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ABSTRACT

Spatial occurrence, structural architecture and formation of brittle fault zones
and joints are investigated by outcrop observations, scanline mapping, and

light- and scanning electron microscopy in an anisotropic crystalline rock mass

(e.g. granites, para-gneisses and schists) of the central Gotthard massif in the
Swiss Alps. The analysis presented illustrates that several pre-fault anisotropic
features (i.e. dykes, ductile shear zones, foliation and presumably a pre-existing

meso-scale fracture set) control the nucleation and propagation of brittle
faults. Three sets of brittle fault zones striking NE-SW, NNE-SSW and WNW-
ESE can be distinguished. They formed through cataclasis at temperatures
below 300 °C, and were activated predominately in a strike-slip regime. Up to
five joint sets were mapped and characterized according to orientation,
frequency, spacing and formation. Finally a regional fan structure was established
in the Gotthard Pass area, encompassing the main foliation, steeply dipping
joints and brittle fault zones, each of which shows the same orientation and
location of the symmetry plane (NE-SW orientated).

ZUSAMMENFASSUNG

Der vorliegende Artikel präsentiert Untersuchungen über den Aufbau, die
räumliche Verteilung und die Entstehung von spröden Störungszonen und
Kluftstrukturen in anistropen Gesteinen des zentralen Gotthardmassivs der
Schweizer Alpen. Dabei wurde auch der Einfluss unterschiedlichster bereits
existierender Strukturen, wie z.B. Intrusionsgänge, duktile Scherzonen,
Schieferungsflächen oder Klüfte auf die Entstehung und Ausbildung von
jungalpinen spröden Störungszonen im Detail untersucht. Die Ergebnisse basieren

auf Aufschlussbeobachtungen, "Scanline-Aufnahmen" und Licht- bzw

Elektronenmikroskopischen Untersuchungen. Drei Störungssysteme, ein NE-
SW streichendes Hauptsystem, ein NNE-SSW und ein WNW-ESE streichendes

System, welche vorwiegend als Blattverschiebungen fungieren, wurden
kartiert. Entsprechend den lithologischen Einheiten konnten bis zu 5 verschiedene

Kluftfamilien unterschieden und im Hinblick auf deren geometrische
Parameter und Entstehung analysiert werden. Die im zentralen Gotthardmassiv
bekannte Fächerstruktur der Hauptfoliation wird auch durch ein Kluftsystem
und spröde Störungszonen mit gemeinsamer NE-SW streichender Symmetrieebene

abgebildet.

1. Introduction

The external crystalline massifs of the central Swiss Alps (Aar
and Gotthard massifs) have been studied intensively during
the past 15 years, mainly to support the construction of the

Lötschberg and Gotthard Base Tunnels, currently underway.
The major geological obstacles faced by these tunnels are
related to faults and shear zones intersected in the crystalline
basement rocks (face instability, strongly squeezing ground,
overbreaks, water inflows). In addition to these construction
hazards, surface settlements induced by draining fault zones
are of concern, especially in areas where the tunnels run close

to existing hydroelectric dams. In the Gotthard Pass area, the

spatial relationship between large water inflow rates into the

Gotthard A2 highway tunnel (built in the 1970's), flowing from
two distinct brittle fault zones intersecting the tunnel, and the
maximum surface subsidence measured along the Gotthard
pass road, above and adjacent to the tunnel, can be directly
correlated (Zangerl et al. 2003). A hypothesis was thus developed

that these brittle fault zones may act as highly permeable
conduits, which can undergo large normal- and shear displacements

through rock mass consolidation processes as the stress
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State changes due to pore pressure drawdown. Similarly, the

spatial configuration and geometrical properties of smaller
meso-scale fractures were also perceived as having a controlling

influence on the mechanical and hydrogeological behaviour

of the rock mass. To investigate the means by which the
hazard potential arising from tunnel-induced surface
subsidence may be assessed and to better understand the underlying

mechanisms, coupled hydro-mechanical numerical simulations

were required, for which data pertaining to the orientation

and spacing of the brittle faults and the surrounding
fractured matrix are essential.

Of similar importance is the tectonic history that promoted
the formation of the faults and meso-scale discontinuities, as

this too has been shown to have an impact on the hydraulical
and mechanical properties of the structures. Esaki et al. (1999)
demonstrated that fracture aperture and stiffness can vary as a

function of shear displacement, whereas Sausse et al. (2001)
showed the same with respect to fault healing and alteration/
dissolution processes. Brittle faults may also involve slip parallel

to a single discrete fracture plane, but fault "zones" are
formed through subparallel or anastomosing interconnected
closely-spaced faults. Laboratory compression tests suggest
that faults rarely originate as shear fractures in isotropic rock
masses (Petit & Barquins 1988) and that pre-existing dilatant
fractures and rock anisotropy would strongly influence fault
growth. In laboratory compression tests on anisotropic rocks
(i.e. schists or gneisses), rock strength significantly decreases
when applying axial loads inclined 30° to 60° to the foliation
(Gottschalk et al. 1990; Brosch et al. 2000).

To understand faulting processes several scale-dependent
mechanisms have been proposed. For example, a large-scale
planar fault is likely to have developed through the coalescence

of propagating micro-cracks, joints and/or veins. Field
observations (Hancock 1985; Willemse et al. 1997; Mollema &
Antonellini 1999) and laboratory experiments (Scholz 1968)
confirm this hypothesis. Similarly, larger fault zones have been
observed as forming through the propagation and coalesence
of smaller fault segments (e.g. Peacock 1991; Peacock &
Sanderson 1991; Cartwright et al. 1995; Willemse 1997). Most
of these faulting mechanisms were based on observations in

sedimentary rocks. Another type of faulting mechanism, based

on observations in crystalline rock, is related to shear traction
on a meso-scale planar discontinuity that generates fracture
parallel slip (Segali & Pollard 1983; Granier 1985; Martel et al.

1988; Martel 1990; Cruikshank et al. 1991; Martel & Boger
1998; Peacock 2001; Wilkins et al. 2001). In other words,
preexisting discontinuities formed in tension (mode I), but were
followed by in-plane shear (mode II) to create faults. Increasing

movement along the plane generally results in fracturing
and breaking off of wall rock fragments, during the process of
cataclasis.

Martel & Peterson (1991) described lamprophyre dykes
and ductile shear zones in granitic host rocks that act as a

nucleus for brittle faulting. Furthermore, pre-existing shear zones
(i.e. mylonitic rocks) or foliation structures favour the faulting

process sub-parallel to these structures. The coexistence of
cataclastic and mylonitic fabrics within a single fault zone is

frequently described in the literature and attributed to a

progressive phase of deformation within a single phase of faulting
(Sibson 1977; Simpson 1986), or to different tectonic events
acting along relic fabrics within a reactivated fault zone
(Gaudemer & Tapponnier 1987; Tremblay & Malo 1991).

