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Carbogaseous spring waters, coldwater geysers and dry CO2 exhalations
in the tectonic window of the Lower Engadine Valley, Switzerland
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ABSTRACT

In the region of Scuol-Tarasp in the Lower Engadine Valley in the Eastern
Swiss Alps, there are a variety of phenomena related to a geogenetic CO2
production, including carbogaseous mineral springs, previously active coldwater

geysers and dry gas exhalations from the ground via mofettes. Previous
isotopie studies revealed that the CO2 originates from the metamorphic
decomposition of carbonate rocks in the crust. This paper presents an inventory of
the springs, geysers and mofettes, and proposes a conceptual model on the
regional gas and water circulation. Based on hydrochemical criteria, it was possible

to identify six main groups of spring waters, three of which are
carbogaseous mineral springs. Most of the carbogaseous springs and gas exhalations
are bound to the Bündnerschiefer fractured aquifer. The different water types
originate from mixing of groundwater and highly mineralised carbogaseous
fluids from depth. Near-surface degassing of CO2 from the fluid phase creates
the dry gas exhalations. CO2 and radon measurements in 178 soil boreholes

suggest that the gas exhalations occur at a limited number of point-like anomalies,

and there is no evidence for regionally important diffuse CO2 discharges
from the ground.

RESUMAZIUN

En la regiun da Scuol-Tarasp en l'Engiadina bassa, en l'orientala part dallas
alps svizras cumparan antgins fenomens, che coreleschan cun la producziun da

CO2 en la profunditad. Ei dat fontaunas mineralas carbonicas. antruras geisirs
activs d'aua freida e sortidas da gas schetg da mofettas. Anteriuras retschercas

d'isotops han mussau, ch'il CO2 deriva dalla decumposiziun metamorfosa da
caltschina en la crusta dalla tiara. Questa lavur presenta in inventari da

fontaunas. geisirs e moffettas e fa ina proposta per in model concepziunal per la

circulaziun regiunala da gas ed aua. Sin fundament da criteris hidrochemics
han sis gruppas da fontaunas saviu vegni identificadas. dallas qualas treis grup-
pas cumprendan fontaunas mineralas carbonicas. Las pliras fontaunas carbonicas

neschan egl aquifer dil sfendaglius platter Grischun. Ils différents tips
d'aua da fontauna resultan entras la mischeida da liquidas profundas carbonicas

fetg mineralisadas cun auas sutterranas giuvnas. Degasaziun dil CO2 ord la

fasa d'aua damaneivel da la surfatscha meina tier l'exhalaziun da gas. Mesira-
ziuns da CO2 e radon en 178 ruosnas indicheschan, che l'exhalaziun da gas se-
restrenscha sin paucas anomalias punctualas. Ei dat negins indezis per ina im-
purtonta sortida regiunala da CO2.

1 Introduction

/./ Significance and origin ofgeogenetic CO2

Carbogaseous springs and CO2 exhalations from the ground
are manifestations of geogenetic gas production at depth. Such

phenomena are of socio-economic interest, as carbogaseous
waters are often used as mineral water sources, as well as for
medicinal cures and spas (Vrba 1996). At the same time, dry
and wet CO2 exhalations provide insight into geochemical
processes in the earth crust and mantle (e.g. Weise et al. 2001;
Diliberto et al. 2002). As CO2 is the most prominent greenhouse

gas, a better understanding of its geogenetic sources and
sinks is also relevant for climate change studies (Nesbitt et al.

1995; Kerrick 2001).

CO2 discharges are often linked to areas of seismic activity
and high heat flow. The world distribution of both dry and wet
CO2 discharges shows the highest densities in the Western US,
Central Europe and Asia Minor (Barnes et al. 1978). Geogenetic

CO2 originates from three different sources: transformation

of organic matter during oil, gas and coal formation (Bat-
tani et al. 2000; Butala et al. 2000), metamorphism of carbonat-
ic rocks in the crust (Kerrick & Caldeira 1998; Derry et al.

2002), or degassing of the mantle. CO2 exhalations are particularly

frequent in volcanic and post-volcanic areas, where the
CO2 usually comes from the mantle but may also result from
contact metamorphism of carbonate rocks (Giammanco et al.

1995; Seward & Kerrick 1996; Granieri et al. 2003; Werner &
Brantley 2003). Carbon stable isotopes are helpful in deter-
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Fig. 1. Geological sketch of the Lower Engadine
tectonic window (after Florineth & Froitzheim
1994).

mining the sources of CO2, especially when there is no clear

geological evidence (Sato et al. 2002). Regional surveys of the
3He/4He isotopie ratio make it possible to distinguish gas emissions

of crustal and mantle origin (Marty et al. 1992).

1.2 A short history of the carbogaseous mineral springs of
Scuol- Tarasp

The carbogaseous mineral springs of Scuol-Tarasp in the

Lower Engadine Valley are famous for their particular
characteristics for a long time. Remnants of prehistoric settlements

were found near the springs. The Romans probably
also used the water. The first historic document describing the

springs' use dates from 1561, and the first springs were
captured in 1841. Since then, they have been used for mineral
water drinking cures (Stecher 1990). The so-called
'Trinkhalle' (drinking hall) was built in 1876 at the southern
waterside of the River Inn. The two highest mineralised
springs, Luzius and Emerita, can be degusted inside this hall.
The Roman-Irish baths of Scuol use the waters from four
intermediately mineralised springs. Today, most of the
carbogaseous springs in the region are captured but only a few of
them (Carola, Luzius, Emerita, Bonifazius, Sotsass) are used

for small-scale mineral water production, i.e. some thousands
of bottles per year, mainly for local hotels (pers. communie.
R. Zollinger).

