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ABSTRACT

Carbonates of Valanginian age deposited in the Tethys and Atlantic Oceans
show a distinct positive 8,3C excursion (A8I3C 1.5%o-2%o) in sections of the

neritic. hemipelagic. and pelagic environment. This excursion records a major
climate-induced perturbation of the global carbon system. The 8I3C excursion
is accompanied by enrichments in manganese (Mn) and iron (Fe). The correlation

of the 5"C excursion with trends in Mn and Fe contents reflects changes
in Valanginian paleoceanography and climate. Fe enrichment occurs mainly in
terrestrial, platform, and shelf regions. In a basinal direction the Fe content
decreases, whereas the Mn/Fe ratio increases. An increase in sedimentary Mn
and Fe concentrations is related to elevated continental weathering rates and

to widespread dys- or anoxia that favored metal deposition in Valanginian
sediments. Various océanographie changes (e.g., expansion of oxygen-minimum
zones) resulting from increased continental runoff led to a strong remobilization

and focused reprecipitation of metals in the oceans of the Valanginian
stage.

ZUSAMMENFASSUNG

Karbonate des Valanginian aus den Tethys- und Atlantik-Räumen weisen in
neritischen, hemipelagischen und pelagischen Abfolgen eine markante, positive

5l3C-Exkursion (A5I3C 1.5%o-2%o) auf. Diese Exkursion wird auf eine

grossräumige Änderung im globalen Kohlenstoff-Budget zurückgeführt,
welcher mit einem Klimawechsel in Zusammenhang steht. Die 813C-Exkursion
wird von Anreicherungen in Mangan (Mn) und Eisen (Fe) begleitet. Die
Korrelation der <5'3C-Exkursion mit den stratigraphischen Tendenzen in sedimentären

Mn- und Fe-Konzentrationen weist auf Änderungen in der Paläozeano-

graphie und im Klima des Valanginian hin. Die Zunahme in den Mn- und Fe-
Konzentrationen hängt mit erhöhten Verwitterungsraten auf dem Kontinent
und mit weitverbreiteten dysoxischen bis anoxischen Bedingungen in den
Ozeanen zusammen, welche die erhöhte Metallablagerung in Sedimenten des

Valanginian ermöglichte. Fe-Anreicherungen fanden vorwiegend in den
terrestrischen und flachmarinen Bereichen statt. In Richtung des Beckenbereiches
nimmt der Fe-Gehalt ab und das Verhältnis Mn/Fe zu. Die Metallanreicherung

während des Valanginian wurde von einer Änderung im Wasserkreislauf,

Verwitterung und Erosion in Zusammenhang mit einer wichtigen Zunahme

des Treibhauseffektes verursacht. Als direkte Folge der intensivierten
Verwitterung wurde die Freisetzung der Metalle beschleunigt und die
Verfrachtung der Metalle in die Ozeane nahm zu. Verschiedene Wechsel in den

ozeanographischen Bedingungen wie die Ausdehnung der Sauerstoff-
Minimumzonen führten zu einer starken Remobilisation und fokussierten
Ablagerung der Metalle in den Ozeanen des Valanginian.

Introduction

The evolution of the global carbon cycle through Earth history
is documented by the inorganic and organic carbon isotope
record of marine and terrestrial sediments. Major changes in
carbon cycling leave a positive or negative carbon isotope
anomaly in the isotope record (e.g., Hayes et al. 1999). High
amplitude perturbations (A>l%o) of the carbon cycle exceeding
the residence time of carbon in the ocean (presently at approx¬

imately lOOky; Kump & Arthur 1999) were coupled with a

reorganization of global climate, with changes in oceanography,
and with evolutionary steps in marine and terrestrial biota
(e.g., Arthur et al. 1985). These coupled changes of climate,
oceans and biosphere contributed to a renewed stabilization
of carbon cycling and of the global climate up to million years
after the incipient disturbance of the C-cycle (e.g., Weissert
1989).
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the oceanic manganese cycle

Ocean
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Z. ZZf] crustal rocks

*. Mn flux
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1 terrestrial input (riverine & eolian)
2 hydrothermal input
3 diagenetic input (remobilisation of Mn from sediments)

outputs
4 flocculation of Mn oxyhydroxides in the brakish environment
5 deposition of Mn bound to particulate matter on the shelves
6 precipitation and sedimentation of Mn oxyhydroxides at the margins of the OMZ
7 early diagenetic precipitation of Mn-carbonates under dysoxic conditions
8 hydrogenetic precipitation on the seafloor and/or settling through the water column
9 precipitation of Mn oxyhydroxides from hydrothermal plumes

Fig. 1. Model of the oceanic Mn cycle with information on input and output
processes and locations of Mn burial. Compare text for references.

The 8L1C record of the oceans varies in response to the
cycling of carbon between the oceans and other reservoirs.
Changes in partitioning of carbon between the oxidized and
the reduced marine carbon sink best explain measured long-
term changes (IO4 to 107 years) in the isotopie composition of
inorganic and organic carbon (Hayes et al. 1999). Because of
the large fractionation between organic and inorganic carbon
reservoirs, these changes commonly are attributed to the burial

and erosion of organic matter (e.g., Arthur et al. 1985).
Variations in less fractionated fluxes, such as carbonate
carbon, however, also contribute to isotope excursions (e.g.,
Weissert et al. 1998). Changes in carbon cycling recorded in C-

isotope stratigraphy are coupled with major changes of climate
and reorganization of oceanography.

