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Geochemistry and sedimentology of marine and
nonmarine evaporites

By Hans P. Eugster1)

ABSTRACT

Evaporite studies were initiated in the Eocene Green River formation, Wyoming and Pleistocene-Holocene
Lake Magadi, Kenya. Water compositions evolve through mineral precipitation and other fractionation mechanisms

and the fate of a particular brine is determined by inflow compositions, that is bedrock lithology. Computer

calculations can simulate brine evolution. Deposition of chemical sediments in closed basins has been

defined in terms of subfacies processes and facies complexes change in time and space. The Lake Bonneville-
Great Salt Lake system serves as an example. Seawater evaporation can be monitored by computer calculations
and the results agree with observations if we allow backreaction of the Ca sulfates.

ZUSAMMENFASSUNG

Ursprünglich beschränkten sich die Studien kontinentaler Evaporite auf die eozäne Green-River-Forma-
tion (Wyoming) und den rezenten Magadisee (Kenia). Sie wurden später auf viele andere Salzseen ausgedehnt,
inklusive den Grossen Salzsee (Utah). Während der Verdunstung wird die chemische Zusammensetzung der
Gewässer vor allem durch Mineralausscheidungen sowie auch andere Fraktionierungsmechanismen modifiziert.
Die Evolution der salinaren Restlösungen hängt hauptsächlich von den Verwitterungsreaktionen im Einzugsgebiet

ab. Diese Abhängigkeit kann durch Computerrechnungen dokumentiert werden. Die Ablagerung der
chemischen Sedimente ist durch Prozesse bedingt, die Subfazies und Fazieskomplexe charakterisieren, welche sich

in Raum und Zeit ändern. Der Verdunstungsablauf von Meerwasser kann durch Computerrechnungen simuliert
werden, und die Resultate stimmen mit Feldbeobachtungen überein, falls die Kalziumsulfate mit den Restlösungen

reagieren können.

My contribution to the symposium on evaporites organized by the Swiss Society of
Mineralogy and Petrology on Friday, 14 October 1983 in Porrentruy consisted of a

brief summary of work published during the last 25 years and of work in progress.
Initial interest in the Green River formation of Wyoming, Utah and Colorado was
sparked by the list of unusual authigenic minerals found to occur in the carbonate- and

kerogen-rich "shales" of this formation (Milton & Eugster 1959) and the fact that
trona (NaHC03 • Na2C03 • 2H20) is the most abundant evaporite mineral, rather than

gypsum or anhydrite and halite. In order to better understand the unusual mineralogy
of these continental Eocene lake deposits, we embarked on a study of active salt lakes
in many parts of the world with the hope that observations of ongoing processes would

') Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
21218, USA.
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help us interpret rocks formed in similar ancient environments. We set out to define the
conditions required for the formation of alkaline brines from which trona precipitates.
Lake Magadi, Kenya, became a study object, because trona has precipitated in this
Rift Valley lake throughout most of the Holocene. Dilute inflow waters are of the

CaHC03 type, while sulfate and chloride are comparatively low. Bedrock is fairly
uniform and consists of basalt and trachyte flows formed as a consequence of rifting, with
the youngest flows dated at 700,000 years b.p. By analyzing waters from the most
dilute to the most concentrated stages, it was possible to show that during evaporative
concentration Na and Cl are conservative, Ca + Mg and some HC03 are lost from
solution through carbonate precipitation, most K is removed presumably through ion
exchange and silica through precipitation as opaline cements (Eugster 1970; Jones et
al. 1977). Mineral precipitation and solute acquisition through wetting-drying cycles
such as those described by Smith & Drever (1976) are the most important factors in
the chemical evolution of the brines. In desert climates, evaporative pumping (Hsü &
Siegenthaler 1969) of groundwaters leads to precipitation of efflorescent crusts in
which all of the solutes are deposited. During subsequent wet seasons, fractional
dissolution returns only the most soluble constituents to runoff and groundwater, leaving
Ca-Mg carbonates and silica behind in surface and soil coatings.