In 1930/31, two 100-m-deep wells were drilled on the northern

waterside of the River Inn near Tarasp in order to gain
additional mineral water. Unexpectedly, the boreholes showed

periodical gas and water eruptions with up to 10-m-high water
fountains. These 'coldwater geysers' became tourist attractions
but could not be used for the mineral water production. Today,

both geysers are in a bad state. Besides springs and geysers,
dry CO2 exhalations can be observed on the northern slope
of the valley near Scuol. In analogy to similar phenomena in
volcanic areas, these gas outlet points are referred to as

'mofettes'.
Since the 16th century, various scientists investigated the

mineral springs. Nussberger (1914) compiled the results of
early hydrochemical analyses; more detailed data were collected

and published by Högl (1980). Nussberger (1899), Tar-
nuzzer & Grubenmann (1909) and Hartmann (1927) proposed
different geological hypotheses of the origin of the

carbogaseous water. In the late 1980s, detailed hydrochemical,
isotopie and geophysical investigations made it possible to classify
the different mineral water types, to identify the origin of the
CO2 and to propose a first conceptual model of the regional
groundwater flow (Wexsteen & Müller 1987; Wexsteen 1988;

Wexsteen et al. 1988). However, many questions still remained
unresolved. The majority of the cited studies focused on the
most prominent mineral springs, while small and remote mineral

springs, as well as freshwater springs, were not sampled.
Furthermore, the spatial extent of the CO2 exhalations from
the ground was not known, and their relation to the

carbogaseous springs was thus not clear.

1.3 Framework and objectives of the study

The Centre of Hydrogeology (CHYN) launched two successive

studies within the framework of postgraduate diplomas
(Bissig 1997; Mayoraz 2004). Their main goals were:
• Providing an inventory and characterisation of the fresh¬

water springs, carbogaseous mineral springs, coldwater

geysers and mofettes;
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Tab. 1. Hydrogeological units in the study area.
'The springs were attributed to the main hydrogeological

unit forming their catchment basin: the

numbers in brackets refer to the number of
springs that discharge via unconsolidated
sediments. * No detailed investigations were made for
this study.

Hydrogeological unit Lithology Aquifer type Number of
springs "

1 Bündnerschiefer formation Shale sandy and calcareous
phyllites

Fractured aquifer 29(12)
+2 drillings

2 Roz-Champatsch and
Ramosch zone

Granite, gneiss, ophiolite
(serpentinite. metagabbro.
metabasalt). flysch type
sedimentary rocks

Low-permeability fractured
rocks

3(1)
+ 1 drilling

3 Tasna nappe - crystalline
basement

Granite, gneiss Low-permeability fractured
rocks "

2(2)

4 Tasna nappe - sedimentary
cover

Quartzite. limestone,
calcareous slate

Partly fractured aquifer;
partly karstified aquifer*

3

5 Silvretta nappe - crystalline
basement

Gneiss Low-permeability fractured
rocks *

—

6 Silvretta nappe -
sedimentary cover

Limestone dolomite,
carbonate breccia

Karst aquifer* 2(1)

7 Unconsolidated sediments Sand and gravel Porous aquifer (16)

• Proposing an improved conceptual model of regional CO2

production and water circulation, to better understand
both the springs and the CO2 exhalations;

• Determining whether or not there is a regional CO2 anomaly

in the area, i.e. if the CO2 exhalations are restricted to a

limited number of mofettes or fault zones or if important
quantities of this gas escape diffusely through the soil on
larger surfaces;

• Identifying possible locations to drill a new coldwater

geyser.

The investigation program included the evaluation of data and
information from the literature, geological and hydrogeological

mapping, measurement of physicochemical parameters at

springs, water sampling and laboratory analyses for major and

trace elements, and, above all, CO2 and radon gas measurements,

both in the water and soil gas.

2 Description of the study area and origin of the CO2

2.1 Location, topography and climate

The villages of Scuol and Tarasp are located in the Lower
Engadine Valley, the valley of the River Inn, in the Canton of
Grisons (GR) in the eastern Swiss Alps. The river flows in a

WSW-ENE direction and is at an altitude of 1165 m near
Scuol; the highest summits on both sides of the valley exceed
3000 m and are scarcely glaciated. The valley is asymmetric
with much steeper slopes on the southern (right) than on the
northern (left) side. The Engadine Valley is characterised by a

relatively dry and cool alpine climate. The average annual
precipitation at Scuol is 795 mm, much less than in most other
parts of the Alps, and the average annual air temperature is 5 °C.