The transition-metal content (e.g., Mn, Fe) in marine
sediments provides information on changing weathering patterns
and on the evolution of oceanography during a time of altered
carbon cycling (Brumsack 1986; Arthur & Dean 1992). Earlier
studies have shown that marine manganese and iron ores were
formed at times of peculiar paleoceanographic conditions.
"Mn giants" of the early Toarcian, late Jurassic. Aptian.
Albian. Cenomanian/Turonian boundary, and Miocene are
correlated with ocean-wide anoxia (Oceanic Anoxic Events)
and/or changes in the carbon cycle as expressed by positive
S13C excursions (e.g., Pomerol 1983; Frakes & Bolton 1984,

1992; Schlanger et al. 1987; Van Houten & Arthur 1989;

Jenkyns et al. 1991, 2002; Pratt et al. 1991; Corbin et al. 2000;
De Rafélis et al. 2001).

Most Mn and Fe entering the present-day oceanic reservoir

are mobilized on the continent by physical weathering and
erosion of rocks and by dissolution of metal-bearing minerals
during biochemical weathering (Fig. 1). Bender et al. (1977)
calculated the present-day total input of Mn into the ocean to
be 6.3 ug/cm2/yr. Most (95%-97%) of this input of Mn into the
marine cycle stems from continental sources and is transferred
to the ocean by fluviatile and eolian transport, mostly (>99%)
as particulate matter. The oceanic hydrothermal flux of Mn
accounts for less than 5% (=0.2 u,g/cm2/yr) of the total yearly Mn
input, despite its high concentration in hydrothermal fluids (up
to 106 times the concentration in ocean water; Bender et al.
1977; Drever et al. 1988; Burton & Statham 1988). The
hydrothermal input leads to locally, perhaps regionally enriched
(max. 1000 km from its source) Mn2+ concentrations in the

deep-water layers in the form of Mn-rich hydrothermal plumes
(Klinkhammer & Hudson 1987). The Mn reflux into the
marine cycle through remobilization of Mn in sediments is not
quantified yet. Box model calculations suggest that this input is

important, too (Landing & Bruland 1980; Burton & Statham
1988).

The concentration of Mn dissolved in ocean water, and in

the form of suspended and deposited sediment is mainly
controlled by redox cycling (Bender et al. 1977). Mn occurs in the

ocean in the form of Mn2* and Mn4+ ions. Under oxidizing
conditions Mn4* is precipitated as MnOOH or in the form of
other Mn phases (e.g.. Hem 1972). Under reducing conditions,
manganese oxyhydroxides are dissolved and Mn occurs in an

aqueous state as Mn2* ions. The concentration of dissolved Mn
in anoxic waters is up to 1000 times higher (max. 1000 ppb)
than that in oxic environments (Martin & Knauer 1983). For
this reason, anoxic water bodies act as transport paths of Mn in
the ocean. The most important sinks of dissolved Mn in the

ocean are (1) adsorption onto sinking detrital and biogenic
particles and (2) hydrogenous and hydrothermal precipitation
of Mn oxyhydroxides either in the sediments or in the water
column (Martin & Knauer 1982, 1983; Burton & Statham
1988). Generally the preservation potential of Mn oxyhydroxides

in a sediment is low, due to their instability under reducing

conditions. The majority of Mn oxyhydroxides that are
distributed on today's ocean floor will redissolve during early
diagenesis. Preservation and burial is controlled by the sedimentation

rate and by the Mn-flux and burial rates of organic
carbon that controls the rate of reductive dissolution of
manganese in the sediment (Calvert & Pedersen 1993). Reduced
Mn is either released from the sediment and re-precipitated in
the oxic part of the water column or it is incorporated into
newly formed Mn-carbonates (Calvert et al. 1996).

The natural input of iron into the ocean involves (1) particulate

transport from the continents in the form of suspended
material in rivers or eolian dust, (2) "dissolved" input, that is

the sum of dissolution, complexes, colloids and particles < 0.45

urn and (3) hydrothermal input. The particulate transport
accounts for more than 99% of the total Fe-input (ca. 7.5 x 108

T/y). The dissolved input is calculated to be in the range of

334 O.Kuhn etal.



Valanginian/ Hauterivian metal enrichments and
studied sites
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Fig. 2. Valanginian/Hauterivian paleogeography
(after Funnel 1988) with the spatial distribution
of Fe- and Mn enrichments, continental volcanic
rocks and black shales. The location of sections
discussed in the text is indicated by numbers and

sections analysed in this study are shown by bold
text.

1.5 x 106 T/y (Berner & Berner 1987). Despite the fact that
hydrothermal input of Fe through the leaching of basalts by
hot fluids is rather high (30 x 106 T/y), it does not affect the
oceanic Fe budget, owing to related removal of dissolved Fe by
oxidation and precipitation of Fe minerals in the immediate
neighborhood of hydrothermal sources (Wolery & Sleep
1988). This explains why Fe does not form plumes in oxic
bottom water.

Fe behaves similarly to Mn in the aqueous environment.
Possible sinks of Fe in the ocean are (1) deposition of Fe

bound to detrital material, which takes place preferentially in
the neritic and hemipelagic part of the ocean; (2) deposition of
Fe bound to eolian dust in the pelagic areas; (3) precipitation
of Fe (hydro)oxides and Fe sulfides around centers of
hydrothermal activity; (4) formation of authigenic iron minerals
from geothermal brines; (5) formation of authigenic, Fe-rich
clay minerals (e.g., glauconite, berthierine, vernadite) on the
shelves in areas of low sedimentation: and (6) the formation of
Fe sulfides in reducing sediments. The importance of each of
the cited sinks may vary strongly in space and time because of
their strong dependence on redox conditions and Fe source
fluxes.

