. We principally distinguish two generations of structures, related to
the Himalayan Orogeny. The older group of structures was generated during the
underthrusting of the Indian continental plate below Asia, and are associated with the formation

of the Nyimaling-Tsarap Nappe. The younger structures are related to the creation
of the Nyimaling Dome. Table 1 summarizes the chronology of the Tertiary Himalayan
structures in the studied area.
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Table 1. Chronology ofthe Tertiary Himalayan structures in eastern Ladakh and Lahul

Continental collision ana beginning of underthrusting of India below Asia (~ 54 Ma).

A) Early initiation of SW vergent Nyimaling-Tsarap Nappe D1

Early NE vergent movements.

B) NE vergent folds FTal, axial surface schistosity ST,, and stretching lineation 1^.,: Tandi DTal
Syncline, Shikar Beh Nappe

Main SW vergent deformations and subsequent dextral transpression and backfolding.

C) SW vergent folds FT,2, axial surface schistosity STa2 and an E to ENE oriented stretching DTa2
lineation L,^ : SW vergent deformation of Tandi Syncline

D) SW vergent thrusts and folds F2, axial schistosity S2 and NE oriented stretching D2
lineations L, + L2: main development ofthe Nyimaling-Tsarap Nappe, Baralacha
La Thrust and Chandra Tal Flexure

E) Dextral shear and underthrusting (transpression) parallel to NW-oriented stretching D 3

lineation L3: Nyimaling and Sarchu Shear Zones

F) NE vergent "back" folds F„, doming and dextral transpression related to the creation D4
of the Nyimaling similar fold

G) Late dextral shear in Nyimaling-Markha Valley Steep Belt (S5)

Late extensional structures of Sarchu region

H) Low angle normal faults (reactivation of preexisting D2 thrust planes) D 5

I) Steep Sarchu Normal Fault

Late compression

J) NE-SW compression and vertical extension: symmetric box-folds in the Nyimaling dome D6
W vergent folds in the Kenlung Sarai Unit near Sarchu

The first stretching lineation of the Nyimaling-Tsarap Nappe was labelled L2, as this
structure and the associated F2 folds are overprinting the FTal fold in the Chandra Valley
(Fig. 29). The L2 stretching lineation is older in the Nyimaling region than in the frontal
part of the Nyimaling-Tsarap Nappe, represented by the Baralacha La Thrust and
Chandra Tal Flexure. The temporal relation between L2 in the Nyimaling region and

LTal in the Chandra Valley is not established. Two schistosities (S, and S2) with the
associated NE oriented L2 stretching lineation are related to the tectonic transport of the

Nyimaling-Tsarap Nappe towards the SW. The stretching lineation L2 is still preserved
in its original orientation between Jakang in the Nyimaling Massif and Charras in the

Tsarap Valley (Figs. 12 and 14). Within the Nyimaling Dome the stretching lineation L2
is generally transposed by younger deformations, mainly by the stretching lineation L3,
which is related to a later underthrusting of India below Asia in a NNW direction. This
dextral transpression is oblique to the root zone of the Nyimaling-Tsarap Nappe. The
intense extension associated with the younger D3 deformation has created the spectacular

kilometer-scale Bya-Ri sheath fold by overprinting a FJF2 fold hinge intersection
(Figs. 11 and 13). On the geological map (Plate 1 and Fig. 30), the younger stretching
lineation L3 is confined to a 30 km large dextral transpressional shear zone, limited to
the NE by the Indus Suture and to the SW by a line that connects the villages of Dat and
Lun. The main schistosity S2 has been transposed by internal deformation without
generating a new schistosity S3.
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The Nyimaling dome is a NE vergent "back'Told which deforms all the preexisting
schistosities and the two stretching lineations L2 and L3 ofthe Nyimaling-Tsarap Nappe.
The Nyimaling dome can be interpreted as a similar fold, with a direction of slip a

(Ramsay 1967, p. 470) gently dipping to the NW and parallel to the shear direction in
a zone of dextral transpression (Stutz & Steck 1986). The rotation to a vertical plane and

uplift ofthe "root zone" ofthe Nyimaling-Tsarap Nappe relative to the Indus Molasse,
and the reactivation as a vertical fault of the Indus Suture in a late phase, are both related
to this deformation D4. In the Nyimaling-Markha Valley Steep Belt (northern limb of
the antiform), dextral shear continues in the ductile shales and marls. This dextral shear

generates a vertical schistosity S4 (Stutz 1988 and Figs. 11 and 13). In the hinge zone of
the Nyimaling Dome in the Langthang Valley, box folds associated with an NE-SW
oriented direction of compression and a subvertical direction of extension, are related to
a late compression of the dome structure.

We conclude that the Nyimaling Dome is a structure created during dextral
transpression overprinting the "root zone" of the Nyimaling-Tsarap Nappe (Fig. 30).