2.2 Geological framework

In the Lower Engadine Valley, the Austroalpine nappes are
regionally eroded so that the Penninic nappes are exposed, form¬

ing a large tectonic window (Fig. 1). The Engadine Window is

54 km long (SW-NE) and up to 17 km wide (SE-NW). The
highest tectonic units are the Upper Austroalpine S-charl-
Sesvenna and Silvretta nappes, which consist of a crystalline
basement with parautochthonous sedimentary cover. These

two nappes form the framework of the tectonic window. The
Lower Penninic Bündnerschiefer (schistes lustrés) is the lowest
tectonic unit and outcrops inside the window. The formation
consists of metamorphosed, dominantly pelagic rocks, including
grey and black shale, as well as sandy and calcareous phyllites.
The Lower Engadine Mélange between the Penninic and
Austroalpine nappes includes the Roz-Champatsch zone, the Tasna

nappe with its Mesozoic sediments and crystalline basement,
and the ophiolites and crystalline basement of the Ramosch

zone (Cadisch et al. 1968; Florineth & Froitzheim 1994).

The structural reason for the tectonic window is an important

regional uplift, which mainly occurred along a major fault
at the SE margin of the window, the Engadine Line. This fault
was active in the late Tertiary, after the main phase of alpine
collision. It is a left-lateral extensional strike-slip fault
(transtension) with a vertical displacement of about 6 km
(Schmid & Froitzheim 1993). Regional uplift also formed a

huge anticlinorium, which cumulates in the centre of the
window. Its axis trends SW-NE and coincides with the axis of the
tectonic window. In the area of Scuol-Tarasp, the anticlinorium

is represented by an anticline; most of the carbogaseous
mineral springs are located in this zone.

2.3 Hydrogeological framework

Based on lithological and hydrological field observations, Bissig

(1997) defined seven major hydrogeological units in the

study area (Tab. 1).

Most of the carbogaseous mineral springs discharge from
the Bündnerschiefer fractured aquifer (unit 1), either directly
or indirectly via overlying sediments (unit 7). In order to better
characterise regional groundwater flow, Bissig (1997) carried
out a fracturing study, which focused on the main aquifer but
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also included a gneiss outcrop. It was possible to identify 8

families of joints, including release and shear joints, and 3 families

of faults. Although there are no precise data on hydraulic
fracture properties, such as aperture, connectivity or infillings.
it was possible to demonstrate the importance of the joint
pattern for groundwater flow and surface hydrology. Both the
river network and geomorphological lineaments reflect the

joint pattern. Mineral springs are often located at the intersection

of such lines.

2.4 Origin of the C02

Wexsteen et al. (1988) analysed the gas in selected mofettes
and carbogaseous springs near Scuol-Tarasp in order to determine

its origin. The gas is composed of CO2 (> 93 %), N2 (5-7
%), He (5 ppm) and traces of H2S (1 ppm). The gas composition

in the spring waters and mofettes is similar, suggesting
that it has the same source. The 13C/12C and 3He/4He ratios
indicate that the CO2 originates from metamorphic reactions in
the crust, while a mantle source can be excluded. During ther-
mo-metamorphosis, CO2 forms at 300-400 °C by the decomposition

of carbonate minerals (Bucher & Frey 2002). For example,

dolomite reacts with quartz to form talc, calcite and
carbon dioxide:
3 CaMg(C03)2 + 4 Si02 + H2O Mg3(OH)2Si4Oio + 3 CaC03
+ 3CO2

While calcite reacts with quartz to form wollastonite and
carbon dioxide:

CaC03 + SÌO2 CaSi03 + CO2

3 Methods

3.1 Hydrochemical analyses

The water temperature (T), electrical conductivity (EC). pH
and oxygen content (O2) were measured at the springs using
standard field instruments. The discharge (Q) was quantified
using receptacles and a stopwatch, or estimated where this was

not possible (Bissig 1997). Water samples were taken at all
springs. The Cantonal Laboratory of Grisons measured the

major water constituents using ion chromatography (DIONEX
DX-120). The trace elements were analysed at the Institute of
Geology and Hydrogeology (IGH) at the University of
Neuchâtel by means of ICP-MS (Mayoraz 2004).

3.2 CO2 and radon measurements in water

Bissig (1997) used a simple field method to estimate the CO2

content in the spring waters, the 'Karat' tube. Mayoraz (2004)
reinvestigated most of the spring waters in the study area. At
each spring, two samples, one for CO2 and one for radon,
were taken in 20 mL Teflon lined silicone septum vials with
no air bubbles left. The samples were analysed at the
Environmental Radioactivity Laboratory at the CHYN within one
week.

For the CO2 measurement, air is bubbled in a closed circuit
for 3 min at 200 mL/min through the sample. The CO2 concentration

in the air circuit is then measured by IR absorption
(Texas Instruments CO2 Sensor 9GS-1-5-ZC). The initial con-
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Tab. 2. Overview of the springs and their characteristics in the region of Scuol-Tarasp.

Group Water type Sampling Point
name symbol

Altitude
M

TDS

[mg/L]
Q

[Us]
T Data period ' C02'

for TDS, Q,T| [mg/L]
Radon " Remarks Hydro, unit

[Bq/L] | see Tao. J

1

Na-HC03-CI
Luzius Lue 1182 16'100-17700 0.05-0.10 5.2-6.7 1900-1997 2500-2600 08
Ementa Eme 1182 15'500-16300 0.02-0.07 5.4-76 '1900^1997 T

2500 0.6

Na-Ca-HCOj-CI
Sfondraz Sfo 1185 7340-9'270 004-0 10 7 2-8.7 1958-1997 ; 2500 07 1

Geyser I Gey I 1189 7550-7'620 m.np. 71-7.8 1997 2400 n m borehole

Na-HCOj Geyser II Geyll 1191 4'310 m.n.p. 82 1945 | 2200a n.m. borehole

2

Ca-Na-HC03 Bonifazius Bon 1210 5'620-5'820 0 05-0 17 5 2-6 9 1899-1997 2900 05

Ca-HC03
Untere Fuscrtana Fus 1205 3'990-4'370 0.02-0.03 5.8-91 1902-1997 2200 0 4 1

Obere Fuschana Fuo 1260 2'310-2'570 0.01 9.9 1902/1997 1200 n.m.