Mn and Fe strongly fractionate in the marine environment
due to more rapid precipitation of oxidized iron and to
efficient iron fixation in the sediment as sulfide under fully anoxic
conditions (Force & Cannon 1988). The precipitation of Mn as

Mn carbonates (e.g., rhodochrosite) is limited to oxygen-poor
but not fully anoxic environments. Because of the described
fractionation processes, Mn/Fe ratios of sediments increase
with increasing distance from the continent from 0.02 to 0.2 to
> 100 in open marine settings (Seibold & Berger 1993; Lisitzin
1996; Tab. 1).

In this study, we are interested in the response of oceans,
climate, and the biosphere to a globally identified perturbation
of the carbon cycle around 135 my ago. This perturbation is

recorded in the C-isotope record of the Valanginian and it has

been documented and accurately dated in pelagic successions

from the Tethys, Atlantic, and Pacific Oceans (Lini et al. 1992;

Channell et al. 1993; Erba et al. 2004). These studies have also

confirmed that the carbon-isotope signature fixed in biogenic
carbonate serves as an excellent stratigraphic tool and as a

source of information in paleoceanography. Manganese (Mn)
and iron (Fe) are the two trace metals we used as paleoenvironmental

indicators for this study. Mn is used as a proxy indicator
of changing oceanography and oxygen contents in intermediate
and deep waters. The Fe distribution, combined with the Mn

occurrence, serves as an indicator of evolving weathering
conditions during the identified anomaly in the carbon cycle.

For our investigation we selected sedimentary successions,
which were deposited along a south-north transect through
the Tethys Ocean from a deep pelagic environment to a shallow

carbonate ramp setting (Fig. 2). The selection of this study
area offers the opportunity to reconstruct coupled changes in
shallow and deep-water oceanography at the time of the

Valanginian C-isotope event. The variation in Mn/Fe-ratios
within the studied segment of the Tethys Ocean also facilitates
the search for the major source of metal input into the Tethys
Ocean during the C-isotope excursion.

Analytical methods

For this study, we analyzed the C-isotope composition of bulk
carbonates. The samples were measured with a VG 903 and/or
a Prism mass-spectrometer at the ETH Zurich. The isotopie
composition of carbonate was determined by the analysis of
CO2 evolved by reaction of ground bulk samples with 100%

phosphoric acid at 50 °C (VG903) or 90 °C (Prism). Stable
isotope data from the Capriolo section (Fig. 3) are taken from
Lini (1994). The results are expressed in the 5 notation relative
to the VPDB-standard.

Valanginian carbon cycling and trace-metal enrichment 335



Section Capriolo: Southern Alps
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Fig. 3. Section Capriolo from the southern Tethys with lithologie succession,

nannoplankton-zonation, 6"C-curve. contents of Mn and Fe bound in the
soluble fraction and Mn/Fe-ratios calculated from these values (after Kuhn 1996).
The Mn-curve is shown as the complete dataset (left side of column) and as a

subset with an expanded scale (right side).

For analysis of Mn and Fe content 20 to 50 mg of sample
were drilled from cleaned, fresh rock surfaces. The dried powder

was weighed and immersed in 10% HCl for 5h. This treatment

dissolves carbonate minerals, Mn oxides, and hydroxides.
The insoluble residue was isolated by centrifugation, dried at
50 C° and weighed. The Mn and Fe content in the soluble fraction

was measured with a Perkin Elmer atomic absorption
spectrometer (AAS 1100) with acetylene/air flame. The
reproducibility ofthe measurements lies in the range of+/- 6%.
Dissolution experiments with sample material from the section
Wellenberg SB2 (see below) showed that between 95% and
100% of Mn is bound to the HCl-soluble fraction. A detailed
geochemical (CaC03, Corg, XRF) and mineralogical (XRD,
petrography) investigation of the samples shows that the soluble

fraction consists of calcite. But the presence of minor
amounts of MnOOH cannot be ruled out. In the insoluble
residue of these samples, no Mn could be detected by bulk X-
ray fluorescence analyses (Kuhn 1996). It is therefore concluded

that analyzed Mn was mostly bound to calcite. For this rea¬

son, results were not calculated as percentage of the bulk rock
but as percentage of the soluble fraction only. The results
should equal Mn/Ca or Mn/Al ratios from bulk-rock measurements.

The geochemical data discussed in the section on the
Atlantic and the Pacific have been taken directly from the
publications cited, without any additional normalization.

With regards to Fe, the insoluble residue of carbonate samples

from the Wellenberg section SB2 shows Fe2Û3 contents
ranging from 0.6 to 2.5wt%, and an average value is 1.8 wt%
(n 15). The average HCl-soluble Fe content for the same

samples is 0.6 w% (n 50), which signifies that in average,
with this method and for this particular site, only about 33% of
the total Fe content is captured. It is for this reason that we

strictly refer to the HCl-soluble Fe fraction in this contribution.

The good correlation obtained between changes in HCl-
soluble Mn and Fe contents suggest that the HCl-soluble Fe is

a useful parameter and may be representative of total Fe

content.