Geometric and mechanical characterization of rock joints
and brittle fault zones provides the basis for most of the work
of engineering geologists and geotechnical engineers when
dealing with rock masses. Moreover, characterization of rock

joints plays an important role in investigations of joint genesis
(Dershowitz & Einstein 1988). Often, in many geological or
geotechnical studies, only dip and dip direction are measured.
Detailed data about individual joint features i.e. trace
length/size, aperture, surface roughness and morphology that
influence the mechanical behaviour of the fracture network
are less frequently available. Additionally, parameters
characterizing the joint network, i.e. degree of interconnection,
termination style, spatial heterogeneity, anisotropy, fracture
frequency, spacing, etc., are important to adequately describe the
rock mass (La Pointe 1993). Presumably the most important
parameters, the joint spacing measured through scanline mapping

techniques along rock cuts or boreholes provide a measure

of the "quality" of the rock mass. Also, the structural
anisotropy of a fractured rock mass can only be deduced from
both the orientation and spacing properties of individual fracture

sets (Rouleau & Gale 1985). Apart from fundamental
engineering needs, spacing distributions of joint sets also provide
useful insight into the fracturing process (Rives et al. 1992;
Boadu & Long 1994).

Accordingly, discontinuity data (i.e. brittle fault zones and

joints), as presented in this paper, were analysed with regard to
spatial geometrical and structural properties, but also to
mechanical formation processes, so as to provide the basis for
subsequent numerical models related to the potential
subsidence hazard problem in the central Gotthard massif. Analysis
and interpretation of this data with regard to regional tectonic
models was not an objective of the study.

2. Regional geological setting

The Gotthard massif is situated in the central Swiss Alps (Fig.
1) and covers an area of 580 km2. It outcrops in the form of an
80 km long and 12 km wide NE-SW striking mountain range.
The study area is located in the central part of the massif
through which the Gotthard rail tunnel (SBB-Tunnel) and

highway tunnel (A2-Tunnel) are driven (Fig 1). The Gotthard
massif consists of a pre-Variscan, poly-orogenic and poly-
metamorphic basement (primarily gneisses, schists, migmatites
and amphibolites), which are intruded by Variscan magmatic
rocks (Labhart 1999) (Fig. 1 and 2). The Variscan intrusives in
the Gotthard pass region are mostly granitoids and were
intruded during two different phases separated by several million

years. During the older phase (303-301 Ma) the Fibbia-
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Fig. 1. Geographical and geological setting of the Gotthard and Aar massif (after Labhart 1999), location of the study site. Gotthard highway and railway tunnel.

and Gamsboden-granites were intruded as shown in figure 2.

The younger intrusion phase took place between 295-293 Ma
and involved the crystallization of the Rotondo. Mt. Prosa and

Winterhorn-aplite granites (Oberli et al. 1981; Sergeev &
Steiger 1995). The Fibbia-granite, located in the southern part
of the study area, is constrained along its southern margin by a

100 to 300 m thick layer of Rotondo-granite and eastwards by
the Mt. Prosa granite. Going north to the northern boundary
of the Gamsboden-granite. a several hundred metres thick
layer of Winterhorn-aplite granite separates the Gamsboden-

granite from the pre-Variscan basement rocks. The northern
boundary of the Gotthard massif is marked by an Alpine-tectonic

contact to the Permo-Carboniferous and Mesozoic
sediments (Urseren-Gavera-zone; Wyss 1986) and the Tavetsch
massif along the Rhine-Rhone valley. This heavily tectonized

zone separates the Gotthard- from the Aar-massif. At the
southern border of the Gotthard massif another steeply
dipping zone of parautochtonous Mesozoic metasediments separates

this massif from the units of the Pennine domain. This

zone consists of tectonic units referred to as "Piora zone" east

and "Nufenen zone" west of the Gotthard pass, respectively.
They are characterised by schists and a sequence of carbonates,

gypsum/anhydrite of Triassic to Jurassic age (Herwegh &
Pfiffner 1999).

During Alpine metamorphism, greenschist facies conditions

were reached throughout the Gotthard massif, with an

increase in peak pressure and temperature from north to
south. Along the southern boundary, amphibolite facies conditions

were achieved (Frey et al. 1980; Labhart 1999). The main

phase of Alpine deformation in the Gotthard massif occurs
near the Eocene-Oligocene boundary around 35 to 30 Ma
(Schmid et al. 1996), corresponding with a peak metamorphic
overprint characterised by a ductile deformation regime. In the

central Gotthard massif Alpine shear zones and foliation strike
NE-SW or E-W and dip southwards in the northern part but
northwards in the southern part, forming a fan-like structure
(Labhart 1999). According to Steck (1968), Merz (1989), Marquer

(1990) and Pettke & Klaper (1992) the formation of the
ductile deformation structures (i.e. foliation and shear zones)

predominately occurred in a NW-SE orientated compressional
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Fig. 2. a) Geological overview of the study area, b) Cross section along the Gotthard highway tunnel showing geological and tectonic units (modified after Keller
et al. 1987). Within the Gotthard massif a schematised pattern of foliation and brittle fault zones (i.e. the fan structure) is shown.

stress regime. A higher degree of ductile overprint, represented

by penetrative foliation textures and shear zones is clearly
observed in the Fibbia- and Gamsboden-granite. The younger
intrusives. the Winterhorn-. Rotondo-granites etc.. also show
ductile structures but these are much more limited to shear
zones. As such. Guerrot & Steiger (1991) postulate a Variscan
deformation phase between the older and younger intrusion
events. Conversely, Marquer (1990) argues that deformation in
the region is only Alpine (i.e. significantly younger), although
it should be noted that his study primarily focussed on the
Fibbia-granite. Addionally, Merz (1989) attributed the foliation of
the Medel granite exclusively to the Alpine deformation
phase.

Ongoing deformation gradually changed from a ductile to
a brittle deformation regime characterised by brittle faulting.
Little work has been done on the formation of brittle structures

within the Gotthard massif (Kvale 1966; Arnold 1970;

Luetzenkirchen 2002), even though they are of major importance

to understanding the tectonic evolution of the region. As
shown by Luetzenkirchen (2002) brittle faulting in the eastern

Gotthard massif occurred along a retrograde metamorphic
path and mainly along pre-existing ductile shear zones. Brittle
fault zones are characterized by, probably dextral. strike-slip
faulting. Mineralogical observations reported by
Luetzenkirchen (2002) suggest that the brittle deformation
occurred within a temperature interval of 190°C and 300°C. The
deformation activity in the time span between a time marked
by this lower temperature boundary and today is considered

very low, i.e. neotectonic activity in the eastern Gotthard massif

should be negligible.
Eckhardt et al. (1983) and Persaud & Pfiffner (2004)

interpreted several fault scarps mapped within the eastern Aar
massif, trending ENE or less frequently E-W, as being post-
postglacial tectonic faults. However, as shown by Laws (2001),
the fault rocks in the eastern Aar massif are primarily
composed of ductile mylonites and phyllonites, and fractures
oriented parallel and oblique to the foliation are often filled with
greenschist facies. metamorphic infillings and micro-breccia.
Therefore these fault scarps might have been generated by
post-glacial unloading and gravitational slope movements.
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Recent stress data derived from fault plane solutions of
seismic events occurring in the region surrounding the
Gotthard massif indicate a strike-slip or extensional regime (Maurer

et al. 1997; Deichmann et al. 2000). In other neighbouring
regions, Kastrup (2002) found that strike-slip to thrust faulting
conditions dominate. It should be noted though, that since
these cited studies refer to surrounding regions, a direct
comparison to the central Gotthard massif may not be applicable.