Ca-HCOj-SO, Carola Car 1190 1'230-2'910 m.n.p. 5.0-8.4 1958-1997 2200 36 1/7

3 Ca-HC03

Runa Run 1200 3'090 0.1 11.5 1997 2100 n m

Vin Vih 1320 2'040-2,240 0 05-0 7 7 5-8 7 1853-1997 2300 1

Sotsass Sot 1285 2'260-2'510 0 06-0 55 8 8-10 0 1951-1997 2300 96
Rablönch Rab 1185 2095 n.m. 9.0-10.2 2003 1910 105

1

Clozza Ciò 1290 1-410-1'670 m.n.p. n.m. l 1951-1997 2200 1.6

Chauennas Cau 1335 1'470 02-0.5 n.m. 1997/2003 190-620 7.4

Corgnuns Cor 1315 V320 0.3-0.55 106-12 3 1997/2003 j 180-220 0.9

Val Chalzina oben Veti 1315 1'340 0 06 68 1997 2300 nm
Chatzina Cha 1225 ruo 1.1 88 1997 890 16.4

Tula! Tul 1230 rois 0.8 9.0 1997 1300 30.4 1/7

SurVih Sur 1370 700 0.04 11.8 1997 .3) n.m.

4 Ca-Mg-HC03

S-Chürdüna Sch 1235 830 0.5-0.7 8.0 1997 350 n.m.
1/7

Hangquelle Schweizerhof Has 1220 535 0 05-0 2 7.8-8.4 1997/2003 26 9 9

Bugi da Fontana Bug 1380 625 0 7 9.1 2003 35 28 5
1

Stron Sro 1420 585 017 8.4 2003 53 1.1

Godda Rès Res 1510 485 0.02-0.04 5 9-8 7 2003 20 1

Tuffa rola Tuf 1510 415 0.3-0.5 7.9-8 4 2003 22 3.2
1/7

Pian de Chavas Pch 1670 410 0.5 7.0-8.0 2003 24 4.7

Talur Tal 1195 590 0.1-03 8.9-9 4 2003 58 23 8

Chaposch Chp 1430 465 001 59-8.5 2003 35 54 3/7

Avrona Avo 1490 375 0.5 4.1 2003 14 1 217

5

Ca-Mg-SO,-HC03
San Jon dadaint Sjo 1470 T310-2'090 0.06-0.3 5 2-7 1 1997/2003 33 139 4

Rote Lischana. Cotschna Rli 1555 975 5 64 1997 .31 66 6

Ca-Mg-S04 Bain Crotsch Bai 1470 V670 0.5 4.6-5.8 2003 26 1.5 4
Ca-SO<-HCOj Vallatscha W Vaw 1440 800 0.15-0.25 5.0-7.2 2003 22 334 1/2

6 Ca-Mg-HC03-S04

San Jon San 1420 560 0.07-0.5 49-108 2003 12 1 3/7

Plan de Funtanas Pln 1460 255 15 4 9-5 0 1997/2003 .3) n.m. karst spring 677(5)

Clemiga dadaint Cle 1350 640 0.2 4.8 1997 24 n.m. 4

Kurhausquelle Kur 1195 520 0.3 109 1997 .3) n.m. 1/7

Vallatscha N Van 1440 395 0.03-0.05 5.1-8.6 2003 14 2.3 1/2

7 Na-Mg-HC03-S04 Lischana Lis 1164 779O-9'320 n m 7 1-7 9 1984-1997 2300 6.1 borehole 2

8 Ca-Na-C03-CI-SO„ Tarasper Schwefelquelle Tas 1496 300 0.1 60 1997 .3) 4 0 pH 11-12 2

" measurementsofC021997 /2003 and Radon 2002/200: data fr Dm 1945 3) not detectable with method "Karat" m n p measL rement not ptïssible n.m. no measurement

centration in the sample is calculated using the known
air/water volume ratio and the Bunsen coefficient. Measurements

are reproducible within ± 2 mg/L. Calibration uncertainty

of the sensor is estimated to be ± 20 %.
Radon (222Rn) is measured by liquid scintillation counting:

10 mL of the water sample are added to 10 mL scintillator
(Maxilight, Perkin Elmer). After a 3h delay, 7 mL of the
scintillator are extracted and counted for 1000 s (Triathler, Hidex
Oy, Finland, in alpha/beta separation mode). The detection
limit is 0.3 Bq/L and the calibration uncertainty is < 5 %.