A transect through the Tethys

We chose successions outcropping in the Alpine chain and in
the Carpathians for our investigation of Tethyan paleoceanography

during the Valanginian (Fig. 2). As a reference section,
we chose a pelagic succession that was deposited on the southern

margin of the Tethys and for which a C-isotope stratigraphy

has been established earlier by Lini et al. (1992). Two
sections from the Helvetic nappes of central Switzerland record
the evolution of the northern Tethyan carbonate ramp during
the time of the C-isotope event. These successions provide
information on the link between the C-isotope excursion, the

Valanginian carbonate platform-drowning episode (Föllmi et
al. 1994; Weissert et al. 1998), and trace-metal concentrations.
Specifically, they provide the opportunity to reconstruct trace-
metal distributions along a carbonate ramp receiving clastic

input from the nearby European continent. For comparison,
we also investigated a northern margin sequence from the

Carpathian part of the Tethys seaway and we added a

Valanginian succession from the Betic Cordillera documenting

the paleoceanography of the western part of the Tethys
seaway.

a) Southern Alps (Fig. 3)

The studied Capriolo section is located in the Southern Alps
(Northern Italy: ca. 60 km ENE of Milano). The Capriolo
section is located paleogeographically in the Lombardian Basin.
The limestones studied are part of the lower Cretaceous
Maiolica Formation (Weissert 1979). The Maiolica Formation
is generally described as a monotonous pelagic succession
consisting of gray, well-bedded calcareous limestone with
interbedded chert and rare, non-laminated black shales. The

Capriolo section was documented by Lini (1994). From this
section, a nannofossil and magnetostratigraphy (Channell et
al. 1993), a radiolarian stratigraphy (Jud 1994) and a 613C

336 O.Kuhn etal.



NAGRA Drillhole Wellenberg SB2:
Helvetic Shelf

Section Aeschi-Aemmital:
Helvetic Shelf
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Fig. 4. NAGRA Drillhole Wellenberg SB2 from the Helvetic Alps (Central
SwitzerlandY'with lithologie succession. ô^C -curve, contents of Mn and Fe

bound in the soluble fraction and Mn/Fe-ratios calculated from these values

(after Kuhn 1996). Lithologie key as in Fig. 3. Gä-B.: Gemsmättli-Bed. Pal. S.:

Palfries Schiefer

Fig. 5. Section Aeschi-Aemmital from the Helvetic Alps (central Switzerland)
with lithologie succession. 8L1C curve, contents of Mn and Fe bound in the
dissolvable fraction and Mn/Fe-ratios calculated from these values (after Kuhn
1996). Lithologie signatures as in Fig. 3. Gä-B.: Gemsmättli-Bed. Bü-B.: Büls
Bed.

chemostratigraphy (Lini et al. 1992; Lini 1994) have been
established. Samples used by A. Lini for the determination of
the stable isotopie composition are identical with the samples
used here for the Fe and Mn analyses

b) Helvetic Alps (Sections: SB2, Aeschi; Figs. 4 and 5)

Both profiles described here are situated in the Helvetic
tectonic unit, in the northern part of the Alps. The Helvetic
nappes were a part of the northern Tethyan continental margin

and contain neritic to pelagic sediments. The Wellenberg
SB2 section is a NAGRA ("Nationale Genossenschaft für die

Lagerung radioaktiver Abfälle") drill-hole, located in the

Drusberg nappe in the Engelberg valley near the village
Grafenort (Central Switzerland). The samples described are
from an overturned limb of an anticline between 750 and 900 m
borehole depth. The outcrop section Aeschi-Aemmital (Fig. 5)
is a compilation of the sections Aeschi and Aemmital. Both
sections are situated in the external part of the Helvetic zone
("Randkette") in the Entlebuch Valley ca. 4 km E to the
village Flühli (central Switzerland). The Aeschi-Aemmital section

represents a good example of the condensed facies of the
inner part of the outer Helvetic shelf. The lithological succession

starts with neritic to hemipelagic, cherty biomicrites and

biosparites of the Lower Diphyoides Limestone Formation
(early Valanginian). The overlying condensed strata contain

coarse-grained (up to 2 mm) quartz, glauconite and reworked
phosphoritic clasts. The change to the hemipelagic,
finegrained, micritic upper Diphyoides Limestone formation is

gradual. The top of the section is made up of cherty limestones
of the Kieselkalk Formation (early to late Hauterivian). The
Wellenberg SB2 section contains a record which was deposited
in a more distal position of the Helvetic shelf. The succession is

fairly homogeneous and consists of cherty, light to dark gray
limestones and marly limestones. The lower part is chertier
while the upper part is marlier. Some strata contain coarse

quartz grains, glauconite and small phosphoritic clasts and can
therefore be lithostratigraphically correlated to the Aeschi
section. 6I3C chemostratigraphy is an appropriate stratigraphical
tool for the sections in the distal part of the Helvetic zone
because of the lack of macrofauna and the poor preservation of
calpionellids and nannoflora (cf., Föllmi et al. 1994).

e) Western Carpathians (Fig. 6)

The Kryta valley section is located about 80 km south of Cracow

on the western slopes of the Chocholowska Valley in the
Tatra Mountains (western Carpathians, southern Poland). The
Cretaceous succession of the Kryta Valley is part of the Lower
Subtatric Nappes, which provides a good example of the pelagic,

basinal facies of the Carpathians. The autochthonous and
allochthonous nappes of the Tatra mountains formed part of

Valanginian carbon cycling and trace-metal enrichment 337



Section Kryta: Western-Carpathes
5l3CCarb Mn/FeMn (ppm)
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Section Barranco del Garranchal:
Betic Cordillera

Fig. 6. Section Kryta from the western Carpathians (southern Poland) with
lithologie succession, calpionellid zones (after Lefeld 1974). 8"C -curve,
contents of Mn and Fe bound in the soluble fraction and Mn/Fe-ratios calculated
from these values (after Kuhn 1996). Lithologie key as in Fig. 3.

the northern margin of the Tethys ocean. The studied Kryta
Valley section includes the uppermost part of the Pieniny
Limestone Formation which is of Berriasian age and the
Koscieliska Marl Formation which spans from the Valanginian to
the Barremian. The Koscieliska Marl Formation contains dark,
shaly marls and dark grey, impure limestones with intercalations

of allochthonous calcarénites. Biostratigraphy of this
formation has been based on ammonoids and calpionellids
(Lefeld 1974).