To test the effect of mineral precipitation, Hardie & Eugster (1970) simulated the

evaporation of a wide range of dilute inflow waters with a computer program modelled
after a suggestion by Garrels & Mackenzie (1967). The tests clearly show that the
chemical evolution of a brine is predetermined by the composition of the dilute inflow,
which is largely determined by bedrock lithology and weathering reactions. Modifications

of the evaporation path are possible, particularly through sulfate reduction or
sulfur oxidation, as shown for brines from the Chad basin (Eugster & Maglione
1979). Computer calculations are restricted to mineral precipitation as the fractionation

mechanism responsible for brine chemistry. By comparing brines from several
closed basins, including Magadi, Great Salt Lake, Utah, Abert Lake, Oregon, Deep
Springs Lake, Cal., Devils Lake, N.D., and Basque Lakes, B.C., Eugster & Jones
(1979) were able to identify additional fractionation mechanisms, such as dissolution of
efflorescent crusts, exchange on active surfaces, degassing and redox reactions. As
summarized in Eugster & Hardie (1978) and Eugster (1980), the great variety of brine
compositions observed in salt lakes is caused largely by Ca-Mg carbonate and gypsum
precipitation acting as chemical divides (Drever 1982), with the other fractionation
mechanisms acting as modifiers. Figure 1 is a summary of our current views on brine
evolution.

Continental brines accumulate in the hydrologie center of closed basins which
typically are located in the lee of mountain chains regardless of geographic latitude. In
such settings, low valley floors provide environments of intense evaporation with some
of the driest conditions associated with arctic climates, while the mountains catch
precipitation, particularly in the form of snow, sufficient to recharge the system. Depending

on the inflow-evaporation balance, the central basin may be occupied by a more or
less perennial brackish to saline lake or by a salt pan fringed by mudflats. During the
wetter stages, inflow may be largely in the form of rivers, such as at Great Salt Lake,
Lake Turkana, Lake Baikal, while during the salt pan stage circulation is largely
subsurface and inflow is in the form of perennial springs and ephemeral runoff. Because of
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the delicate response of closed-basin systems to perturbations of the hydrologie equilibrium,

lake levels change in response to climatic and tectonic events. This is reflected in
the rapid facies changes both vertically and laterally. In fact, closed basin sediments are
dominated by transgressive-regressive cycles. To describe such systems, Hardie et al.

(1978) have defined a number of subenvironments ranging from alluvial fans, perennial
and ephemeral stream flood plains, dunes and perennial lakes to sand flats, dry and
saline mud flats and salt pans, where each subfacies is characterized by a specific set of
sedimentary structures recognizable both in modern and ancient systems. A particular
closed basin can then be identified by an assemblage of subfacies in space and time,
forming a depositional complex. Commonly observed depositional complexes are the

alluvial fan-ephemeral saline lake complex, the ephemeral stream flood plain-dune
field-ephemeral saline lake complex and the perennial stream flood plain-perennial
lake complex. Considerable misunderstanding has arisen in the literature over our use

of the term playa-lake complex to identify the depositional environment of the Wilkins
Peak member of the Green River formation (Eugster & Hardie 1975, see Fig.2). A
playa lake (no hyphen) is a dry lake, while a playa-lake complex consists of a central
salt pan or salt lake fringed by saline and dry mud flats. The central water body
expands and retracts across the mud flats in response to changes in inflow and evaporation.

During the salt pan stage, brine compositions are zoned in a "bulls-eye"
pattern, with the highest solute loads near the center and the most dilute waters at the

fringes. A similar zonation also occurs vertically among the interstitial brines, with the

most concentrated brines near the surface where evaporation is intense. This gravita-
tionally unstable situation can persist for tens of thousands of years because the brines
are located largely in the sediment pore spaces and overturn is not feasible. In perennial

salt lakes, dry periods may lead to the deposition of thick salt beds, such as in the
northern arm of the Great Salt Lake at present. Subsequent flooding may lead to
stable chemical stratification with an anoxic, saline hypolimnion overlain by a more
dilute oxygenated epilimnion. Erosion of the pycnocline is very slow, especially while
saline minerals remain at the sediment surface and stratification can extend for
decades. Burrowers are absent, and these conditions are ideal for the accumulation of
finely laminated rhythmites, in which Ca-Mg carbonates and organic matter alternate

on a mm scale.