3.3 CO2 and radon measurements in the soil gas

Mayoraz (2004) measured the CO2 and radon concentration
in the soil gas using a procedure proposed by Surbeck (1993):
A hole is drilled manually to a depth of 30-50 cm using a

7 cm soil auger. A probe with an inflatable packer is intro¬

duced and fixed by pumping up the packer. The soil gas is

sucked for 5 min at 1 L/min. The gas then passes through a

222Rn monitor (RAD7, Durridge, Bedford, MA, batch mode)
and a CO2 detector (Texas Instruments C02 Sensor 9GS-1-5-

ZC). The CO2 detector has a full range of 25 vol.%. Readings
are reproducible within ± 0.2 vol.% and calibration uncertainty

is estimated to be ± 20 % (1-sigma) for the full range.
At typical values of several kBq/m3, the radon monitor has

a counting statistics uncertainty of ± 10 % (1-sigma). The
calibration uncertainty given by the manufacturer is ± 2 %

(1-sigma). A pressure gauge is connected to the tube leading
from the soil gas probe to the pump (RAD7 internal pump).
This allows for an estimation of the soil's gas permeability.
However, no noticeable differences in the pressure have been
observed for all the samples taken during this study. Therefore,

the pressure readings were not used to normalise the
radon and CO2 data.
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4 Carbogaseous springs and geysers

4.1 Overview

16 carbogaseous springs (> 500 mg CO2/L), two formerly
active carbogaseous geysers, and 23 other springs in the region of
Scuol-Tarasp were observed and sampled (Fig. 2, Tab. 2). All
carbogaseous waters discharge from the Bündnerschiefer
fractured aquifer and are characterised by low temperatures
(< 12.5 °C), a mineralisation of more than 1000 mg total
dissolved solids (TDS) per litre, and CO2 content that often
exceed 2000 mg/L. The highest mineralised springs (> 5000 mg
TDS/L) are situated along the River Inn. The springs at the
northern slope of the valley often show intermediate mineralisation.

Only two mineral water springs with relatively low CO2

content occur at the southern slope.

4.2 Origin and functioning of the coldwater geysers

Normal geysers blow out hot water fountains when the heat of
the rock brings the water near boiling. The pressure release

during the eruption increases the steam production, which
reinforces the eruption (Rinehart 1980). Most coldwater geysers
are manmade phenomena, which may occur when a borehole
is drilled into a carbogaseous aquifer. Liberation of CO2 from
the over-saturated water causes the eruption, and the pressure
release increases the degassing. Both hot and cold geyser eruptions

are thus self-amplifying processes, and the formation of
gas bubbles is essential for the generation of eruptions. Glen-
non & Pfaff (2005) provide an overview of coldwater geysers.
The world's largest one is located near Andernach in

Germany. It was first created by a drilling in 1905. then destroyed
due to road construction and reactivated in 2001 by a 350-m

drilling. This geyser ejected 60-m-high fountains every 90 min.
Soon after the drilling, the borehole had to be closed because

there was unwarranted concern that the geyser could harm the

environment (pers. communie. B. Krauthausen). Up to 30-m-

high water and gas eruptions also occurred at a 1600-m-deep
geothermal exploration borehole, which was drilled in 1991 in
the Upper Engadine Valley (Aemissegger 1993).

The coldwater geysers in the region of Scuol-Tarasp were
created by two 100-m-deep mineral water exploration wells.

Geyser I was destroyed in 1934 during excavation works:
however, the water can still be sampled. Geyser II is partly filled
with sediments, and is blocked at 14 m depth. Only a few, small

eruptions (< 2 m) have been observed since 1961.

Bissig (1997) investigated the geysers, including hydrochemical

analyses (section 4.4) and recording of their hydrodynamic
behaviour. The mean water level in the borehole of Geyser II is

at 5.5-6.0 m below wellhead, i.e. 0.5-1.0 m above the level of the

near River Inn (Fig. 3). The water level in the borehole was
observed from July to October 1997 using a dip-meter for occasional

measurements and a continuously recording pressure probe at
13 m below wellhead. This probe often showed lower water
depths than the dip-meter, which can be explained by variable
content of gas bubbles. The pressure data thus cannot be directly
transformed into water-level data. During the first two months,
the pressure recordings display stagnation periods that may last

up to 7 days and short fluctuation phases. The fluctuations may
exceed 0.1 bar in 10 min, i.e. more than 1 m of water-level variation.

During the last month, the borehole showed permanent
variations without stagnation periods, indicating that Geyser II is

still active, although the borehole is in disrepair.

4.3 CO2 and radon in the spring water

The available data on CO2 in spring water for the region of
Scuol-Tarasp (Mayoraz 2004, Deflorin 2004. a total of 38 samples)

show a frequency distribution, which can be well fitted
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using a two-component approximation Fig. 4. Component 1 with
a median of 22(K) mg/L is attributed to geogenetic production,
whereas component 2 with a median of 24 mg/L shows a distribution

expected for groundwater in equilibrium with the soil.
The data on radon in spring water (Mayoraz 2004; Deflorin

2004: a total of 32 samples) display a nearly perfect one-component

lognormal distribution with a median of 5 Bq/L (not
presented here). This corresponds to the median found by
Deflorin (2004) for 360 samples taken in the Canton of
Grisons. There is a deviation from the one-component behaviour

at values above 20 Bq/L. with the highest value at 25 Bq/L.
The origin of this second component is unknown, but there is

no need to attribute it to radon upwelling with the CO2 from
depth. 25 Bq/L are still within the range for groundwater in
contact with soil. Furthermore, there is no correlation between
the concentrations of the two gases for the 18 water samples.
for which both radon and CO2 are known.