3. Brittle discontinuities

Brittle discontinuities discussed within this study were classified

into faults or joints. According to Angelier (1994), faults
are discontinuities for which visible displacements have
occurred, primarily parallel to the fault plane. Brittle fault rocks
result from the process of cataclasis and are classified according

to Ramsay & Huber (1987). Whereas the terms "fault
breccia" and "gouge" apply to initially cohesionless fault rock,
the term "cataclasite" is used for fault rock that possesses a

primary internal cohesion. Although both breccia and gouge
are cohesionless materials, they may become impregnated and
sealed by crystal growth in the voids to produce cemented
breccia or cemented gouge. Hancock (1985) defined a joint as

a fracture in meso-scale dimension for which no shear offset or
dilation is detectable in the field. Conclusively, we apply
"joints" as a field term to meso-scale fractures that either show
tensile opening, tensile surface features (e.g. plumes), or do
not have any evidence for shear/normal displacements. The
term meso-scale is used to embrace fractures that range in size

from centimetres to several 10's of metres, and that are usually
observable in a single continuous exposure (Hancock 1985).

Meso-scale joints were mapped on individual surface

outcrops sampled across the study region (in total about 1900

joints larger than 1-m trace length) and by applying scanline

joint mapping techniques to rock faces along or near the
Gotthard pass road (in total about 2100 joints larger than 0.3 m).
The scanline mapping technique is described in more detail in
Priest (1993) and involves a relatively simple, reproducible and

systematic method for discontinuity mapping on larger
exposed rock faces (e.g. quarry or road cuts). The method
enables orientation data, joint frequency, spacing, trace length
and fracture termination estimates to be made and statistically
treated. Several scanlines, each between 13 and 79 m in length,
were mapped, achieving a total length of 800 m of sampled
data. Of this, 384 m pertains to the mapping of the Gamsboden

granitic gneiss where the joint normal set spacing and

frequency were analysed for this paper. Most of the scanlines
used were aligned sub-horizontal in a N-S direction and therefore

crosscut the main geological structures. Care was taken to
distinguish between natural and blast induced joints where
scanlines were performed along road cuts.

An extensive surface mapping campaign focussing on brittle
fault zones was also carried out and supplemented with data
collected at depth from the A2-Gotthard safety tunnel, which
runs parallel to the highway tunnel (Schneider 1979; Wanner

1982). Fault zone measurements undertaken in the Gotthard
safety tunnel provide one-dimensional line data of fault
orientation, frequency and spacing similar to those that are obtained

by scanline mapping techniques for meso-scale joint on surface.

In addition lineaments and faults were mapped on black and

white aerial photos and verified in the field.

4. Spatial occurrence and geometry of brittle fault zones

4.1. Spatial occurrence and fault orientation

Figure 3 shows the trace pattern of mapped and inferred brittle
fault zones on the surface, and the strike and dip direction of
faults measured along the Gotthard highway-safety tunnel
between Hospental and Airolo. Two major sets striking NE-SW
(set BF1) and NNE-SSW (set BF2), and one minor WNW-
ESE set (set BF3) can be distinguished. Brittle fault zone
orientations based on surface and tunnel mapping are plotted in

figure 4a,b using equal-area Kamb-contour pole plots projected

on the lower-hemisphere. In these figures, it can be seen
that data from both the tunnel and surface show similar pole
distribution patterns, although it is not possible to clearly
resolve the three different fault sets. The Angelier-diagram in

figure 4c includes only surface fault planes in which striations
and in some cases shear sense could be mapped, and through
which the inferred sets are more distinctly discerned. The
mean strike of the NE-SW (BF1) and NNE-SSW (BF2) orientated

fault sets intersect each other at a relatively low angle of
approximately 30° (Figs. 3 and 5). In general, the location
where both sets intersect each other is covered with debris and

therefore clear observations regarding the manner of intersection

cannot be discerned. Nevertheless it could be observed
how the two brittle fault sets intersect each other at an angle of
25° to form a conjugate fault system. WNW-ESE striking fault
zones are statistically minor but can be clearly seen in aerial

photos of the Fibbia-granitic-gneiss (Fig. 5) and through field
mapping observations. Figure 5 also shows that the major NE-
SW striking fault zones splay into different branches within a

tight 20° arc. The NNE-SSW striking faults terminate at the

major NE-SW structures. The pitch of slickenside striations on
fault planes is mostly gently plunging, 83% of all measured

plunges varying between 0 and 35° (Fig. 4c). The remaining
17% striations plunge steeply, ranging from 37 to 88°. All striations

were observed and measured on smooth, polished,
mirror-like slickenside planes representing the contact shear plane
or along the contact between the fault gouge layer with the

intact host rock. Based on these observations, most of the

mapped fault zones can be classified as pure strike-slip faults

following the classification scheme by Angelier (1994). The
rest can be grouped as oblique-slip faults. All of these observations

relate to the youngest brittle faulting events.
Shear movement indicators (i.e. slickensides, offset markers,

Riedel shears) from NE-SW and NNE-SSW striking fault
zones frequently show a right-lateral sense of slip. Left-handed
strike slip faults, sometimes in relation with conjugate fault
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systems, were also observed but are less common (Fig. 4c).
Offset values ranging from a few cm to a maximum of 50 m
were mapped through the help of displacement markers, most
notably NW-SE striking lamprophyric dykes. Large-scale offset

values, i.e. greater than 100 m. are not present, as can be

demonstrated by discordant lithological boundaries (relative
to the orientation of brittle fault zones) for which no noticeable

displacements occur. Such displacements would be

expected across Alpine fault zones activated in a strike-slip
regime which in turn would dislocate intrusion contacts of the

Gamsboden- and the Fibbia-granitic-gneiss (Fig. 3). Only east

of Mätteli does a clearly buckled intrusion contact allow for an

interpretation of right-handed strike-slip displacements on the
order of magnitude of several 100 m. Given the convoluted
nature of these intrusion contacts, however, it is not possible to
decide if this structure is primary or fault-related.

Due to the lack of fully exposed outcrops, the determination
of the shear sense for WNW-ESE striking fault zones (set BF3)
becomes more complicated. Limited data from slickensides and
offset markers show both left- and right-handed shear senses.