d) Betic Cordillera (Fig. 7)

The Barranco del Garranchal section is located in the foothills
of the Sierra de Quipar, near Cehegin in the Betic Cordillera
(province of Murcia, Southern Spain). The Betic Cordillera is

an NE-SW oriented alpine fold belt. Paleogeographically. it
belonged to the continental margin of the northern side of the

Tethys, with a basin and high topography similar to the southern

alpine area. Tectonically. the Barranco del Garranchal
section is part of the external Subbetic. The biostratigraphy of the
Barranco del Garranchal section is described in Company
(1987, ammonites) and Aguado (1994, nannoplankton). The
section ranges from the early Valanginian (pertransiens Zone)
to the base of the Hauterivian (radiatus Zone). The complete
chemostratigraphy of the Barranco del Garranchon section is

described in Kuhn (1996). Lower Cretaceous sediments from
the External Subbetic consist of white to gray, fine-grained,
marly limestones (60 to 80% carbonate) and marls. The
lithological facies is similar to the Maiolica facies deposited in the
southern Alps. Pyritized ammonite phragmocones are ubiqui-

513CCarb Mn (ppm)
HCl-soluble

Fe (wt%)
HCl-soluble

Mn Fe
n a r_. PDB)

1.5 25 1500 2000
_k^ I

0025 0.075
I __l< -

ZWr&->.y.

Jers

Fig. 7. Section Barranco del Garranchal (Betic Cordillera, southern Spain)
wilh lithologie succession, ammonite zonation (after Company 1987), 5"C -

curve, contents of Mn and Fe bound in the soluble fraction and Mn/Fe-ratios
calculated from these values (after Kuhn 1996). Lithologie key as in Fig. 3.

tous. Thick slump intervals characterize the section belonging
to the lower half of the Salinarium Zone (ca. stephanophorus
Zone) on a regional scale.

Sample description and geochemical data

(a) Southern Alps

Sixty-four samples from the Capriolo section were analysed
for their HCl-soluble Mn and Fe contents. 813C data were
taken from Lini (1994). Figure 3 shows the Capriolo section
with ô13C. Mn, and Fe curves. Mn (200 - 700, max. 2500 ppm)
and Fe (0.1 - 0.5wt%) contents of the HCl-soluble fraction are
moderate and fall in the common range of pelagic carbonates.

Proper Mn horizons in the form of Mn ores do not appear. The
Mn content cannot be linked to any particular Mn mineral. It
seems that Mn is fixed as a trace metal within carbonate. The

background Mn content is around 400 ppm. Three parts of the
succession show Mn enrichments. The highest concentrations
(up to 2500 ppm) are recorded in a ca. 20-m-thick succession at

the Berriasian/Valanginian boundary in the upper part of the

angustiforata nannofossil zone. The increase in Mn concentration

in this succession is linked neither to a lithological nor a

paleontological (e.g., nannofossil) change. The second part
that shows increased Mn contents (up to 800 ppm) is recorded
at the boundary between the lower and upper Valanginian in
the upper part of the nannofossil zone NK3 (oblongata Zone).
just between the FAD (First Appearance Date) and the LAD
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(Last Appearance Date) of T. verenae. The Mn enrichment is

situated below a black-shale layer and corresponds to the start
of the positive ôl3C shift and a change in the composition of
calcareous nannoplankton (cf. Lini et al. 1992; Lini 1994). This

part of the succession is also characterized by an increased
sedimentation rate (Lini 1994), hence the Mn enrichment cannot
be correlated with a drop in sediment accumulation. The third
episode of Mn enrichment (max. 2000 ppm) is recorded during
the Barremian - Aptian. This enrichment is also correlated to
black shales and a positive 5I3C shift. Fe contents of the acid-
soluble fraction lie between 0.15 and 0.25wt%. Fe enrichments

(0.3-0.45wt%) are only recorded from the part of the section
with the highest ô13C values. The Fe maxima occur above the

Mn-enriched levels. The Mn/Fe ratios are in the range of
0.2-1.2. The Mn/Fe ratios are correlated to the Mn contents.

(b) Helvetic Alps

Thirty-two samples from the Aeschi-Aemmital section and

seventy-five samples of Drillhole SB2 were analysed for their
stable isotopes ratios (C. O) and HCl-soluble Mn and Fe content

(Figs. 4 and 5). The 5'3C-values fluctuate between 0.5%o

and more than 2%o and the Valanginian -Hauterivian C-isotope

excursion is clearly documented in both sections studied.
The base of the C-isotope excursion coincides with a phosphorite

hardground (Gemsmàttli Bed; Haldimann 1977; Kuhn
1996), deposited on top of a drowned carbonate platform
succession.

The Mn (150 to 600 ppm) and Fe (0.2-2.2w%) contents of
the acid-soluble fraction are comparable to the values of
Capriolo (Fig. 3). The Mn contents of the upper Diphyoides
Limestone fluctuate around 150 ppm. Below the Diphyoides
Limestone, the Mn contents reach values of up to 400 ppm in
the Aeschi-Aemmital section, and up to 650 ppm in the

Wellenberg SB2 section. Mn and Fe enrichments parallel the

positive shift of 5I3C values. In both sections the increased Mn
and Fe contents correspond to condensed levels. The Fe content

in the Aeschi-Aemmital section shows a significant
increase in strata that have a high concentration of glauconite.
Hence the Fe content of this section may be linked to partial
dissolution of Fe from glauconite or related green clays.
Sixteen samples of the HCl-insoluble fraction of Wellenberg SB2
section were analysed. The Mn content is always very low in
the insoluble residue and shows no major changes in Mn content

within the profile. Therefore it is suggested that Mn is

preferentially bound either to carbonate phases and/or Mn-oxides.