4.4 Hydrochemical classification of the spring and geyser waters

On the basis of the major-ion chemistry, the hydrogeological
units and the location of the springs and geysers, it is possible
to distinguish six groups of water types with various
subgroups, and two special water types (Tab. 2). The water chemistry

of one characteristic spring from each group is shown in
the Schoeller diagram in Fig. 5; a detailed description of the

spring groups is given in the following sections.

Group 1

The most famous carbogaseous mineral springs are situated
along the gorge of the River Inn and discharge from the
Bündnerschiefer formation. Luzius and Emerita are Switzerland's
highest mineralised springs, with 15500-17700 mg TDS/L.
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Fig. 5. Schoeller diagram of characteristic springs from the different
hydrochemical groups.

These two springs, as well as Sfondraz and the geysers belong
to the Na-HCOvCl water type, which can further be classified

according to the Ca2+ and CI" content (Tab. 2). Besides the
standard major cations and anions, the mineral water also
contains significant amounts of FbS. boron acid, Li* and various
trace elements. The CO2 concentrations are within a range of
2200-2600 mg/L.

Group 2

Other carbogaseous mineral springs in the gorges of the River
Inn are characterised by less highly mineralised water
(1200-5800 mg TDS/L) with Ca2+ as the predominant cation
and bicarbonate as the most important anion. The CO2 content

range from 1200 to 29(X) mg/L. Hydrochemically. the spring
waters can be considered as a result of mixing between groups 1

and 3. The Carola spring receives an additional contribution
from the alluvial aquifer near the River Inn. which contains
sulphate. About 3000 bottles of water from this spring are used

each year for local hotels (pers. communie. R. Zollinger).

Group 3

These springs are located at the slope of Scuol and also

discharge from the Bündnerschiefer formation. The spring waters
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show low to medium mineralisation (700-3100 mg TDS/L) and
a simple Ca-HCO.i chemistry. Iron and silicic acid are important

minor water constituents at some springs. Most springs of
this group are carbogaseous and contain more than 1000 mg
CO2/L. Tritium data (Högl 1980; Wexsteen et al. 1988) from
some of these spring waters indicate relatively short residence
time of less than 5 years.

Group 4

Low mineralised springs (TDS < 1000 mg/L) with a Ca-Mg-
HCO3 water type occur on both sides of the valley and most
often discharge from the Bündnerschiefer formation; either
directly or indirectly via an overlying shallow porous aquifer.
The CO2 content is most often < 60 mg/L, except for the S-

Chürdüna spring with 350 mg/L.

Group 5

This group summarises springs that discharge from different
hydrogeological units at the southern slope of the valley, which
are characterised by higher sulphate than bicarbonate
concentrations. The mineralisation of the spring waters is low to
medium (800-1700 mg TDS/L) and the CO2 content is always
low (< 40 mg/L).

Group 6

This is another heterogeneous group of non-carbogaseous low
mineralised springs, which are mainly situated at the southern
valley slope and discharge from different aquifers, often
indirectly via shallow porous aquifers. Unlike the springs of group
5, the waters of this group show higher bicarbonate than
sulphate content (Ca-Mg-HC03-S04 water type).

Special water types (groups 7 and 8)

Two springs in the region show special hydrochemical
characteristics that differ from the six other groups. The Lischana
spring is a highly mineralised carbogaseous spring that was
captured by a drilling in serpentinite near the River Inn. It is
the only spring in the region that contains more magnesium
than calcium. The major element composition is Na-Mg-
HCO3-SO4. The water also contains high concentrations of
boron and silicic acid.

The 'Tarasper Schwefelquelle' (sulphur spring) also
discharges from serpentinite but has low mineralisation. The
characteristics of this spring are very different from those of
the Lischana spring because it contains no CO2. As already
observed by Pfeifer (1977), the water is strongly basic with a pH
of about 11, which is typical for groundwater in ultramafic
rocks. As a consequence of the high pH, inorganic carbon is

present as carbonate (CO32). The geochemical water type is

Ca-Na-C03-Cl-S04.

5 Mofettes and soil gas

5.1 Mofettes

On the northern slope of the valley, near Scuol, there are long-
known spots of dry gas exhalations, which are called 'mofettes'
in analogy to the volcanic phenomena. The largest one is

known as 'Mofetta Felix'. As described above, the gas is mainly

composed of CO2 (> 93 %) but also contains other components,

including traces of H2S. Such high CO2 concentrations
are harmful. The mofettes can thus be recognised due to
reduced vegetation, accumulations of dead insects and a slight
smell of hydrogen sulphide (Schmassmann 1980).

All mofettes discharge from moraine overlying the
Bündnerschiefer formation. Geophysical investigations (VLF-R)
showed that the thickness of the moraine ranges between 15

and 20 m (Wexsteen & Müller 1987). In the zone of the
Mofetta Felix, the gas outlets are aligned in a N60 direction,
sub-parallel to the axis of the valley and the crest of the
anticline. The geophysical investigations indicate conductive
zones in a N150 direction, perpendicular to the mofette line.
Those were interpreted as open fractures with diaclases allowing

for degassing from depth. A second zone of mofettes is

located nearby above the Vih spring and seems to follow a N100
direction.