Arnold (1970) observed left-handed shear for E-W striking brittle

fault zones 12 km east of the Gotthard pass in the pre-
Variscan basement unit. Shear sense indicators further suggest
that these faults could have developed through conjugate faulting

processes together with the NE-SW striking fault sets.

Brittle faults zones in the central Gotthard massif form a

fan-like structure characterised in the northern part by southeast

dipping faults and in the southern part by northwest
dipping faults. A N-S profile along the Gotthard highway tunnel
illustrates the fan structure of faults and shows the point of dip
reversal (Swiss coordinates: X=686840 m. Y=158765 m; Fig. 6).
The geological cross section along the Gotthard highway tunnel

shown in figure 2b schematically clarifies the nature of the
fan structure (modified after Keller et al. 1987). The orientation

of the sub-vertically dipping "axial plane" of the fan structure

drawn on figure 3 is based on surface and tunnel measurements

and strikes 60° from NE to SW.

4.2. Spacing and frequency of brittle fault zones

The total spacing histogram derived from all brittle fault zones
intersecting the Gotthard safety tunnel within the rock units of
the Gotthard massif is shown in figure 4e. The total spacing is

defined as the spacing between a pair of immediately adjacent
discontinuities, measured along a line of general, but specified,
location and orientation (Priest 1993). A total mean spacing of
about 35 m was found, which results in a linear frequency of
0.029 along the tunnel axis (Zangerl et al. 2003). The data set
shows a reasonable fit for the negative exponential- and

Weibull-probability density distributions, with the Weibull-
distribution providing the better fit of the two. The width of
the fault zone cores measured within the Gotthard safety tunnel

by Schneider (1979) and Wanner (1982) ranges between
several millimetres and 2 meters, whereby a mean of 0.22 m
was observed. Of course, a high lateral fault width variability
has to be considered for this data base.

3. Brittle fault zone architecture

Igneous dykes, ductile shear zones and eventually early joints
were seen to form different types of pre-faulting anisotropy
and heterogeneity, which control the formation of brittle fault
zones and their internal architecture. Following a relative
chronological order, dykes are the oldest (mainly Variscan)
anisotropy, ductile structures are at an intermediate age (mainly
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Meso-Alpine), and joints are the youngest source (mainly
Late-Alpine): see Fig. 7. Superposition of these anisotropic
features was frequently observed. For example, geological
boundaries (e.g. dykes) may deform under ductile regimes
(e.g. shear zones) and sub-sequentially act as nuclei for brittle
fault zone propagation. The corresponding fault zone architectures

are described in the following paragraphs.

5. /. Brittle fault zones controlled by igneous dykes and

compositional layering

Within the granitic gneisses, the frequent occurrence of brittle
fault zones at contacts to Variscan igneous dykes indicated
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their susceptibility to serve as nuclei for fault zones. The
geochemistry of these dykes within the Gotthard region was intensively

studied by Oberhänsli (1985). They were classified as

lampropyhres. kersantites and spesserartites. Within the study
area numerous dykes were mapped with widths varying from
several centimetres to several metres. Orientation measurements

of intrusion contacts to the granitic host rock show two
main sets, one striking NE-SW (set LI the other striking NW-
SE (set L2; Fig. 4d). A minor set can also be discerned with
contacts that strike E-W (set L3). Occasionally, the dykes
(especially set LI) show a "biotite-schist"'-like texture characterised

by a high biotite content and a densely spaced schistosity.

In many cases these LI-dykes acted as pre-formed zones of
weakness for ductile shearing and brittle faulting. The miner-
alogical composition mainly includes biotite and quartz with
small amounts of plagioclase and muscovite. Dykes which are

only little deformed (i.e. foliation textures), typically belong to
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set L2 and are composed of amphiboles, feldspar, muscovite,
epidote/clinozoisite, chlorite, titanite and biotite. These dykes
were not activated as ductile shear or brittle fault zones.

Lamprophyric dykes re-activated as brittle faults zones
typically show a sharp boundary (mirror-like fault plane with slick-
ensides) to the intact host-rock (Fig. 8). Adjacent to this fault
plane, a layer of fine-grained, greenish, sandy-clayey fault
gouge is formed. Fault gouge layers range in thickness from a

few mm to 30 cm (Fig. 9a). Faulting processes can also incorporate

adjacent granitic-gneisses, observed as zones of breccia-
tion. It was rarely observed that these fault zones involved a

central gouge layer bounded by damage or fracture zones (Fig.
9a). Some faulted lamprophyre dykes show tight asymmetrical
Z-shaped drag folds with a vertically dipping fold-axis, an
indicator for right-handed shear (Fig. 8). Microscopic observations
of samples of a lamprophyre dyke taken from brittle fault zones
also provide evidence for brittle deformation. Micro-fractures,
having dimensions of several 1(X) (im and aligned as en-echelon
fractures, are filled with low-temperature zeolites, most likely
stilbite. characterised by a radial growth texture (Fig. 9b, c).
The occurrence of zeolites in fault related fractures and fault
zones agrees well with observations in other rock samples
deformed by cataclasis. as well as those by Luetzenkirchen (2002)
in the Rotondo granite west of the study area.

Due to the lower weathering resistance of paragneisses and
schist's of the pre-Variscan basement the outcrop situation for
studying the structural architecture of brittle fault zones was

less favourable in these lithologies than in the granitic rocks.
Nevertheless, observations on a few outcrops showed that the
orientation of brittle fault zones in the pre-Variscan basement
rock (i.e. para-gneisses and migmatitc gneisses) often is driven
through their compositional layering. Compositional layering
is created through alternating layers of cm to m wide intervals
of mica-feldspar gneisses, quartzites, mica-rich schists and am-

phibolites. Less competent mica rich layers (i.e. schists) of
these meta-sedimentary series are predominately sheared,

showing abrupt contacts between faulted rock (gouge and fault
breccia) and undeformed host rock. Within most of these fault
zones, the pre-existing compositional layering is reflected by
spatial distributions of fault breccia and gouge that form along
layers of low strength.

5.2. Ductile deformation structures

Foliation in the granitic gneisses within the study area (e.g.
Gamsboden. Fibbia) is defined by aligned mica (muscovite and

biotite) grains and shear zone bands (mylonites). Feldspar,
quartz grains and mafic xenoliths within the foliation planes
are flattened parallel to the foliation strike direction. When
ductile shear zones are present the structure of the foliation is

characterised by shear zones surrounding lenses of more
weakly deformed material (Gapais et al. 1987; Marquer 1990).
These zones generally form anastomosing arrays, enclosing
lens-shaped domains that underwent smaller and more
homogeneous strain. Thus, the overall shear zone pattern consists

of mylonitic zones surrounding lenses of lower strain. Non-
deformed or weakly foliated domains were rarely observed in
the study area, except within the younger Variscan intrusives
of Winterhorn, Mt. Prosa and Rotondo granites. The pre-
Variscan basement is characterized by compositional layering
and a pre-Alpine foliation formed by preferred orientations of
mica grains, and grain boundaries of quartz and feldspar. In
general, this foliation is aligned sub-parallel to the Alpine
foliation and the pre-Variscan compositional layering except from
locations where intensive folding occurred. Alternating layers
of schists and gneisses, quartzites. migmatites or amphibolites.
and the generally higher mica content, might contribute to an
increased anisotropy ratio as compared to the granitic gneisses.