Mn-oxides could not be identified positively in the
investigated samples. The Mn/Fe ratio is between 0.05-0.1 in the
drillhole SB2 and 0.02-0.18 in the Aeschi-Aemmital-section.

(c) Carpathians

All the samples have been made available by Dr. K. Krajewski
(Polish Academy of Sciences, Warsaw, Poland). Thirty samples

from the Kryta valley section were analysed for their sta¬

ble isotope ratios (C, O) and HCl-soluble Mn and Fe content.
Figure 6 shows the Kryta section with 513C, Mn, Fe and Mn/Fe
curves. The C-isotope curve shows the positive excursion with
amplitude of 1.5%o. The Mn (500-1000 ppm) and Fe

(0.1-0.6w%) concentrations are high compared to the other
records presented in this study. The highest Mn (1000 ppm)
and the highest Fe contents (0.5 to 0.6w%) are recorded in the

part of the section with elevated ô13C values. The Mn/Fe ratios
lie between 0.15 and 0.55.

(d) Betic Cordillera

The samples from this section have been provided by A.
Martin-Algarra. M. Company, and R. Aguado (all: University
Granada, Spain). Eighty-seven samples from this section were
analysed for their stable isotopie composition and HCl-soluble
Mn and Fe content (Fig. 7). A carbonate S13C excursion is

recorded from this section. It starts during the lower half of
the salinarium Zone (stephanophorus Zone) and shows values

near l%o up to 2.5%o at the base of the verrucosum Zone. The
rise of 513C values is synchronous with the occurrence of slump
beds. The absolute values and the amplitude of A8'3C 1.5%o

are similar to the ones reported from other successions. Mn
(1000-3000 ppm) and Fe (2-6w%) contents ofthe acid-soluble
fraction are high, compared to the other examples discussed in
this paper. Mn values show a slight increase from 1500 to 2000

ppm at the base of the salinarium Zone (stephanophorus
Zone). This increase is coeval to the onset of increasing 5I3C

values. Extreme values (max. 6700 ppm) occur at the base of
the profile. The highest Fe contents (max. 6 w%) are recorded
in the upper part of the salinarium Zone (inonstranzewi Zone)
and the base of the verrucosum Zone. The observed changes in

metal contents are not linked to the lithological changes in

stratigraphy. Mn and Fe are correlated and Mn/Fe ratios lie in
the range of 0.03 and 0.1. Maximal values are found at the base

of the salinarium Zone (stephanophorus Zone).

The carbon-isotope record and Valanginian-Hauterivian
paleoceanography

We succeeded in reproducing an earlier-identified pronounced
positive 6l3C-excursion lasting up to several million years and

covering the Valanginian (Channell et al. 1993; Hennig et al.

1999, Erba et al. 2004). The measured amplitude of the excursion

is A813C=1.5%o, and the shape of the excursion is marked

by a rapid transition to peak values and a slow return to pre-
perturbation values that is comparable to the Aptian C-isotope
event (e.g., Menegatti et al. 1998). If we correlate
Valanginian-Hauterivian ammonite stratigraphy with magnetostratigraphy

using C-isotope stratigraphy established at the proposed
boundary stratotype "la Charce" and in the Southern Alps
(Hennig et al. 1999) then the studied C-isotope excursion starts
in the upper part of CM12 (Campylotoxus Zone) and it ends

within CM 9 (Base of Loryi Zone). According to the correlation

of Henning et al (1999) the base of the Hauterivian which
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Fig. 8. Chronostratigraphic occurrence of Mn-enrichment levels in the Pacific.

Atlantic and the Tethys. The grey bar marks the stratigraphic position of the

positive 5"C -shift described by Lini et al. (1992). which is interpreted as

evidence of a major perturbation of the global carbon cycle.

is defined as the base of Radiatus zone correlates with CM10
and not with the base of Ml In as proposed by Gradstein et al.

(2004). If we assign absolute ages to the C-isotope curve we can

follow Channell et al. (1995) or we can take the time scale by
Gradstein et al. (2004) both based on Pacific spreading model

ages. In the Channell et al. (1995) time scale the C-isotope
excursion lasts from 133 my to 130 my. The Gradstein et al.

(2004) time scale provides an age of about 137my to about 133

my. In search of a possible trigger of this carbon isotope anomaly

Weissert et al. (1998) recognized a close coincidence of the

Parana volcanic activity and the isotope excursion. Stewart et

al. (1996) dated the main episode of volcanic activity in the
Parana province (South America) as 138-131 my (Stewart et

al. 1996). High basalt production rates and coupled carbon
dioxide liberation could have driven atmospheric CO2
concentrations to higher values. Altered atmospheric CO2 levels
would have triggered the changes in marine carbon-isotope
compositions as recorded in the C-isotope composition of the

studied limestones. Available data from other C-isotope
excursions indicate that the C-isotope data record the response
of the global carbon cycle and specifically of the marine carbon

system to the climate perturbation triggered by excess volcanic
and/or methane-derived CO2 flux (e.g., Gröcke et al. 1999).