The Nyimaling-Tsarap Nappe

In this paper, we propose the name Nyimaling-Tsarap Nappe for the whole thrusted
pile of sedimentary rocks situated between the Indus Suture to the N and the Sarchu

region to the S. Discordant thrust planes inside the higher and frontal part of this

super-nappe allow a subdivision in different units (plate 1 and Fig. 3). In the Nyimaling-
Tsarap Nappe one can follow the gradual transition through distinct deformation styles

typical of different tectonic levels (Figs. 13-18). To the N, between the Gongmaru La
and Dat in the Kharnag region, deformation under upper greenschist facies conditions
is ductile and penetrative. In this deepest and most ductile part ofthe nappe, simple shear
is the main mechanism of deformation. In the Nyimaling region, discrete thrust planes
are generally missing, with the exception of a thrust structure, which has been developed
by reactivation of a pre-existing Permian normal fault. On this originally NE dipping
fault, younger Permian sediments are overlying, from N to S, sediments of upper
Precambrian to Permian age, proving that this structure was first a normal fault. A slice of
Cambrian dolomites in the Permian sediments indicates a later (Tertiary) overthrust of
about 4 km along the Permian normal fault (Stutz 1988). In the Nyimaling Region, the
deformation is more intense in ductile members, especially in the 3000 m thick Triassic
and Permian marly sediments and Carboniferous limestones, but also in the Nyimaling
Granitic Gneiss (Fig. 14). It is generally less intense in the Upper Precambrian and
Cambrian sandstones of the Phe and Karsha Fms. Some lenses in the Nyimaling Granite

and the rigid black colored pelitic sandstones (hornfels) of the contact aureole of
the granite, escaped the penetrative deformation. It is probable that the Nyimaling
Gneiss, which overlies north of Jakang the younger Karsha Fm., represents a Tertiary

Fig. 13. Panoramic views of the isoclinal recumbent folds and sheath folds of the "root zone" of the Nyimaling-
Tsarap Nappe. The fault on the Nyimaling La is a Permian normal fault, that has been reactivated as a thrust fault
in Tertiary time. In black: yellow crinoid limestone forming the core ofthe kilometric Bya-Ri Sheath Fold (F,/F2).
This figure represents a new interpretation of Fig. 5 in Stutz & Steck (1986).
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recumbent gneiss fold (Fig. 14). Farther to the SE, the profiles of Berthelsen (1953)
suggest similar structures in the Tso Morari region, where deeper structural levels crop
out. The structure ofthe Nyimaling Granitic Gneiss unit is comparable to the recumbent
gneiss fold nappes ofthe Alps (Steck 1987, Escher & al. 1988, Steck et al. 1989, Escher
etal. 1992).

To the S, the region between Lun and Sarchu corresponds to a higher tectonic level

in the Nyimaling-Tsarap Nappe. The deformation concentrates on discrete thrust planes,
responsible for a "ramp-and-flat" tectonic style. These thrust planes are located in the
frontal part of the Nyimaling-Tsarap Nappe, where they define the limits of different
tectonic units, as in an imbricate structure ("structure imbriquée", De Margerie & Heim
1888). Towards the internal parts ofthe nappe, these thrusts gradually disappear in the
ductile Triassic and Permian marls and shales and in the ductile "root zone" (Figs. 3, 15

and Plate 1). This relationship between discrete, more brittle shear zones in a high
tectonic level and a large ductile shear zone in a structural deeper level, is schematically
shown in Fig. 16. The sense of overthrust is shown by the vergence of asymmetric folds.
The precise direction of movement of the Nyimaling-Tsarap Nappe is indicated by the
NE-SW oriented stretching lineation L2, corresponding to the great X axis ofthe strain
ellipsoid and developed on the two schistosities S] and S2 (Fig. 14). The thrust planes and
first generation folds F, have been formed simultaneously with the development ofthe
first schistosity S,. The second schistosity, which is the axial surface schistosity ofthe
second generation folds F2, generally shows a steeper dip towards the NE and often
makes an angle of about 20° with S^ With the progressive development of S2, the
overthrusting movements on the preexisting discrete main thrust planes S! continued.
This relationship between these different structures of a progressive rotational deformation

is clearly visible in the thrust zones between the Tsarap River and the Marang La
(Figs. 17 and 18). The southern front of the Nyimaling-Tsarap Nappe is affected by the

very complex structures ofthe Sarchu Zone (Spring & Crespo 1992). The length balanced

cross section of Fig. 3 shows a shortening of about 90 km related to the thrusting of the