Bradley (1929) in interpreting the rhythmites of the Fossil Syncline of the Green
River formation referred to the depositional model developed for the recent Lake
Zürich sediments by Nipkow (1923). The Lake Zürich model explains these nonglacial
varves as products of annual algal blooms, with the spring-summer blooms triggering
calcite or aragonite precipitation through C02 removal by photosynthesis. In the fall,
organic matter settles on the bottom, forming the dark kerogen-rich laminae of these

light-dark couplets. Weber (1981, see Eugster & Kelts 1983, p. 327) has documented
the changes in water chemistry associated with such a cycle for the year 1976 in the

Greifensee, Switzerland, for waters at different levels of the water column. During algal
blooms, pH and carbonate concentration go up in the near-surface waters, leading to
20-fold supersaturation with respect to calcite. Calcite precipitation cannot keep up
with carbonate ion production until water temperatures rise to near 30 °C in the

summer months. In Lake Zürich, historical records prove that each light-dark couplet
represents one year's deposit and this fact has been used in trying to establish ages for
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similar laminites. The extrapolation is valid only if it can be demonstrated that deposition

took place in a perennial water body similar to Lake Zürich. This is rarely possible.

For the Wilkins Peak member of the Green River formation, Eugster & Hardie
(1975) showed that deposition of many laminites took place on mud flats with storm
related sheetwash as transport agent. If laminations do form in a standing body of
water, as probably is the case for oil shales, laminations can be destroyed by a variety
of postdepositional processes, including burrowing and growth of authigenic minerals.
Substantial carbonate precipitation can occur on the mud flats in the form of evapo-
ritic crusts and soil coatings, spring and stream tufa and as cements in alluvial fans.

Smoot (1978) has documented the importance of this type of carbonate production.
Pisoliths and oncoliths also are commonly found in these environments and a Recent

example from Bolivia has been described by Risacher & Eugster (1979). A summary
of lacustrine depositional environments is given in Table 1, taken from Eugster &
Kelts 1983.

Alkaline waters do not lead to gypsum precipitation, because calcium has been

exhausted by carbonate deposition before gypsum saturation can occur. In all other
waters, however, gypsum and anhydrite are the least soluble and hence the first saline

Table 1 : Depositional subenvironments of chemical and biochemical lacustrine deposits.

A. Hydrologically open hardwater lake: fixed shoreline
1. Littoral Beaches, bioturbated micritic carbonate, massively bedded, with variable

proportions of organic matter, siliciclastics, diatoms
Charophyte chalks, ostracod, mollusc - debris and lag deposits. Bioherms.
stromatolites, oncolites, cemented in part

2. Pelagic, oxygenated Bioturbated micritic carbonate muds and silts with organic matter, siliciclastics

(full circulation) and diatoms

3. Pelagic anoxic Carbonate (algal) laminites, interbedded with carbonate turbidites. Variable
(seasonally or amounts of siliciclastics, diatoms

permanently stratified)

B. Hydrologically closed, perennial lake: shoreline moves
1. Supralittoral Laminated to thin-bedded carbonate muds, silts and sands with variable

amounts of siliciclastics. Flat-parallel and lenticular laminations, scour-and-fill
structures, mudcracking, burrowing, evaporative cements, efflorescent crusts,
salt casts, dry mud flats.

2. Intralittoral
(saline mud flats)

3. Eulittoral
(perennially flooded)

4. Pelagic

C. Ephemeral salt lake

Transgressive-regressive sequences of carbonate muds, silts and sands. Flat-
pebble conglomerates, mudcracking, bioturbation, salt disruption. Coated

pebbles, pisolites, oolites and dripstones

Laminated or bioturbated muds, silts or sands. Oncolites, bioherms,
stromatolites. Carbonate-gypsum laminites, carbonate-kerogen laminites

