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Cenomanian (early Late Cretaceous) ammonoid faunas of Western
Europe

Part II: Diversity patterns and the end-Cenomanian anoxic event
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ABSTRACT

Diversity patterns of ammonoids are analyzed and compared with the timing
of anoxic deposits around the Cenomanian/Turonian (C/T) boundary in the

Vocontian. Anglo-Paris, and Münster basins of Western Europe. Differing
from most previous studies, which concentrate on a narrow time span bracketing

the C/T boundary, the present analysis covers the latest Albian to Early
Turonian interval for which a high resolution, ammonoid-based biochronology.

including 34 Unitary Associations zones, is now available. During the latest

Albian-Middle Cenomanian interval, species richness of ammonoids reveals a

dynamical equilibrium oscillating around an average of 20 species, whereas
the Late Cenomanian-Early Turonian interval displays an equilibrium
centered on an average value of 6 species. The abrupt transition between these

two successive equilibria lasted no longer than two Unitary Associations. The
onset of the decline of species richness thus largely predates the spread of
oxygen-poor water masses onto the shelves, while minimal values of species richness

coincide with the Cenomanian-Turonian boundary only. The decline of
species richness during the entire Late Cenomanian seems to result from lower

origination percentages rather than from higher extinction percentages. This
result is also supported by the absence of statistically significant changes in

the extinction probabilities of the poly-cohorts. Separate analyses of species
richness for acanthoceratids and heteromorphs. the two essential components
of the Cenomanian ammonoid community, reveal that heteromorphs declined

sooner than acanthoceratids. Moreover, acanthoceratids showed a later
decline at the genus level than at the species level. Such a decoupling is accompanied

by a significant increase in morphological disparity of acanthoceratids.
which is expressed by the appearance of new genera. Last, during the Late
Cenomanian. paedomorphic processes, juvenile innovations and reductions of
adult size dominated the evolutionary radiation of acanthoceratids. Hence, the

decrease in ammonoid species richness and their major evolutionary changes

significantly predates the spread of anoxic deposits. Other environmental
constraints such as global flooding of platforms, warmer and more equable
climate, as well as productivity changes better correlate with the timing of diversity

changes and evolutionary patterns of ammonoids and therefore, provide
more likely causative mechanisms than anoxia alone.

RESUME

Cette étude analyse la diversité des ammonites et la compare avec la chronologie

des dépôts anoxiques autour de la limite Cénomanien/Turonien dans les

bassins vocontien. anglo-parisien et de Münster en Europe de l'Ouest. Ce
travail couvre l'intervalle Albien terminal-Turonien inférieur et se démarque
ainsi de la plupart des autres études qui se concentrent généralement sur la

limite Cénomanien/Turonien. Deux périodes majeures sont mises en évidence

au sein de la diversité des ammonites, en terme de richesse spécifique. L'intervalle

Albien terminal-Cénomanien moyen révèle un premier équilibre
dynamique variant autour d'une richesse spécifique de 20. L'intervalle Cènomanien

supérieur-Turonien inférieur montre un deuxième équilibre dynamique
variant avec une valeur moyenne de 6. La transition rapide de la richesse

spécifique entre ces deux équilibres dure au plus deux Associations Unitaires et

précède donc nettement l'expansion des eaux suboxiques sur les plate-formes,
tandis que la limite Cénomanien/Turonien ne coïncide qu'avec les valeurs
minimales de richesse spécifique. Le déclin de la richesse spécifique durant le

Cènomanien supérieur semble résulter de faibles pourcentages d'apparition
plutôt que de forts pourcentages d'extinction. Ce résultat concorde avec
l'absence de changement statistiquement significatif dans les probabilités d'extinction

au sein des poly-cohortes. L'analyse séparée des Acanlhocerattdae et des

hétéromorphes. qui constituent l'essentiel des faunes d'ammonites au
Cènomanien en Europe de l'Ouest, révèle que les hétéromorphes déclinent avant
les acanthoceratidés. De plus, les acanthoceratidés montrent un déclin plus
tardif au niveau générique par rapport au niveau spécifique. Ce découplage est