Nyimaling-Tsarap Nappe. This approximate palinspastic reconstruction does not take
into account the amount of internal ductile deformation of the rocks. The Nyimaling-
Tsarap Nappe has been developed by ductile shear of the upper Indian crust during
underthrusting of the Indian continental margin below the accretionary prism and the

rigid margin of the Asian Plate (Fig. 3). The lower and frontal limit of the ductile shear

zone has propagated progressively through the Indian upper crust towards the SW. The
incorporation of different tectonic units in the Nyimaling-Tsarap Nappe occurred gradually

in time and space. From N to S, we distinguish the following succession of tectonic
units: Kharnagh, Zara, Marang La, Zumlung b, Zumlung a, Zangla and Chumik Units.
The amount of deformation and translation is decreasing in the frontal Kenlung Sarai
Unit and in the Baralacha La Thrusts (Figs. 3 and 16). The Nyimaling-Tsarap Nappe
represents in imbricated structure ("structure imbriquée") such as defined and drawn by
De Margerie & Heim (1888, Fig. 105), more than 100 years ago. This imbricate structure
differs from the "imbricate fan" defined by Boyer & Elliott (1982) by the fact that the
frontal thrust silces are not related to a unique "sole thrust" but to a large ductile shear

zone, characterized by fold structures and situated in the upper crust. The model of Boyer
& Elliott is only applicable to thrust systems developed at shallow tectonic levels, as for
instance the Jura Thrust system in the Alps (Buxtorf 1907, Laubscher 1965). There is a
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controversy about the autochthony (Fuchs 1989) or allochthony (Baud 1989) of the

Tethyan Zone of the Himalaya. Fuchs' (1989) main argument is the following: "In
Zanskar the alleged pile of nappes consists of formations of Paleozoic to Eocene age in
normal stratigraphie order." This is what our geological sections actually show (Figs. 3,

15 and 16); the normal stratigraphie succession is generally preserved and is only locally
disturbed by recumbent folds in the ductile northern part of the section (deep tectonic
level) and by overthrusts in the nappe front to the S (high tectonic level). We interpret
these facts as consequences of a nappe translation mechanism by simple shear. This

transport mechanism has two characteristics : the normal stratigraphie sequence and the

continuity between the thrust front and the autochthonous root of the nappe are
maintained.

In Fig. 19, we propose a two dimensional model for the calculation ofthe extension
and the depth of the shear zone. For the boundary conditions, we assume that there is

no change of the rock volume surface in two dimension) and no change of the length
of the competent Liassic Kioto Fm. strata during nappe formation. The result of this
approximation is represented in Fig. 20. The translation path is about 87 km and the
calculated depth of the shear zone is about 7 km. The depth of 7 km seems to be
reasonable as it corresponds to the thickness of the strongly deformed shaly sandstones,
shales, marls and marly limestones between the Phe and Kioto Formations. Nevertheless,

the most questionable assumption in this model is the preservation of the original
length of the measured strata. It is quite possible that the Kioto limestones have been

elongated in the deeper, more ductile root zone ofthe nappe. Consequently the calculated
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s represents a maximum length and h a minimum depth of the shear zone. The approximation

could be improved by a quantitative determination of the internal deformation
of the Kioto limestones.

On the base of our map and structural observations, we conclude that the geometry
and the kinematic of the Nyimaling-Tsarap Nappe is comparable with the tectonic style
of alpine nappes, as described by Argand (1916). This conclusion contrasts with the
models proposed by Searle (1986) and McElroy etal. (1990) for the Zanskar Nappes,
some 50 km farther to the W. According to these authors, the Zanskar Nappes are
characterized by imbricate thrust-duplexes and imbricate fans, related to a main basal
detachment thrust.

The Sarchu Zone

The Sarchu Normal Fault, separating Paleozoic sediments to the S from Triassic
carbonates of the Lilang Group to the N, was first observed by Srikantia & Bhargava
(1982) (Plate 1 and Fig. 21). Near Sarchu, the NW-SE striking and NE dipping Sarchu
Normal Fault separates highly metamorphosed sediments of Ordovician to Carboniferous

age to the SW (critical paragenesis: staurolite-kyanite-biotite-garnet) from low grade
Triassic sediments to the NE. In the last few years this region has been mapped in great
detail, measurements of Illite "Crystallinity" have been carried out and a tectonic model
has been proposed by Spring & Crespo (1992). Based on a structural map (Fig. 21), a

geological section (Fig. 24) and a metamorphic map (Fig. 31), a model for the structural
evolution of this region is proposed (Fig. 21 and Table 1).
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In the Sarchu region, we observed a concentration of many kinds of deformational
structures of different ages. We interprete this fact as a consequence of a repeated
reactivation of older large scale structures or of the initiation of younger structures on
preexisting ones. The oldest structure observed in this region is a synsedimentary normal
fault in the Ordovician Thaple Fm., S ofthe Lingti Chu. This normal fault has almost
the same NW direction of strike as the Tertiary Sarchu Normal Fault, 3 km farther to
the N, but it shows an opposite inclination. S and N of the fault, the Thaple sandstone
reaches a thickness of 1300 m and 500 m respectively proving a vertical displacement of
800 m. The structure is sealed by the undisturbed Devonian Muth Fm. quartzites. A
subvertical and N striking Carboniferous gabbroic and a Lower Permian granitic dike
cut the Yunam Valley about 6 km south of Sarchu (Spring et al. 1992 and Plate 1). This
composite intrusion is most probably associated with an extensional structure, related to
the initiation of the Tethys rifting. The middle Permian Panjal Traps basalts are limited
to the Chumik and Kenlung Serai Units, but no feeder dikes have been observed
(Plate 1).