(oil shales). Bedded salts

Oxipelagic-full circulation: bioturbated muds, displaced fauna, flora, current
structures, winnowing
Anoxic-carbonate-kerogen laminites (oil shales),

carbonate-gypsum laminites, turbidites, bedded salts

As above with additional efflorescent crusts, interstitial brine precipitates,
bedded salts
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minerals to form. Depending on local hydrologie conditions and the nature of the
sediment, they can grow in a bewildering variety of forms, from pure selenite beds

representing protected lagoons to "chicken wire" nodules and desert roses formed by
displacive intrasediment growth. The more soluble salts, such as halite or trona,
accumulate in a standing body of brine or in a salt pan. Thick monomineralic beds can
result in either setting. In salt pans, fractional dissolution and precipitation mechanisms

assure separation from the less soluble constituents. Detailed discussions can be

found in Eugster & Hardie (1978).
Many saline minerals form as authigenic reaction products of the occluded brines

with the sediment. Many of the mixed carbonates and sulfates listed in Table 2 belong
to this class, including gaylussite, pirssonite, shortite, glauberite, bloedite. Their growth
is caused by the expansion of brines over fresher pore fluids outward and downward in
response to continued evaporation from the central pan. In these reactive environments,

authigenic silicates are common products, including the sodium silicate maga-
diite (Eugster 1967) and a variety of zeolites (Sheppard & Gude 1968; Surdam &
Eugster 1976). Magadiite is important as precurser for bedded chert (Eugster 1969,

1980), while the zeolites form by reaction of alkaline brines with volcanic glass. In fact,
the association of magadi-type chert with lacustrine zeolites is strong indication of the

presence of an alkaline, Green River-type setting. A number of such settings have been

identified throughout the geologic column back to the Proterozoic, including
Pleistocene Searles Lake (Smith 1979), Triassic Lake Lockatong (Van Houten 1964),
Devonian Lake Arcadie (Donovan 1975), Cambrian Officer Basin (Pitt et al. 1980;
White & Youngs 1980) and Precambrian Damara Orogen, Southwest Africa (Behr et
al. 1983). As we predicted earlier (Eugster & Chou 1973), many more will be found,
particularly in the Archean and Proterozoic, where alkaline closed basins dominated
by igneous and metamorphic rocks should have been common.

Most of our studies on active salt lakes have employed the simplest of tools, picks,
shovels, pH meters, but for our recent work on Great Salt Lake, Utah, and its Late
Quaternary history we assembled a dozen specialists to work on aspects ranging from
stable isotopes and tephrochronology to pollen and ostracod records in the cores
extracted from the lake. Preliminary results can be found in Spencer (1982) and Eugster
& Kelts (1983) and detailed documentation will appear shortly (Spencer et al. 1984).
Core sediments collected go back 30,000 years and we were able to reconstruct a lake level

curve, including the prominent Bonneville, Gilbert, Stansbury and Eardley levels. Near
the Pleistocene-Holocene boundary, some 12,000-15,000 years ago, a startling event
took place, which is recorded in 40 cm sediment consisting primarly of carbonate, first
calcite and then aragonite. Within less than 1000 years, Lake Bonneville changed from
an open lake with drainage to the north at Red Rock pass to a salt lake located below
the present level of Great Salt Lake, depositing thick beds of mirabilite. A climatic
event or a stream capture must be responsible for this change and we are continuing
our search of the cause. If the event was climatic, it would have to be observable also in
other lakes of the Great Basin, such as those belonging to the Lahontan system.

Our experience with marine evaporites has been less extensive than our preoccupation

with continental evaporites. Some years ago (Hardie & Eugster 1971), before
the discovery of the Miocene evaporites in the Mediterranean, we showed that much of
the Solfifera Series of Sicily could be explained by clastic accumulation in a shallow,
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Table 2 : Saline minerals of nonmarine evaporites.