Figure 10 shows the regional distribution of the main foliation

in the granitic gneisses and pre-Variscan basement rocks.
Local variations in the number of foliation sets and strike
azimuth of the foliation do occur, but in general a systematic
pattern indicating a mean strike of NE-SW can be seen. Foliation

in the northern part of the mapping region dip to the SE.
but experience a change in dip to the NW towards the south.

Exactly the same structural pattern was found in the highway
tunnel at depths of up to 1500 m below surface. Therefore the
main foliation forms the same fan structure as previously
described for the brittle fault zones (see Figs. 3 and 10).

Figure 11 provides a photo and schematic representation of
a typical fault zone in the Gamsboden-granitic-gneiss that is

aligned sub-parallel to the main foliation and a ductile shear
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zone. Brittle faulting occurred on pre-existing ductile shear

zones that are characterised by alternating layers of elongated
quartz-feldspar and mica rich bands. Again, these faults are
characterised by a sharp contact with the undisturbed host
rock where the boundary is often marked by a mirror like fault
plane. Adjacent to the fault plane, a several mm to cm thick,
grey-greenish coloured, clayey to sandy layer of fault gouge
can be found. At the contact fault surface, and also within the

gouge, striations are present. Adjacent to the gouge zone,
mylonitic rock overprinted by fracturing and local brecciation
occur. Lenses composed of quartz and feldspar grains are
aligned parallel to the shear zone and brecciated. As such, the

clayey-sandy fault gouge forms anastomosing arrays around

the lenses of pre-existing, partly fractured shear zones (Fig.
lib. c). Within the gouge layers, which obtain thicknesses of
several mm to cm. gently plunging slickensides were found.
Occasionally shear zone fragments are ductily folded internally
and truncated by fault gouge layers, which forms discordant
structures between the foliated shear zone fragments and the
foliated host rock. Inside the brittle fault zone, foliation- and
fault parallel fractures can be seen with increasing frequency
as shown in figure 1 la. Regarding the fault zone shown in figure

11 its width decreases from 1.5 m to 0.5 m over a distance
of less then 15 m sub-vertically. In general, fault zones are
smaller than one meter in width but in some cases reach widths
of up to 3 m. Similarly, fault gouge layers change in width and

frequency along the fault zone.
Figure 12a shows a complete thin section from a fault zone

which incorporates cemented breccia and gouge and is orientated

perpendicular to the foliation. Three different types of
cataclastic foliation structures can be observed: a) layering of
fine grained fault gouge and fault breccia, b) foliation within
the fault gouge layers characterised by varying colours, grain
sizes and seams of secondary and opaque minerals, and
occasionally c) foliation within gouge or breccia, defined by sub-

parallel alignment of small grains of muscovite, biotite and
chlorite, inclined 0-30° to the fault boundary (Fig. 12b). The
cataclastic foliation of type (a) observed within the brittle fault
zone is aligned parallel to the main foliation of the host rock.

Breccias are characterized by densely fractured fragments,
encompassed by zones of gouge. Kinked and folded grains of
biotite. muscovite and chlorite deform within shear fractures
and interpreted as pre-fault mineral grains. A later stage of
crystallisation of sericites and zeolites within open voids and

open fractures can be observed. Clearly identifiable shear
fractures (Riedels) offset these mica layers (foliation type "c"
described above) and are partly filled with zeolites (Fig. 12b).
More specifically, Ca-Zeolites (stilbite) were identified as the
fracture infill by applying optical microscopy, scanning electron

microscopy (SEM) with EDS and X-ray diffraction
(XRD) techniques. Gouge layers are composed of angular
fragments of alkali-feldspar, plagioclase. quartz, clinozoisite/
epidote. zircon and fishes of muscovite. biotite and chlorite
(Fig. 12b-d) embedded in a fine grained matrix (<10 urn) of
quartz, alkali-feldspar, plagioclase. sericite, zeolites (stilbite)
and clay-minerals (illite/montmorillonite).

In addition, angular fragments of pre-existing cohesive
cataclasites were observed (Fig. 12d). which is found to be in agreement

with observations in the Rotondo granite from
Luetzenkirchen (2002). Wyder & Mullis (1998) also found two
deformation stages (V and VI) in the Tavetsch massif, where cat-
aclasis was observed as the dominant deformation process.
These cataclasite fragments are composed of angular fragments
of quartz, plagioclase. alkali-feldspar and mica embedded in a

very fine-grained matrix. Fault gouge layers were displaced by
Riedel shears (e.g. for the sample shown in Fig. 12a.b. a dextral
sense was observed), enclosing an angle between the main
cataclastic foliation and the Riedels of 20 to 40°.
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6. Joint patterns

6.1. Joint orientation and morphology

Up to five meso-scale joint sets were mapped and characterized

according to orientation, frequency, spacing and termination

properties (Tab. 1 and Fig. 13). The orientation analysis
was performed on outcrop (Tab. 1) and scanline data, and was
based on contouring the pole density distributions and on cluster

analyses as described by Pécher (1989). Concentration
parameters, i.e. the measure of the degree of preferred orientation,

and the spherical aperture were calculated after Wall-
brecher (1986) assuming a 95% confidence interval (Tab. 1).

The most dominant steeply dipping and NE-SW striking
joint set (Fl) can be found in all rock types belonging to the
massif and is orientated sub-parallel to the main foliation and
fault structures (Fig. 13). Definition of joint set Fl is based on
statistical clustering of orientation measurements, as well as its

relationship to the main foliation (Fig. 13). Similar to the
previously discussed main foliation and brittle faults, the Fl joints
also form a fan structure characterised by an identical NE-SW
striking axis. The joint set Fl was mapped as having a mean
strike of 49° in the northern sector of the Gamsboden granitic
gneiss, but further south was observed to rotate by 14° to a

mean strike of 63° (Fig. 13a-c). Scanline data analysis (shown
in Fig. 13j, k) produce a trend that is characterised by a mean
strike of 40° along profile I and a mean strike of 52° along profile

II (rotation of 12° from north to south). Orientation data
within the Gamsboden granitic gneiss measured in the safety
tunnel show the same Fl cluster striking NE-SW and dipping
steeply to SE (Fig. 131).