In this region, the Tertiary deformation started with a SW vergent underthrusting as

indicated by the stretching lineation L2, below the frontal part ofthe Nyimaling-Tsarap
Nappe. The associated crustal thickening is responsible for the regional metamorphism
in the Kenlung Sarai Unit. We observe a strong metamorphic gradient from a chlorite-
stilpnomelane-pumpellyite zone, SW of Baralacha La, to a kyanite-staurolite zone, S of
Sarchu. These rocks were metamorphosed at temperatures of 540 °C (biotite-garnet
geothermometer, Spring et al. 1993). Assuming a maximum geothermal gradient of
30 °C/km this indicates a minimum depth of about 18 km. Therefore, above the amphibolite

facies metapelites (staurolite - kyanite) S of Sarchu, a nappe stacking of about
18 km has been removed by tectonic unroofing (extension, uplift and erosion). This
nappe pile corresponds to the SW front ofthe Nyimaling-Tsarap Nappe, as shown in the
schematic model of Figs. 31, 32 and 33. Amphibolite facies grade rock samples near
Sarchu give K/Ar cooling ages of 22.8 ± 0.5 Ma for muscovite and 20.8 + 0.4 Ma for
biotite and 40Ar/39Ar cooling ages of 33.5 Ma for amphibole (total gas age) and of
19.3 + 0.2 Ma for biotite (plateau). These ages are interpreted as cooling ages of these

metamorphic rocks, from about 500 °C to 300 °C (Spring et al. 1993).

During a later synmetamorphic stage, the nappe front was affected by oblique
underthrusting of the Kenlung Serai Unit parallel to a N to NNW oriented stretching
lineation L3 as indicated by sample-scale shear criteria. This ductile dextral Sarchu Shear
Zone represents a transpression structure, similar to the dextral transpression zone in the

Nyimaling Massif (Fig. 30). These structures are synmetamorphic and associated with
amphibolite facies conditions in the Kenlung Serai Unit, anchizone in the Chumik Unit
and epizone in the Zangla Unit (map of metamorphic zones, Fig. 31). The dextral
underthrusting is followed by a NE vergent backfolding F4, with isoclinal recumbent
folds in the ductile Kenlung Serai Unit and open folds in the more rigid Zangla Unit
(Figs. 21, 22 and 23). The zone of NE vergent folds coincides with the zone of dextral
underthrusting and the F4 fold axes have the same N to NNW orientation as the

stretching lineation L3. The backfolding followed the first dextral shear during a
rotational deformation in a zone of dextral transpression, situated in the frontal part of the

Nyimaling-Tsarap Nappe pile. A similar situation is observed farther to the N, in the

Nyimaling Region, along the Indus Suture.
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The zone of dextral transpression and the NE vergent folds F4 are cut by two
generations of normal faults. Spring & Crespo (1992) suggest a very important late

extension, initiated by reactivation of pre-existing gently dipping thrust surfaces, and
later cut by the steep Sarchu Normal Fault. These extensional structures, together with
uplift and erosion, are to a large extent responsible for the unroofing of the high
metamorphic rocks S of Sarchu (Figs. 31, 32 and 33). The precise direction of relative
movement on these late extensional structures is not known, as no small scale structures
related to this extension have been observed, these late faults being usually covered by

Quaternary screes. In other parts of the Himalaya, several models interprete these

structures of late extension by normal faulting and the backfolding as related to the
so-called phenomenon of "gravitational collapse" (Burg & Cheng 1984, Burchfiel &
Royden 1985, Herren 1987, Searle et al. 1987, Pêcher 1991 and others). For the following
reasons we doubt this model could explain the structures of the Sarchu region :

1. Normal faulting and backfolding are related to two distinct phases of deformation.

The backfolding is older and related to structures of compression. These backfolds
are cut by the younger extensional faults.

2. The total extension on low angle normal faults in the frontal part ofthe Nyimaling-
Tsarap Nappe is about 15 km. The gravitational force related to the topographic relief
of the Himalaya seems much too small to produce this type of deep-seated structures.
Consequently, we propose the occurrence of an extensional phase between India and
Asia during the late stage of the Himalayan Orogeny. On the Tibetan slope of the

Himalaya in Nepal, Pêcher & Le Fort (1989) and Pêcher (1991) propose a phase of
transtension to explain similar structures.