Brine type Primary minerals Authigenic minerals

a)

Na-C03-Cl Halite NaCl Gaylussite Na2C03 CaC03 • 5H20
Nahcolite NaHC03 Pirssonite Na2C03 • CaC03 2H20
Natron Na2C03 ¦ 10H2O Shortite Na2C03 • 2CaC03
Thermonatrite Na2C03 • H20 Northupite Na2C03 ¦ MgC03 ¦ NaCl
Trona NaHC03 ¦ Na2C03 2H20 Hanksite

Aphthitalite
9Na2S04 2Na2C03 KCl
K3Na(S04)2

b) Tychite Na2C03 • MgC03 Na2S04

Na-C03-S04-Cl Burkeite
Halite
Mirabilite
Naholite
Natron
Thenardite
Thermonatrite

Na2C03 ¦ 2Na2S04
NaCl
Na2S04 ¦ 10H2O

NaHCOc,
Na2C03 ¦ 10H2O

Na2S04
Na2C03 H20

Dawsonite NaAlC03(OH),

e)

Na-S04-Cl Gypsum
Glauberite
Halite
Mirabilite
Thenardite

CaS04 ¦ 2H20
CaS04 ¦ Na,S04
NaCl
Na2S04 ¦ 10H2O

Na2S04

Glauberite CaS04 ¦ Na2S04

d)

Mg-Na-S04-Cl Bischofite MgCl2 ¦ 6H20 Bioedite Na2S04 • MgS04 4H20
Bioedite Na2S04 MgS04 4H20 Glauberite CaS04 • Na2S04
Epsomite MgS04 • 7H20
Glauberite CaS04 • Na2S04
Gypsum CaS04 2H20
Halite NaCl
Hexahydrite MgS04 6H20
Kieserite MgS04 H20
Mirabilite Na2S04 10H2O
Thenardite Na2S04

e)

Ca-Mg-Na-Cl Antaretici te
Bischofite
Camalli te
Halite
Sylvite

CaCl2 6H20
MgCl2 ¦ 6H20
KCl MgCl2 6H20
NaCl
KCl

Tachyhydrite CaCl2 ¦ 2MgCl2 ¦ 12H20

marginai marine setting. We encountered gypsum sandstones, conglomerates, stromatolites

and chicken-wire nodules along with the spectacular selenite and balatino beds.

More recently, Lowenstein (1983) carried out a sedimentologie study of the Salado
formation in Texas, a terminal marine evaporite rich in K and Mg salts. To be able to
predict evaporation effects in these complex systems, we enlisted the help of J.H.
Weare and C. E. Harvie to calculate brine-mineral equilibria at 25 °C. By extending an
approach pioneered by Pitzer (1973), Harvie & Weare (1980) were able to calculate
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Fig.3. Janecke diagram, S04 + K2 + Mg 100, halite saturated. Solid line: equilibrium path, allowing back-
reaction; dashed line: fractional crystallization, no backreaction. SW: seawater, Bl: bioedite, Le: leonite, Syl:

sylvite, Ep: epsomite, Ka: kainite, Car: carnallite. From Eugster et al. (1980).

mineral solubilities from dilute to extremely concentrated solutions regardless of the
number of components present. As a test, we evaporated sea water by computer
calculations (Eugster et al. 1980) and the results were very surprising and instructive. For
equilibrium evaporation, if the calcium sulfate minerals already precipitated are
allowed to back-react, glauberite and polyhalite are formed and the solution composition
never enters the kainite field (see Fig.3). The end product is the same: halite

+ carnallite + kieserite + bischofite, and the correspondance with mineral
sequences and amounts found in natural deposits is much better than with the traditional
Ca-free path based on Van't Hoffs predictions (see for instance Braitsch 1970). We
can reproduce this latter path, which passes through the kainite field and does not
involve polyhalite, simply by imposing conditions of fractional crystallization on the

calculations, that is removing the calcium sulfates from interaction as soon as they
precipitate. These calculations allow us to predict quantitatively what a particular mineral

sequence should be for evaporation of any water in the system Na-K-Ca-Mg-
S04-C1-H20 at 25 °C. Compositions of saturated solutions have been published by
Harvie et al. (1982) and recently, Harvie (1982) has added HC03-C03 to the system.
The calculated sequences can be matched against observed sequences and the discrepancies

are important guides to processes other than mineral precipitation (see Fig.4).
Our studies of marine evaporites are just beginning and we hope to learn much more
about these geologically important environments and deposits.
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