5.2 CO2 and radon in the soil gas

It was previously not known if the mofettes reflect an important
regional CO2 anomaly or if there are only a limited number of
point-like gas outlets. Therefore, Mayoraz (2004) measured the
CO2 concentration in the soil gas along 7 profiles following a

NW-SE direction, i.e. perpendicular to the mofette lines and
structural axes, and 2 NE-SW profiles. The radon (222Rn)
concentrations were measured simultaneously. The main profile is

3745 m long, while the other profiles range in lengths between
45 and 518 m. The mean distances between the measurement
points is 72 m for the main profile and 6-34 m for the others,
and the number of points per profile is 53 for the main profile
and 6-27 for the others. Furthermore, the gas concentrations in
the soil gas were measured in the near environment of the
carbogaseous springs and geysers. Altogether, the soil gas concentrations

were measured in 178 boreholes along 5454 m of total
profile length. The results are presented in Fig. 6.

The CO2 measurements confirmed the long-known zones
of gas exhalations, i.e. the mofettes near Scuol. Outside from
these zones, the concentrations are often within a range of
0.2-2 vol.% - normal values for soil gas. Near the Mofetta
Felix, increased concentrations (> 4 %) were detected in a 100-

m-wide zone. Similarly, an 80-m-wide anomaly was detected
in the mofette zone northerly uphill from the carbogaseous
Vih spring. Locally, the range of the instrument (25 %) was
exceeded. The 3745-m-long main profile only showed one small
CO2 anomaly, NW uphill from the Vih spring. Two detailed
profiles, NW-SE and NE-SW, made it possible to better de-
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fine this anomaly, which is about 20 m x 20 m in size with a

maximum concentration of 5.3 % CO2.

The soil gas measurements near the carbogaseous springs
and geysers most often showed CO2 content of 0.2-2 %. Higher

values were detected near two springs. Sfondraz and
Rablönch. The near environment of the latter was investigated
along two perpendicular profiles. Increased values were found
in a zone of 50 m (NW-SE) x 40 m (NE-SW). The highest
value, locally > 25 vol.%. were found 55 m uphill from the

spring.
The radon concentrations in the soil gas range between less

than 0.2 and 35 ± 3 Bq/L. Although high CO2 content (> 10 %)
always coincide with elevated radon content (> 1.5 Bq/L).
there is no systematic correlation between the two gases.

The frequency distribution of the CO2 concentrations in
the soil can be approximated by two lognormal components

(Fig. 7). About 70 % of all measured values can be attributed
to CO2 production in the soil, which confirms that there is no
general regional CO2 anomaly.

The 222Rn in soil gas frequency distribution shows no
indication for radon from depth (Fig. 8). 90 % of all values can be

explained by radon produced in the soil, with a median of
2 kBq/m3. A second component with a median of 0.5 kBq/m3

may be due to leaky sampling.

6 Discussion and conclusions

6.1 Conceptual model of the regional gas and groundwater
circulation

The previous isotopie studies showed that the CO2 in the

Lower Engadine originates from the metamorphosis of car-
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bonate rocks in the crust (Wexsteen et al. 1988). The results of
the study presented in this paper made it possible to propose
an improved conceptual model of the regional gas and water
circulation (Fig. 9), and to better understand the relations
between dry gas exhalations, carbogaseous mineral springs, and
freshwater springs (Fig. 10).

Almost all carbogaseous phenomena are bound to the
Bündnerschiefer fractured aquifer (unit 1 in Tab. I). The tec-
tonically higher hydrogeological units 2 and 3 act as a regional
aquiclude limiting both groundwater and gas circulation. The
River Inn forms the regional hydrological base level. Steep
hydraulic gradients have to be expected in the fractured shale of
the Bündnerschiefer formation so that the piezometric surface
is high above the river on both sides of the valley. Below this
level, all voids in the rock are fully saturated with water. It is

thus clear that the CO2 rises up from depth along water-saturated

fractures, dissolved in the groundwater. Dry gas movement

can only occur at shallow depth in the unsaturated zone.
High CO2 content in the groundwater favour both the dissolution

of carbonate minerals and the transformation of silicate
minerals (Krauskopf & Bird 1995), for example:

CaC03 + CO2 + H2O Ca2+ + 2 HCO3
2 Na[AlSi308] + 2 CO2 + 3 H20 Al2[(OH)4/SÌ205] + 4

SÌO2 + 2 HCO3- + 2 Na+

Consequently, high CO2 content causes high mineralisation.

As the solubility of gas in water decreases with decreasing
pressure, the carbogaseous fluids become over-saturated with
gas when they rise up from depth. Near the River Inn,
degassing of CO2 and mineral precipitation can be observed at
the springs. The soil gas measurement near these springs and
the geysers displayed no significant CO2 anomalies (exception:

Sfondraz spring). This finding suggests that the degassing
occurs directly at the outlet points of the springs and geysers.