The Baralacha La Thrust and the Chandra Tal Flexure

The Baralacha La represents the watershed of 3 rivers: the Yunam flows down to the

NNE, crossing perpendicularly the main Himalayan structures, and joining the Lingti
and Tsarap Rivers in the Sarchu Plain. The direction of the two other rivers, the Bhaga
to the W and the Chandra to the SE of the pass, is controlled by a concentration of
Himalayan folds and thrusts. The geological map and profiles (Fig. 24) show a great
number of SW vergent thrusts and folds near the Baralacha La (Fig. 25). Descending the
Chandra Valley to the SE, the Baralacha La Thrusts are gradually replaced by SW

vergent folds of the Chandra Tal Flexure (Fig. 26). The SW direction of thrusting and

folding is indicated by the stretching lineation L2 (Fig. 24). Between the Baralacha La,
the Chandra Tal (Chandra lake) and Batal the axial surface schistosity S2 of the SW

vergent folds has been rotated to its present vertical position by late NE vergent back-

folding F4.
The Baralacha La Thrust has probably been initiated by reactivation of normal faults

of Early Carboniferous age. Fortunately some of these Carboniferous faults have not
been overprinted by the later Tertiary deformation and their original geometry is still
preserved. Some of these faults are intruded by basaltic dikes, which never cut sediments

younger than the Lower Carboniferous Lipak Fm. The dikes are overprinted by the

Fig. 24. Structural map ofthe Baralacha La-Chandra Valley region. The oldest structure ofthe region is the NE
vergent Tandi Syncline and similar structures in the Darcha Unit. The SW vergent Baralacha La Thrust - Chandra
Tal Flexure structure is younger.
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Tertiary regional metamorphism and deformation structures. In the Baralacha La
region, the basaltic dikes are apparently never deformed by F2 folds (Fig. 25). This could
be explained by the fact that their orientations are quite similar to the later Tertiary axial
surface schistosity S2, which in some cases cut the dikes at a very low angle. All the dikes
are metamorphosed and often have a schistose texture. A geochemical and geological
study shows that these dikes are not the feeder dikes or hypabyssal equivalents of the
middle Permian Panjal Traps basalts. These dikes could be associated with the Lower
Carboniferous transtensional phase responsible for the synsedimentary faults (Vannay &
Spring 1993). Apart from the spectacular discordant reverse faults, we mapped an older
décollement thrust, often following the black shales of the Middle Cambrian Surichun
Mb. of the Kurgiakh Fm. The palinspastic reconstruction (Fig. 3) indicates that the
Baralacha La Thrust represents a minor reverse fault structure probably developed on
a preexisting Lower Carboniferous rift structure (Vannay & Spring 1993). The Baralacha
La Thrust and the Chandra Tal Flexure correspond to an attenuation ofthe deformation
in the front of the Nyimaling-Tsarap Nappe. We interprete these structures as the SE

limit of the Nyimaling-Tsarap Nappe.

The Tandi Syncline and the lower part of the Chandra and Bhaga Valleys

The Tandi Syncline is an enigmatic structure in the Himalaya. It consists of Mesozoic
limestones folded in the gneisses and micaschists of the High Himalayan chain, which
correspond to the metamorphosed Upper Precambrian to Lower Cambrian Phe Fm.
sediments (Figs. 27 and 28). The Tandi Syncline has been the subject of few studies which
generally provided controversial and unsatisfying interpretations (Frank et al. 1973,
Powell & Conaghan 1973, Pickett etal. 1975, Srikantia & Bhargava 1979 and 1982).

According to Raina & Prashra (1974) and Srikantia & Bhargava (1979), the Tandi
Syncline represents a Permian to probably Jurassic sequence. New paleontological
discoveries by Vannay (Gymnitinae and Ceratitida ammonites) confirm these ages. The
structure of the Tandi Syncline has important implications on the Himalayan tectonics
and there is a controversy about the vergence of this large scale fold. According to Powell
& Conaghan (1973), the Tandi Syncline is related to the first phase of deformation
recognizable in the studied area. In order to make this structure compatible with the

general Himalayan tectonic movements towards the SW, these authors interprete it as an
antiform closing to the NE. This interpretation contrasts with the works of Frank et al.