Within the Fibbia granitic gneiss, located further south,
fracture set Fl strikes 55° (mean) and 56° when mapped at

outcrops or along scanlines, respectively, and dips steeply to
the NW (Fig. 13d, i). The surface morphology, spacing and
trace length characteristics of these fractures are similar to
those of Gamsboden-granitic-gneiss. Adjacent to the Fibbia
granitic gneiss, Fl fractures were measured within the thin
layer of Rotondo- and Mt. Prosa-granite, which underwent
only minor ductile overprinting during Alpine deformation
and macroscopically often shows a granitic texture. These Fl
fractures strike 26° along measured scanlines and 20° at
individual outcrops (Fig. 13g, h). As such, Fl fractures were seen to
rotate with respect to the same FI set within the Fibbia granitic
gneiss and the southern basement rocks by approximately 30°.

Surface mapped Fl fractures within the southern pre-
Variscan basement rocks (i.e. amphibolites, para-gneisses and

migmatites layers) show a mean strike of 58° and 48°, and dip
only 50 to 60° NW. Data collected from the tunnel indicate
steeper dips (60 to 75°) but with little variation in the mean
strike (i.e. 48 and 57°).

On a more localized scale, the strike of the fractures varies

following the foliation or the anastomosing pattern of the
shear zones. This variation in strike ranges from 0 to 20° from
the mean. Within basement rocks, the strike of the Fl fractures
is continuous and parallel to that of the foliation. Within

Table 1. Statistical orientation analysis based on outcrop joint measurements

Rock unit Joint set # Mean orienNumber of R%' /

tation dip discontiSph. Ap2
direction / nuities

dip angle (°)

Gamsboden granitic Fl i!indF2 151/69 276 86/21.8

gneiss (GGG) F3 239/80 195 87/21.4
F4 002/50 170 84/23.5
F5 270/27 112 84/23.9

Fibbia granitic gneiss Fl and F2 325/72 206 83/24.0

(FGG) F3 235/86 168 82/25.0
F4 163/30 149 83/24.7

Rotondo. Mt. Prosa Fl 288/77 40 90/18.8

granite (RMG) F2 345/60 28 88/20.2
F3 047/77 28 89/19.7

F4 179/42 36 85/22.5

Southern basement Fl 322/56 145 87/21.0

(SB) F3 064/90 180 77/29.0
F4 168/50 159 87/21.2

1.. .Concentration parameter after Wallbrecher (1986). Measure of the degree
of preferred orientation, R%=0 uniform distribution and R%=100 parallel
planes.
2.. .Spherical aperture - Radius of a small circle of a spherical normal distribution.

Analysis based on a 95% confidence interval.

granitic rock bodies the same general trend was observed but
in exceptional cases a variation in strike between foliation and

Fl fractures of up to 30° was measured (Fig. 14b). The length
of Fl fracture traces is general within the range of centimetres
to several metres and their surfaces are generally planar to
curviplanar with very rough and undulating faces. Occasionally,

flat plunging striations on Fl surfaces (totally or partly)
indicate shear deformation. Whereas some fractures of set Fl
are filled with biotite, muscovite, quartz, feldspar, calcite and

Fe-hydroxides, others from the same set are totally unfilled.
A second joint set (F2) strikes almost E-W (mean strike

80°) and dips steeply to the north and/or south (Figs. 13 and

14). The mean of the F2 set cluster is not well defined, and
partially overlaps with Fl or F3 clusters. As such, the distinction
between the F1/F3 and F2 clusters becomes impossible if it is

done visually on a stereographic contour plot or by statistical
clustering methods. But when assigning joints to sets in the
field at individual outcrops, the distinction becomes easier, as

can be shown on sub-horizontally orientated trace maps (Fig
14). In general, F2 fractures propagate from the tip of Fl
fractures (an exception is shown in Fig. 14b) and extend from only
one side of Fl fractures. The angle between the strike of Fl
and F2 joints is within a range of 20 to 50°. Through observations

of termination, angle and propagation relationships. F2

joints were interpreted as secondary fractures and therefore
syn-tectonic to shearing of Fl joints. Mostly, F2 joints propa-
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gate in such a way that a right-lateral shear for Fl fractures
can be deduced. F2 fractures were also measured in the Gams-

boden-granitic-gneiss at depth, along unlined sections of the

Gotthard highway tunnel (Fig. 131). F2 joints were not
observed in the pre-Variscan basement rocks.

In contrast, the third joint set (F3) observed in all rock

types strikes NW-SE and often is characterised by hydrothermal

alteration processes forming alteration seams and
greenish-coloured infill coatings of chlorite and occasionally epidote
(Fig. 13). The surfaces of these fracture faces are much more
planar and smooth than the others, and trace lengths of up to
several decametres were observed. The large dispersion of
pole points seen in stereonet plots is related to conjugate
shear, hybrid and additional opening mode fractures (e.g. Hancock

1985) recognised in the field by mutual abutting/cutting
relationships within the set. These conjugate and hybrid shear

joints show one of two different orientations: a) the intersection

line between the conjugate joint planes dips subvertically
and the acute bisector (dihedral angle 20) is aligned around a

NW-SE striking axis, or b) the intersection line between the

joint planes strikes NW-SE and the acute bisector is aligned
around a sub-vertical axis.

Typically, information regarding joint surface morphology
and other surface features are rarely available because

outcrops and rock faces generally only allow for two-dimensional

joint traces. Several exposures within the Gamsboden granitic
gneiss, however did enable the observation of fully exposed
joint faces for set F3 which showed plumose structures. On the

boundary of these joint surfaces, especially of those with a

persistency on the scale of several metres, fringes of en echelon
fractures of a few centimetres length, orientated with an acute

angle relative to the joint and filled with chlorite in a horizon-
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tal direction, were observed. Based on Pollard & Aydin
(1988), these joint surfaces can be interpreted as having
formed by Mode I opening, with the small fringe of en echelon
fractures possibly forming in Mode III. Other F3 joints were
seen to terminate on foliation planes or the older Fl joints.
According to the characteristics of the plumes, fracture initiation
and propagation occurred vertically.

The medium to flat dipping joint set F4 and F5 (Fig. 13) are

interpreted as unloading joints, since they follow the smoothed

topography of the Gotthard massif mountain ridge. Such

unloading joints form near surface during uplift, glacial relaxation

and erosion. As such, in the northern pre-Variscan basement

rocks and Gamsboden-granitic-gneisses. these joints dip
either west (F5) or north (F4). In contrast, F4 joints measured
within the southern pre-Variscan basement rocks, the Rotondo-

and Mt. Prosa-granites, and the Fibbia-granitic-gneisses.
predominately dip to the south. In between, i.e. within the
northern part of the Fibbia-granitic-gneiss and the pre-
Variscan basement rocks, the F4 joints tend to dip sub-horizontally.

Clearly recognizable plumose structures were found
on faces of F4 joints of medium grained lamprophyric dykes,
suggesting that their formation occurred under Mode I conditions

(Bahat et al. 2005; Einstein & Dershowitz 1990). The
trace lengths of the F4 and F5 fractures reach several 10's of
metres and they terminate on Fl and F3 joints. Lateral extension

of these younger joints was likely arrested at their inter¬

section with pre-existing/older joint planes, assuming that the
effective normal stresses acting across the Fl or F3 joints was

sufficiently low (Ruf et al. 1998). F4/F5 joints occur either as a

discrete single joint or as a "joint zone" of closely spaced sub-

parallel joints (Engelder 1987).