On the northern slope of the valley, above the regional
hydrologie base level, there is an important unsaturated zone,
and thick moraines locally overlay the fractured aquifer. In this

zone, degassing takes place near the groundwater surface,

probably tens of metres below the land surface within the
moraine. The long-known mofette zones are located in this

area, and the soil gas measurements allowed the identification
of two formerly unknown CO2 anomalies uphill near the
Rablönch and Vih carbogaseous mineral spring. These anomalies

are tens of metres in size. The CO2 content at some points
exceed the measurement range of 25 %. The dry gas exhalations

upgradient from the springs indicate the upwelling of
carbogaseous water along fractures in the shale. In the moraine, a

part of the CO2 separates from the fluids and rises up through
the unsaturated zone, while the carbogaseous mineral water
mixes with fresh groundwater and flows laterally downwards
to the springs (Fig. 10). Outside from these spatially restricted
mofettes and anomalies, most of the 178 measurements gave
CO2 content of 0.2-2 vol.%, which is within the normal range
for soil gas. The dry gas exhalations are thus locally restricted
phenomena, which are, however, often aligned in a N60 or
N150 direction.

Although all carbogaseous mineral springs, except one,
discharge from the same aquifer, their hydrochemical characteristics

are quite different and can only be understood within a

wider hydrogeological framework. Natural tracers, i.e. the
chemical and isotopie water composition, have been used to
classify the spring waters and to obtain information on the

groundwater circulation system. As described above, there are
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six main hydrochemical groups of spring waters and two special

water types (Tab. 2). Groups 1 to 3 are carbogaseous mineral

waters that discharge from the Bündnerschiefer fractured
aquifer, either directly or via overlying sediments. In a first
approach, the different water types within these three groups can
be explained by mixing of up to three main components:
1. Extremely mineralised Na-HCOi-Cl water (Luzius and

Emerita);
2. Highly mineralised Ca-HCOi water (Runa. Vih, Sotsass

and Rablönch);
3. Fresh groundwater.

The origin of the Na-HCOvCl water (comp. 1) is still debatable.

Tritium data indicate that it is older than 32 years (Wexsteen

1988). The high content of Na+. CI and minor elements,
like Li+ and boron acid, cannot be derived from the Bündnerschiefer

formation. These elements may originate from the
dissolution of evaporitic rocks. Such formations have not been

proven in the region. However, deep geophysical profiles
across the Alps indicate the possible presence of evaporitic
layers beyond the 10 km depth, within the sedimentary cover
of the South Helvetic and North Penninic basement (Pfiffner
et al. 1997). It is also possible that slices of Triassic evaporites
occur in the hanging wall of the Bündnerschiefer formation at
shallower depths. The radiocarbon method cannot be used for

water dating, as the CO2 is of metamorphic origin. Stable

isotope data deviate from the meteoric water line. The water is

enriched in lxO, which may indicate water-rock interaction at

more than 150°C (Schotterer et al. 1987: Wexsteen 1988). As
the Bündnerschiefer consists of metamorphic marine
sediments, the saline water could also originate from ancient
marine formation waters, which is consistent with the deviation
from the meteoric line (Högl 1980: Wexteen 1988). Up until
now. the different hypotheses could neither be confirmed nor
disproved.

According to Siegenthaler (in Högl 1980). the mean
residence time of the highly mineralised Ca-HCO? water from the

Vih and Sotsass springs (comp. 2) is less than 5 years. Wexsteen

(1988) proposed that the spring water results from mixing
of fresh groundwater with 5-50 % of very old components so

that exact dating is not possible.
The fresh groundwater (comp. 3) includes a variety of

different water types, which reflect the different hydrogeological
units (Tab. 1). Groundwater from the Bündnerschiefer aquifer
(unit 1 and the moraine (unit 7) predominantly contains Ca2+,

Mg2+ and HCO3. Springs that discharge from the hydrogeological

units 4 and 6 additionally contain sulphate.
The less mineralised waters within group 3 can be

explained by mixing of highly mineralised Ca-HCO.i water
(comp. 2) and fresh groundwater (comp. 3). The highly miner-
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alised waters of group 2 (Bonifazius, Fuschana) can be considered

as mixtures of components 1 and 2: the Carola spring
additionally includes a significant contribution of fresh groundwater.

The low spring temperatures seem to contradict a deep origin

of the carbogaseous mineral water. However, the discharge
rates of the mineral springs are very low (Tab. 2). Due to the
low flow rates and velocities, the hot mineral waters rising
from depth have enough time and contact with the rock mass
to cool.

6.2 Hydrochemical criteria to localise a new geyser drilling

The abovementioned coldwater geyser in Andernach yielded
60-m-high eruptions from a 350-m-deep borehole. The fact
that the geysers near Scuol-Tarasp produced 10-m-high fountains,

although the boreholes were only 100 m deep, suggests
that there is potential for higher fountains if a deeper borehole
was drilled at the right place. The observations described in
this paper indicate that Geyser II is still active, although its
functioning is strongly reduced as the borehole is partly filled
with sediments and blocked at 14 m depth.

The short-term functioning of a coldwater geyser depends
on two major aspects: inflow of groundwater from a sufficient¬

ly transmissive aquifer, and inflow of CO2 from depth. However,

high CO2 content often coincide with high mineralisation,

and the mineral precipitation from the fluid phase is likely

to clog the borehole. The long-term functioning thus
additionally requires a relatively low mineralisation. Fig. 11

presents the CO2 concentration and total mineralisation of all
spring and geyser waters in the region of Scuol-Tarasp. Ideal
conditions to drill a new coldwater geyser should be present
when the water is rich in CO2 while mineralisation is low, i.e.

within group (a).
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