(1973) and Srikantia & Bhargava (1979 and 1982) who represent this unit as a synform
closing to the SW, in their geological sections. According to the two later authors, the
unusual vergence of this structure is related to a discrete NE vergent thrust, antithetic and

syngenetic to the SW vergent Main Central Thrust (MCT) and cutting the upper part of
the Tandi Syncline. Our detailed mapping and structural study proved that the Tandi
Syncline is an isoclinal synform closing to the SW and that it is not associated with a

discrete NE vergent thrust. Moreover, the stratigraphie nature of the contact and the

presence of basal conglomerates at some places suggest that the Tandi unit is

autochthonous. Only locally is the contact subsequently deformed by mylonitic shear zones
ofthe DTa2 tectonic phase. The Tandi Syncline represents a large scale expression ofthe
oldest Tertiary deformation recognizable in the lower parts of the Chandra and Bhaga
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Valleys. This deformation, labelled DTal, has not been observed farther to the NE. The
first schistosity STal is parallel to the stratigraphie bedding and to the axial surface ofthe
isoclinal FTal folds. The first stretching lineation LTal has been transposed in an E-W
to ENE-WSW orientation by the subsequent DTa2 deformation. Therefore the precise
direction of movement of the early DTal phase is not known. The Tandi Syncline is

overprinted by SW vergent FTa2 folds and by the second STa2 schistosity. The LTa2

stretching lineation indicates a direction of underthrusting towards the E to ENE
(Fig. 30). Near Batal, the kilometer-scale NE vergent FTal anticlines in ortho- and
paragneisses and the STa2 main schistosity are overprinted by the younger F2 folds and
S2 schistosity ofthe Baralacha La Thrust and Chandra Tal Flexure (Fig. 29). Finally, the
whole region between Tandi and Chandra Tal is affected by a late doming phase and NE
vergent open fold F4.

The main consequence of the Tandi Syncline structural characteristics is that the
earliest Tertiary deformation in the studied area has a vergence toward the NE. This
vergence contrast with the general tectonic movements to the SW, in concordance with
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the classical models for the Himalayan tectonics. Our observations do not confirm the
hypothesis of a NE vergent thrust associated with the Tandi Syncline, as proposed by
Srikantia & Bhargava (1982). In our interpretation we consider the unusual vergence of
the Tandi Syncline together with the regional metamorphism. This metamorphism,
which reached amphibolite facies conditions in the lower part of Chandra Valley (kyan-
ite-staurolite zone near Chhatru and Khoksar) decreases towards the NE to lower
greenschist and pumpellyite-actinolite facies just to the SW of the frontal part of the

Nyimaling-Tsarap Nappe (chlorite-stipnomelane-pumpellyite south of the Baralacha La
Thrust, Fig. 31). To the N, the metamorphic conditions increase again as a consequence
ofthe Nyimaling-Tsarap Nappe formation (staurolite-kyanite-garnet in the Sarchu area).
Therefore the high grade regional metamorphism ofthe lower part of the Chandra Valley
is not related to the Nyimaling-Tsarap Nappe and it can only be explained by a pile of
nappes overthrusted from the SW toward the NE (Figs. 32 and 33). On the basis of our
observations, we conclude that, in the Chandra and Bhaga Valleys, the Tertiary deformation

has started with an intracontinental underthrusting of a northeastern block below
a southwestern one. This crustal thickening is responsible for the regional metamorphism
in the Chandra Valley - Rohtang La region (Fig. 31). We name the lowest element of this
NE vergent nappe stacking the "Shikar Beh Nappe". The higher parts of these nappes
are now eroded. The underthrusting of India towards the NE, creating the Baralacha
La-Chandra Tal structure and the main Central Thrust (MCT) farther to the S, is

younger.
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of deformation.

According to Hirn et al. (1984 a & b), seismic profiles indicate a decoupling and a

recurrence of the Moho discontinuity below the High Himalaya of Nepal. This recurrence

suggests a S dipping zone of intracontinental underthrusting in the Indian plate.
The NE vergent Shikar Beh nappe stacking could be related to a similar deep structure.
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Regional metamorphism

The map ofthe Tertiary metamorphic zones (Fig. 31) has been compiled after Frank
et al. (1977), J.-C. V. for the region S of Baralacha La, Spring & Crespo (1992) for the

Sarchu region, Stutz (1988) for the Nyimaling massif and unpublished observations by
H.M. and A.S. Illite crystallinity (Kübler index, Kübler 1990, Frey 1987) measurements

are used to indicate the metamorphic grade in the low grade and non metamorphic rocks

(all samples containing paragonite have been removed). We distinguish three zones of
high grade metamorphism:

- amphibolite facies rocks of the High Himalaya, in Upper Lahul (Chandra Valley),

- staurolite-kyanite-garnet rocks in the Kenlung Serai Unit, in SE Zanskar (Sarchu),

- upper greenschist facies to epidote-amphibolite facies rocks in eastern Ladakh (Nyimaling

Massif).

The complex distribution of rocks of various metamorphic grades in the tectonic
units around Sarchu has been studied and a model of the metamorphic history has been

proposed by Spring & Crespo (1992). More data on the regional metamorphism ofthe
Sarchu region are given by Spring et al. (1993). Rb/Sr age determinations on metamorphic

micas of the Tertiary metamorphic zones of the Manali-Tandi region (Frank et al.