6.2. Joint spacing and frequency

The normal-set spacing obtained along a line that is parallel to
the mean normal to set was calculated for each joint set within
the Gamsboden-granitic-gneiss. Figure 15a shows the normal-
set spacing distribution of Fl joints defined by a mean spacing
of 0.47 ± 0.06 m, as measured on surface along scanline profiles
I and II (Fig. 13). An upper and lower limit of the spacing
population mean was calculated for a 95% confidence interval
based on Priest (1981). The reciprocal value to the mean normal

spacing of 2.1 nr1 represents the linear joint frequency
assuming a negative exponential probability distribution fit to
the data. The mean spacing calculated at depth, along a

segment of the Gotthard safety tunnel 550 to 1250 m below
surface, reaches 1.68 ± 0.58 m - a joint density which is 3.6 times
lower than that measured on the surface (Fig. 15b). The mean
normal-set spacing for joint sets F3. F4. and F5 are 1.31 ± 0.39

m. 0.91 ± 0.21 and 0.90 ± 0.35 m, respectively. Thus, a linear
fracture frequency between 0.8 and 1.1 nr1 was found. It
should be noted that the construction of a plot for the spacing
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Fig. 15. Normal set spacing distributions obtained from scanline data (see Fig. 13) within the Gamsboden granitic gneiss for: a) Fl joints measured on surface, b)
Fl joints measured in the Gotthard highway safety tunnel, c) F3 joint set measured on surface, d) F4 joints set measured on surface, e) F5 joint set measured on
surface.

histogram of F2 joints was not possible, given the difficulty in

separating them from Fl, F4 and especially F3 joint sets,
statistically.

On the basis of the "maximum likelihood" algorithm
(assuming a 95% confidence interval), parameters for the negative

exponential- and Weibull-distributions were estimated
from the spacing data. The negative exponential distribution is

fully defined by one single parameter, the mean of the sample,
whereas the Weibull-distribution requires two parameters, a

scale- and shape parameter (Bardsley et al. 1990). If the shape

parameter is equal to one, then the Weibull-distribution
matches that of the negative exponential distribution.

Visually, the two distributions show a good fit to the
normal-set spacing histogram for Fl joints measured at surface

(Fig. 15a). But when comparing the "empirical cumulative
distribution function" obtained from the data set with the negative

exponential and Weibull cumulative distribution functions

plotted based on the maximum likelihood parameters, the
Weibull distribution shows a clearly better fit. A shape
parameter of 0.85 was determined for the Weibull distribution.
Even more distinct differences were found between both
probability distribution types for the Fl joint set sampled within the

Gotthard safety tunnel. There, only the Weibull-distribution
adequately fits the spacing data (Fig. 15b). The Weibull-distribution

was also found to provide a better fit for the fracture
spacing distributions of sets F3, F4, and F5, as derived from
the scanline data (i.e. profiles I and II; see Fig. 13) for the

Gamsboden-granitic gneiss (Fig. 15c-e).

Field observations for the examples shown in figures 8 and

11, where the scanline spacing data was measured across
brittle fault zones in granitic gneisses, suggest no increase in
meso-scale fracture frequency towards the fault zone. Figure
16a shows the fracture frequency measurements for another
example involving a scanline mapped across a 0.5 m wide fault
zone in the Fibbia granitic-gneiss. A semi-variogram based on
joint spacing weighed against joint sequence number (Villaes-
cusa & Brown 1990) shows a pure "nugget" effect with a "sill"
too high to represent randomly positioned joint intersection
points (i.e. a 1-D Poisson process, Fig. 16b). In other words,
the plot suggests a general "clustering" of joints randomly
located across the fault zone and not concentrated to areas

adjacent to the fault (as would be expected if the faulting
process had influenced the fracture density near the fault
zone).
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7. Discussion

7.1. Formation of Brittle Fault Zones

Shear deformation on pre-existing joints, especially near fracture

tips, leads to development of secondary fractures (syn-
fault fractures). These secondary fractures are usually small

joints (i.e. theoretically Mode I fractures) that tend to propagate

oblique to the associated pre-existing slipped joint,
enclosing an angle of 20 to 50° (less frequently up to 70°) and
extending from only one side of the fault (Granier 1985; Martel
1997). Anisotropy formed through meso-scale joints can
activate faulting processes when shear tractions acting along their
surfaces induce fracture parallel slip (Martel et al. 1988; Martel
1990). Subsequent deformation then acts to produce a gouge
or other structures related to mechanical wear, as is common
with typical faults.

Faulting of Fl joints would in turn create syn-fault
secondary joints (F2), propagating oblique to the associated
preexisting sheared fracture enclosing an angle of 20 to 50°.

Laboratory experiments and numerical models predict that the
orientation of secondary fractures emanating from fault tips will
vary according to: a) the ratio of shear stress to effective normal

stress responsible for kinking (Cruikshank et al. 1991), b)
in response to variations in fault-parallel normal stress

(Willemse & Pollard 1998), and c) as a function of frictional
strength along the fault (Cooke 1997). The strike of the
secondary fractures is consistent with the shear sense observed on
the fault zones.

The following pieces of evidence for suggesting a similar
model for the formation of brittle fault zones in the Gotthard
massif and in favour of the hypothesis of fault nucleation along
pre-existing Fl joints are: a) occurrence of secondary fractures
at Fl tips, b) shear sense derived from termination and orientation

relationships of secondary fractures corresponding with the
shear sense observed on strike-slip faults, c) missing geometric
or kinematic relationships between faults and Fl joints, suggesting

that they were not formed under the same stress regime, d)
meso-scale fracture frequency does not increase towards the
fault zones, e) traces of slickensides observed on very rough,
undulated or stepped Fl joint surfaces (originally evolved as mode
I fracture), revealing subsequent shearing episodes, and finally
f) parallelism of fractures showing slickensides (mode II
fractures) to Fl fractures characterised by rough undulated or
stepped surfaces and therefore interpreted as mode I joints.
Based on these field observations we suggest a reactivation of
pre-existing Fl joints to have formed "faulted joints", and later
when strain increased, to have formed brittle faults zones.
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Micro-scale observations on samples of brittle fault zones
that are aligned parallel to the overall foliation show alternating

layers (mm width) of gouge and breccia (Fig. 12a). The
alternating character and abrupt transition from intensely
deformed gouge layers to much less deformed breccia layers suggest

an influence of pre-existing anisotropy during this faulting
process. As shown in thin sections through brittle fault zones
(Fig. 12), faulting is a multi-stage process whereby foliation
planes visible within cataclastic breccia layers are displaced
through right lateral Riedel shears, which themselves are

younger than the gouge and breccia layers (Fig. 12b).