The C-isotope data presented in this study can be used as

an accurate stratigraphic tool. The data from the Helvetic
carbonate ramp confirm that the Valanginian C-isotope excursion

goes along with a widespread collapse of carbonate production
along the northern Tethyan margin (Föllmi et al. 1994). The

collapse of the Valanginian carbonate platforms was not limited

to the Tethys region. Corg-isotope data from eastern north
Atlantic successions indicate that platform drowning along the

African continental margin also occurred at the very beginning
of the Valanginian C-isotope event (Wortmann & Weissert
2000). We propose that the observed collapse of carbonate

platforms along the northern Tethyan and Atlantic margins is

related to the perturbation of the global carbon cycle.
Environmental stress related to CO2 induced warming, to changes
in ocean chemistry and carbonate saturation, and to an
increased nutrient flux from continents to oceans at a time of
more humid climate may have caused the demise of carbonate-

producing organisms. It seems remarkable that the observed
carbonate platform collapse coincides with an earlier described

growth crisis of nannoconids in the pelagic environment
(Channell et al. 1993). In contrast to the large "Cismon" C-isotope

event in the Aptian (Menegatti et al. 1998), only four cm-
thick major black shales were formed in the Tethys realm at
the beginning of the Valanginian carbon isotope excursion
(Lini 1994; Reboulet et al. 2003) although C„rS-accumulation
data from the north Atlantic suggest increased Corg burial
rates at the Valanginian-Hauterivian transition (Arthur et al.

1985).

Globally intensified volcanic activity and elevated CO2
levels should have had a considerable impact on hydrological
cycling, on ocean circulation, and on continental weathering
and erosion patterns. In the Valanginian, a change from
arid- to humid-type floras in Eurasia is documented, combined
with a poleward spread of climate belts (Ziegler et al. 1987;

Vakrameev 1991). Molnar (1990) and Rich et al. (1989)
described the occurrence of reptiles and even amphibians from
terrestrial sediments of Valanginian/Hautervian age in
Australia and Antarctica. Modern amphibians and reptiles have a

distribution between 0 and 60° latitude and cannot withstand
temperatures below 0°. These fossils indicate a temperate
climate in polar realms. The widespread occurrence of braided-
river deposits both in low and high latitudes might also be

linked to altered precipitation patterns that lead to increased
runoff. Because of the development of greenhouse conditions,
the resulting increase in weathering intensity should have
affected the metal flux from continents to oceans.

Valanginian manganese and iron enrichments: a mirror of
altered metal flux and oceanography

The most important findings from the data set presented
above are: (1) Mn and Fe are enriched in Valanginian strata in
all investigated sections from the Tethys. Metal enrichment
coincides with the positive 513C-excursion (Fig. 8); (2) Mn
enrichments occur both in shelf and basinal realms; (3) Fe
enrichments occur mainly in terrestrial, platform, and shelf
regions. Towards the basinal direction the Fe content decreases,
whereas the Mn/Fe ratios increase (approximately 0.025 to 1).

It is evident from the discussion of the marine cycles of Fe and
Mn that on a global scale the detrital Mn and Fe sources are
far more important than hydrothermal ones (e.g., Fig. 1). The
Mn/Fe ratio can therefore be used as an indicator of the proximity

of a certain locality to terrestrial areas, and as an indicator

of the changing influence of continental metal input.
The widespread occurrence of Mn enrichments in the

Valanginian points to an ocean-wide event, comparable to the
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Fig. 9. The lateral distribution of Fe minerals in a

transect through the northern margin of the
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outer helvetic shelf. The Fe-content of sediments
and the grain size of the Fe-bearing particles
decrease in the distal direction. The mineralisation
of Fe changes from oxidised to more reduced
state in the basinal direction. These features are
related to particulate Fe input from the terrestrial
realm, followed by diagenetic remobilisation of
Fe and reprecipitation as various authigenic
minerals, according to the diagenetic environment.

Cenomanian/Turonian boundary event or to the Toarcian.
where positive 813C excursions coincide with peaks in Mn
concentration, (e.g., Frakes & Bolton 1984; Pratt et al. 1991; Force
& Cannon 1988; Jenkyns et al. 1991,2002; Dickens 1994; Jarvis
et al. 2001).

A common explanation for Mn enrichment is diagenetic
remobilization of Mn in anoxic deep waters or in organic
carbon-rich sediments and hence an enhanced Mn fixation in the

oxygenated parts of the oceans ("bath-tub ring"- or "stratified
ocean"- model: Frakes & Bolton 1984; Force & Cannon 1988;

Jenkyns et al. 1991; Pratt et al. 1991; Dickens 1994). The Mn
deficit, recorded in the basinal black-shale sediments is stated
as an argument for this interpretation (e.g. Frakes & Bolton
1984; Brumsack 1986). In this explanation. Mn-enrichment is

not explained by an increased Mn flux into the ocean, but by a

redistribution of Mn from basinal to shelfal areas. This process
may explain the Mn enrichment in the studied pelagic
sequences. If we add the Fe distribution pattern as a further
source of information, we are able to show that Mn enrichment

in the Valanginian sediments was caused by a combination

of increased metal flux and paleoceanogaphic conditions
which were favourable for metal accumulation in the
sediments.

Valanginian Fe enrichments are known to be concentrated
in terrestrial and shallow marine areas (Fig. 2). Fe is fixed
either in Fe oolites, Fe clasts, or as limonite impregnating
limestone (e.g., Jura mountains: Cayeux 1910; Guillaume 1966;

Paris Basin: Taylor 1996; Estremadura in Portugal: Rey 1972:

eastern Lower Saxony Basin: Michael & Pape 1971; Iran:
Robertson & Boyle 1983; Madagascar: Besairie 1961).
Accumulation of the Fe rich clays (glauconite, chamosite. chlorite)
has been described from the Helvetic Alps (Haldimann 1977)
and the surroundings of the Vocontian Basin (Autran 1993).