1977) allow some conclusions about the thermal history of this region. The very constant
Rb/Sr age of metamorphic biotites at ~ 16,5 ± 2 Ma between Manali and the Chandra
Valley is interpreted as the age ofcooling below 300 °C, during the late regional uplift and
erosion of this metamorphic zone. The amphibolite facies rocks of the Kenlung Serai
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ofthe Rohtang La-Shikar Beh area has been compiled after Frank etal. (1977b).
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Unit near Sarchu have been the subject of a radiochronological study. An 40Ar/39Ar
age of 33.5 Ma for amphiboles (total gas age), K/Ar ages of 22.8 ± 0.5 Ma for
muscovites and 20.8 + 0.4 Ma for biotites and an 40Ar/39Ar age of 19.3 ± 0.2 Ma
for biotites (plateau), are interpreted as the cooling ages of these rocks from about
500 °C to 300 °C (Spring et al. 1992 a).

Tectonic history and conclusions

Based on geological mapping and observations and on plate tectonic models, we

propose in this chapter a model for the Tertiary tectonic evolution of the Himalaya in
eastern Ladakh and Lahul.

The Mesozoic ocean floor of the Himalayan Tethys was subducted in a NE and N
direction below the Asian Plate. The voluminous 100 to 40 Ma old plutonic rocks ofthe
Ladakh Batholith, are explained as the product of the partial melting of the subducted
oceanic crust (Honegger et al. 1982, Schärer et al. 1984). The Ladakh Batholith, 70 km
wide, formed a stable block in the Asian plate margin during the Tertiary continental
collision.

The motion of India relative to Asia has been independently computed by several
workers (McKenzie & Sclater, 1971, Molnar & Tapponnier 1975, Pierce 1978, Patriat &
Achache, 1984, Scotese etal. 1988, Dewey etal. 1989). All models display a rapid
decrease in the plate motion rate of India in the time interval between 54 and 35 Ma and
a drastic anticlockwise rotation of India some 45 and 35 Ma ago. According to classical
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thrust as suggested by the decoupling and reccurrence of the Moho below the Nepal Himalaya (Hirn et al.1984a

& b). These structures are subsequently superposed by the SW-vergent Nyimaling-Tsarap Nappe (3) and Main
Central Thrust (4).
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interpretations, these data indicate that the continental collision of India and Asia
occurred during this time. This period coincides with the deposition of the youngest
sediments of the Noetethys and also of the oldest sediments of the Indus Molasse.

The youngest sediments of the North Indian shelf involved in the nappe structures
are marls and limestones (shelf carbonates) containing reworked Paleocene nummulites
of probably Early Eocene age. These sediments crop out in the Lingshed and Zangla
Nappes and in the basal slice of the Spongtang ophiolite Klippe (Garzanti et al. 1987).
A Tertiary olistostrome with reworked Paleocene nummulites has been observed by
H.M. in the Nyimaling-Tsarap Nappe, in the Kharnag Region S of the village of
Dat.

The early thrusting of the Nyimaling-Tsarap Nappe from the North Indian continental

border toward the SW, corresponds to a first record of crustal thickening related to
the continental collision. The progressive underthrusting of India below Asia and the
related crustal constraints caused a mechanical déstabilisation in the Indian continental
crust, which led to the creation of a NE vergent "crustal flake" or "flakes" (Oxburgh
1972) south ofthe Manali and Rohtang La region. The NE vergent Shikar Beh Nappe
and the Tandi Syncline belong to this intracontinental nappe stacking (Fig. 33). The zone
of high grade amphibolite facies regional metamorphism of the lower Chandra Valley,
gradually passing towards the N to lower greenschist facies in the Baralacha La region,
is a consequence of this southern zone of crustal thickening (Fig. 31). This conclusion,
based on unequivocal field observations, contrasts with the classical model for the

Himalayan tectonics, which postulates that the high grade metamorphism of the "High
Himalayan Crystalline" is due exclusively to crustal thickening associated with SW

vergent structures.
The NE vergent Shikar Beh Nappe has been subsequently overprinted by SW vergent

structures associated with the Nyimaling-Tsarap Nappe, such as the Baralacha La
Thrust-Chandra Tal Flexure. Structural observations compiled after Frank et al. (1977 b)
for the tectonic unit S ofthe studied area have been integrated into our profile (Fig. 33).
The structural relations along the complete transect suggest that the SW vergent "Crystalline