Precipitation of biotite, chlorite, muscovite, quartz or
feldspar within Fl joints indicate that some of the Fl joints
were formed during greenschist facies conditions at temperatures

above 300°C after the peak of the Alpine metamorphism.
Similar mineral parageneses were found by Laws (2001) in the
Central Aar massif in infilled fractures around ductile shear

zones. Temperatures below 300°C can be attributed to the
formation of mineral parageneses (low temperature zeolites)
observed in mafic fault rocks from brittle faults in the Gotthard
massif (Luetzenkirchen 2002) supporting the hypothesis of Fl
fracture induced brittle fault zones. A decrease of the Fl joint
frequency with depth and the numerous observations of
unfilled Fl joints suggest that a later fracturing phase, possibly
during early uplift and erosion, generated other fractures with
similar orientations.

7.2. Formation of Fracture Sets

The shape of the fracture spacing histograms provides insight
into the spatial occurrence of discontinuities and their genesis.
A pure 1-D Poisson process would have suggested independent

spacing values that follow a negative exponential probability

density distribution (Chiles & de Marsily 1993). Numerous

authors have reported a negative exponential distribution
for the total joint set spacing they've mapped (e.g. Priest 1981;

Wallis & King 1980). However, when separating the orientation

data into individual joint sets and plotting the normal-set
spacing histograms for each set, Chiles & de Marsily (1993)
found that a negative exponential distribution did not fit. Field
observations and geostatistical analysis showed that the spacing

distributions cluster during the fracturing process. This was
observed by others who reported that Weibull or log-normal
probability density distributions provided a remarkably better
fit to joint spacing histograms (Rouleau & Gale 1985; Boadu &
Long 1994). Similar results were found in this study for the
central Gotthard massif, where a Weibull-distribution provided

the best fit (characterized by shape parameters between
0.69 and 0.85). Even for the brittle fault zones mapped, where
the total spacing was calculated from three different fault sets,
a better fit was achieved using a Weibull-distribution characterized

by a shape parameter of 0.81.

Boadu & Long (1994) concluded that by nature of the better

fit they obtained using fractal and Weibull distributions,
that a repetitive fragmentation process was responsible for the

formation of their fracture pattern. Rives et al. (1992)
performed analogue and numerical experiments and concluded
that joint spacing distributions evolve from those that are
initially negative exponential to those that are log-normal and
normal with increasing joint development. Putting this into
context for the central Gotthard massif, the deviation of the

joint set spacings from that of a negative exponential distribution

suggests that the joints have undergone significant
development. It is important to note that joint sets F3, F4 and F5 are
not aligned sub-parallel to pre-existing rock mass anisotropy
(e.g. foliation planes), where the influence of foliation on the
fracturing process is such to promote a more randomly spaced

joint pattern. Occasionally, field observations in the Fibbia
granitic gneiss showed that the F4 joint set was prone to
remarkable clustering, i.e. smaller joint traces were grouped
adjacent to a large joint causing short spacings between fractures
from the same cluster and longer spacings between the clusters

("joint zones"). Although the mechanical processes that
promote the formation of densely spaced multiple fractures are
poorly understood, the genesis of the F4 joint can be related to
unloading processes and therefore likely formed under
predominately tensile effective stress conditions (Mode I). These
field observations contradict the theoretical findings of Pollard
& Segali (1987), who used linear elastic fracture mechanics to

propose that the maximum tensile stress is strongly reduced
perpendicular to the joint plane after fracture generation and
therefore new fracturing is prevented within a certain distance.
It should be noted though that many studies in the published
literature relate to joint formation in sedimentary rock masses,
which in turn are characterized by rock layers of variable
thickness and joint sets orientated perpendicular to the bedding

planes. Given that the nature of anisotropy in crystalline
rocks is quite different, direct correlations with findings on
fracturing behaviour in sedimentary rocks may not be possible.

8. Summary and conclusion

The Gotthard pass area offers excellent insights into the brittle
deformations occurring within the low-grade metamorphic
Variscan granites and pre-Variscan gneisses, schists,

migmatites and amphibolites of the Gotthard massif. Three
families of brittle faults zones and 5 sets of joints have been
identified. All of these brittle structures are of Alpine age and
postdate the main phase of ductile Alpine deformation and

temperature dominated regional metamorphism. The three
sets of brittle fault zones strike NE-SW, NNE-SSW and
WNW-ESE, and they formed through cataclasis at temperatures

below 300 °C (Ca-Zeolite stability). Concurrent observations

were made by Luetzenkirchen (2002), who mapped brittle

fault zones which strike NE-SW within the central, and
ENE-WSW to E-W within the eastern Gotthard massif,
respectively. Measured slickensides predominantly gently plunge
NE-SW. The thickness of the fault zones varies from cm to
several dm, but can reach a maximum of up to 3 m. The density

of brittle faults in the central Gotthard massif is very high
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and exhibits a complex geometric pattern. No significant
differences between faults zones occurring in plutonic rocks of
Variscan age and the pre-Variscan basement could be
observed, and all brittle faults post-date ductile deformation
structures.

Field evidence suggests that re-activation of the first tensile

joint set Fl in shear led to the formation of secondary
fractures (F2). "faulted joints" and brittle fault zones. The third
fracture set F3 is also steeply oriented and often characterized
by hydrothermal alterations and plumose surfaces. The fourth
and fifth fractures sets (F4, F5) are medium to flat dipping and

are related to erosion and unloading processes. Spacing
distributions obtained from the brittle fault zones and all joint sets

showed that fracturing may not follow a randomly distributed
mono-phase fracturing process, but is dominated by a

"clustering" mechanism. The magnitude of clustering increased for
joint sets cutting the main foliation at an obtuse angle.

A regional fan structure was established in the Gotthard
Pass area, encompassing the main Alpine foliation, steeply
dipping meso-scale joints (Fl) and brittle fault zones, each of
which show the same orientation and location of the symmetry
plane (NE-SW orientated). It is suggested that the creation of
this fan structure can be correlated with the back folding south
of the external massifs and the formation of the Chiera
synform (Low 1987) and the updoming of the external crystalline
massifs (Burkhard 1999). This event occurred either near the

Oligocene-Miocene boundary (Schmid et al. 1996) or in the
lower Miocene (Grindelwald Phase of Burkhard 1999).

These brittle deformations occur on many different scales

at very high frequencies and thus are critical for many practical
applications. Among others, it could be shown that these brittle

deformations have a strong impact on rock mass permeability,

deep groundwater circulation, tunnel inflows and drainage
(Luetzenkirchen 2002), and coupled rock mass deformations
leading to substantial surface settlements above deep tunnels
(Zangerl et al. 2003). The study of these attributes is also of
significant importance in the Gotthard pass area due to the

major tunnel construction projects underway (AlpTransit Base

Tunnels).
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