Meyer (1976) described pedogenic iron enrichments and pe-
dogenically etched quartz grains from the upper Valanginian
Wealden sediments of the eastern Paris basin. Taylor (1990,
1992) described non-marine oolithic ironstones from the
Upper Valanginian Wealden of South England and interpret¬

ed them as the result of reworking of nearby soil material.
Paleosols with the development of a lateritic ferricrete-crust,
pisolithic structure and pedogenically etched quartz grains
have been described from the southern margin of the Subboreal

basin (Harz: Valeton 1957). In addition pedogenic iron
enrichment and/or continental red beds in "Valanginian" strata
are described from Iran (Moussavi-Harami & Brenner 1990).
China and southeast Asia (Chen 1987). north America
(Moberly 1960) and the Nubian Sandstone of North Africa
and the Middle East (e.g., Abed 1982). Unfortunately the
marine and terrestrial Fe-enriched strata remain poorly dated and

geochemical, pétrographie and sedimentologie studies are
lacking. However the Fe enrichment can be seen as a mirror of
increased particulate/dissolved Fe flux from the continents into
coastal environments.

Figure 9 shows a transect through the northern Tethys
margin (Jura - Helvetic Alps) from coastal to hemipelagic
areas. Iron occurs as various mineral phases (hematite,
goethite. siderite, ankerite, chamosite, sulfides, and Fe-rich
chlorite and glauconite) and grain types within this transect.
Both the grain size and the Fe content diminish and the
mineralisation of Fe changes from an oxidized to a more reduced
state in a basinal direction. Detailed pétrographie analyses
reveal the deposition of Fe-rich continental weathering products
(e.g., lateritic soil fragments, runiquartz grains, alterites) in the
neritic realm during the Campylotoxus to Radiatus Zones
(Kuhn 1996). Some pétrographie (e.g., nuclei of Fe ooids) and

geochemical (e.g. REE) characteristics of the primary material
are preserved in the distally deposited Fe phases. From these

findings it is concluded that the reduced Fe minerals stem from
the same source as the hematitic and goethitic particles from
the neritic area (Kuhn 1996). This typical distribution pattern
is best explained by continental input of iron into the ocean,
followed by remobilization and reprecipitation of Fe phases in
relation to its diagenetic environment. Because of the ability of
iron to mineralize also under reducing conditions, the major
part of Fe will be buried in the vicinity of the continent. Mn,
which is bound to the same particulate material arriving from
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the continent, will be transported more distally. We think that
this chromatographic type of segregation is responsible for the

changing Mn/Fe ratios in the different depositional areas (cf.,
Table 1).

We propose, in agreement with earlier studies (Weissert
1989; Lini et al. 1992; Föllmi et al. 1994; Kuhn 1996), that the
total flux of metals from the continent increased during the

Valanginian due to intensified chemical weathering, because

of the start of intensified greenhouse climate conditions
recorded in altered carbon cycling and the perturbation of the

C-isotope curve. The widespread occurrence (50°S to 50°N) of
lateritic soils and their transported derivatives in the Valanginian

are a strong argument for this hypothesis. The focused

input of particular soil material with elevated transition metal
content relative to average detritus might be an explanation
for the formation of Mn enrichment in certain of the investigated

depositional areas like the western Carpathians, the
Betic Cordillera, the Helvetic shelf, or Oman, which were
located not too far from continental sources.

Persoz & Remane (1976), Sladen (1983), and Hallam
(1984) reported a change from illite-dominated to kaolinite
and smectite-dominated clay fractions during the Valanginian.
which is another indicator of intensified chemical weathering
due to increased temperature and humidity. The widespread

occurrence of lateritic soils and soil fragments, buried in
marine sediments signifies that iron and other transition metals

are pre-concentrated in the terrestrial realm relative to other
elements such as the earth-alkaline and alkaline group. The

type of soils with its characteristic geochemical patterns must
be interpreted as the result of strong weathering in a hot and
humid climate. These tropical soils and their derivatives are
spread up to 50°N and 50°S. Compared to the situation in the
Berriasian, there must have been an important northwards
shift of the tropical climate-belt in that time (Kuhn 1996). Wc
think, therefore that the marine Fe enrichment can be used as

an indicator of weathering intensity.

Conclusions

(1) Mn and Fe are significantly enriched in Valanginian strata
of the Tethys, the Pacific, and the Atlantic. The wide
geographical distribution and its presence in various different
depositional environments point to an ocean-wide event.

(2) The metal enrichments of the Valanginian occur in neritic.
hemipelagic, and pelagic areas. They occur both in carbonate

(above CCD) and non-carbonate (below CCD) settings
in the deep sea. The examples from non-carbonate settings
(e.g., Oman, Japan) are present as high-grade Mn ores (-
80% MnO), whereas the examples from carbonate settings
only show an enrichment of Mn as a trace element in calcite

(-0.3% MnO).
(3) Iron, altogether with Mn, is enriched in the terrestrial and

the shallow marine realms in low and intermediate
latitudes (0-50°). The formation and erosion of lateritic soils

during the Valanginian can best explain these deposits. The

spread of oxisol formation indicates the evolution of a hot
and humid climate at that time (Fig. 10).

(4) The metal enrichments coincide with a positive shift in the

6l3C-composition of carbonate. Comparable events are
known from the early Toarcian (Jenkyns 1988; Jenkyns et
al. 2002) and the Cenomanian/Turonian boundary (Frakes
& Bolton 1984; Pratt et al. 1991; Jarvis et al. 2001).

(5) The metal enrichments are explained with increased detri¬
tal Mn input combined with redox-related processes
triggered by changes in paleoceanography during the time of
the C-isotope excursion.
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