Nappes" and the Main Central Thrust (MCT) developed after the creation ofthe
NE vergent Shikar Beh Nappe and Tandi Syncline. It is possible that the MCT represents
a shear zone developed in the ductile metamorphic crustal rocks generated on the base

of the older NE vergent nappe stacking.
In the Nyimaling-Tsarap Nappe, the NE dipping underthrust is followed by an

oblique underthrusting (dextral transpression), parallel to a N to NW oriented stretching
lineation L3. We distinguish two shear zones, the dextral Sarchu Shear Zone below the
frontal part ofthe Nyimaling-Tsarap Nappe pile, and the dextral Nyimaling Shear Zone,
near the root zone of the nappe (Fig. 30). This dextral shear indicates an anticlockwise
change of underthrusting direction of the North Indian continental border relative to
Asia. We correlate this tectonic phase with the anticlockwise rotation ofthe Indian Plate
drift direction, which occurred some 45 and 36 Ma ago, according to plate tectonic
models (Molnar & Tapponnier 1975, Pierce 1978, Patriat & Achache, 1984, Scotese et al.
1988, Dewey etal. 1986). According to Klootwijk etal. (1985) this rotation can be
subdivided into two stages: a first slight counterclockwise rotation at about 50 Ma
(Middle Eocene) and a more substantial counterclockwise rotation from 36 Ma (Early
Oligocene) onwards.
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If the proposed correlation between plate movement and deformation structures is

correct, we conclude that the emplacement of the Nyimaling-Tsarap Nappe was completed

during the Eocene or at latest in Early Oligocene time (about 35 Ma).
In the Sarchu and Nyimaling regions, the zones of dextral transpression gradually

pass to zones of NE-vergent folds, associated with an opposite sense of underthrusting.
In the Nyimaling region, these "backfolds" are accompanied and followed by movements

of dextral shear. NE vergent folding and associated dextral transpression are
probably responsible for the tectonic unroofing ofthe Nyimaling-Tso Morari Crystalline
by uplift and erosion. The NE vergent folds and thrusts ofthe Indus Molasse do not seem

to be affected by dextral shear. Fig. 1 illustrates the major dextral and sinistral strike slip
faults affecting the Asian continent to the N ofthe Himalaya and related to the continental

collision (Tapponnier et al. 1982,1986). The movement ofthe Sarchu and Nyimaling
Shear Zones coincides with the dextral movements of the major strike slip faults occurring

just to the N of the Himalayan chain.
Finally, in a late period ofthe Himalayan Orogeny, the frontal part ofthe Nyimaling-

Tsarap Nappe was overprinted by extensional movements. In the Sarchu Region, we
distinguish a first set of old, low angle normal faults, developed parallel to preexisting
thrust surfaces ofthe Nyimaling-Tsarap Nappe. These faults have been subsequently cut
by the Sarchu high angle normal fault, which put in contact amphibolite facies metamorphic

rocks to the S and lower greenschist facies rocks to the N. The precise sense of
extensional movements is still not known. The strong cooling and exposure of the

amphibolite facies metamorphic rocks ofthe Sarchu region is probably caused by different

processes such as erosion associated with backfolding, doming and tectonic unroofing

related to late extension.
We conclude that the structural record in the Tibetan zone of the Himalayan chain

allows a kinematic reconstruction of its progressive deformation during the Himalayan
Orogeny. It corroborates the relative sense of displacement of India relative to Asia,
proposed by recent plate tectonic models. A kinematic model ofthe continental collision
of India and Asia is proposed in Fig. 32. Fig. 33 presents an updated geological cross
section of the NW Himalaya, including the observations by Frank etal. (1977b and
1987) for the region S of the Rohtang La. In this model we suggest the following
succession of orogenic phases:

1 The first stage of continental collision corresponds to an early underthrusting of India
below Asia, which marks the initiation of the SW vergent Nyimaling-Tsarap Nappe
(Eocene).

2 The NE vergent Shikar Beh Nappe (and the now eroded higher nappes) record an

opposite underthrusting within the Indian plate (Eocene).
3 The main thrusting of the SW vergent Nyimaling-Tsarap Nappe (Eocene) follows the

development of the Shikar Beh Nappe. The related crustal shortening is about 87 km.
4 The thrusting ofthe "Crystalline Nappe" is associated with the Main Central Thrust,

which developed as a shear zone in the regional metamorphic ductile crustal rocks
below the Himalayan nappe stacking (Oligocene-Miocene, Le Fort, 1975, Frank et al.

1977b, to present, Seeber etal. 1981).
5 The root zone and the frontal part of the Nyimaling-Tsarap Nappe have been

subsequently affected by two zones of dextral transpression and underthrusting: the Nyima-
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ling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as

consequences of the counterclockwise change in the underthrusting direction of India
relative to Asia, which occured some 45 or 36 Ma ago, according to plate tectonic
models.

6 NE vergent folding.
7 Late extension of about 20 km in the Sarchu region (Early Miocene, Spring et al.

1993).
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Plate 1. Geological transect of Western Himalaya in Ladakh and Lahul.
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GEOLOGICAL TRANSECT OF
WESTERN HIMALAYA IN LADAKH AND LAHUL

by A. STECK, L. SPRING, J.-C. VANNAY, H. MASSON, H. BUCHER,
R. MARCHANT, E. STUTZ and J.-C. TIECHE
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