accompagné par un accroissement de la disparité morphologique des Acantho-
ceralidae. ce qui se traduit par l'apparition de nouveaux genres. Enfin, les

radiations évolutives des Acanlhocerattdae au cours de tout le Cènomanien
supérieur sont dominées par des processus paedomorphiques. des innovations

juvéniles et des réductions de taille adulte. En conclusion, la chute de richesse

spécifique et les changements évolutifs majeurs des ammonites de l'Europe
de l'Ouest précèdent clairement l'événement anoxique. D'autres contraintes
environnementales comme l'ennoyage généralisé des plate-formes, un climat

plus chaud et plus homogène, ainsi que des changements de productivité, se

corrèlent mieux avec la chronologie des variations de diversité et des transformations

évolutives des ammonites du Cènomanien ouest-européen qu'avec
l'événement anoxique.
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Fig. 1. Cenomanian paleogeography of Western Europe (modified from
Philipetal. 1993).

1. Introduction

Major biological crises are attributed to a variety of factors,
whose respective contributions and interactions are often difficult

to disentangle. Among these periods of major biotic
change, the Cenomanian/Turonian Boundary Event (CTBE)
has been recognized as a moderate mass extinction (Raup &
Sepkoski 1986; Hallam & Wignall 1997) and is documented
throughout both Tethyan and Boreal basins. For example.
Harries & Little (1999) reported the extinction of 79% of the
macroinvertebrate species and 93% of the ammonoid species
in the Western Interior Basin. Foraminifera and rudists
(shallow-water bivalves) were also amongst the principal victims
(see summary by Hallam & Wignall 1997). On the other hand,
the very existence of this extinction has been questioned by
Gale et al. (2000) and Smith et al. (2001) who argued that it
might largely result from a preservation bias generated by the

spread of hemipelagic depositional environments onto the
shelf in the Anglo-Paris Basin. The Late Cenomanian was also

a period of high burial of organic matter, the so-called Oceanic
Anoxic Event 2, and of high positive excursions in the carbon

isotope record (Schlanger et al. 1987). The spread of anoxic to
hypoxic bottom waters on platforms is commonly proposed as

the major causal factor for the C/T Boundary (CTB) biotic crisis

(e.g. Jarvis et al. 1988; Harries & Little 1999), with preferential

removal of benthic taxa.
Our study focuses on the patterns of diversity and

evolutionary responses of ammonoids and evaluates how these re¬

late to the timing of anoxia and that of some other known abiotic

events. The best possible biochronological accuracy is

therefore desirable and is provided by the recent construction
of a refined zonation by Monnet & Bucher (2002) for the
Cenomanian and the Early Turonian of Western Europe.
Enlargement of the investigated "time window" to a longer time
interval such as the entire Cenomanian and Early Turonian
appears necessary for a better understanding of the effects of
the anoxic event in comparison to supposedly normal,
background conditions.

2. Studied areas

This study focuses on three epicontinental basins of Western

Europe located on the northern Tethyan margin: the Vocontian

Basin in southeastern France, the Münster Basin in northern

Germany and the Anglo-Paris Basin (Fig. 1). Their
ammonoid faunas are generally regarded as belonging to a

Temperate realm with Boreal influence (Juignet & Kennedy 1976;

Thomel 1992). None of the three basins was disconnected from
neighboring epicontinental seas or oceans during the studied
time interval. Hence, they may reflect faunal changes that
occurred at the larger paleogeographical scale of Western

Europe.

The Cenomanian and Early Turonian hemipelagic deposits
of the Vocontian Basin may locally attain 700m in thickness
and are composed of marly limestones alternating with more
or less silty marls. Organic-rich layers of the so-called Thomel
level, which is thought to correlate with the Oceanic Anoxic
Event 2, are only known from the most distal part of the basin

(Crumière 1989). Foraminiferal age control indicates that the

Thomel level was deposited at the base of the Archeocretacea
Interval Zone (Grosheny & Malartre 1997). Although the in-
tercalibration of foraminifera with ammonoid zones is in need

of greater accuracy, the Thomel level is supposed to be of Juddii

age (Crumière 1989).

The Münster and Anglo-Paris basins are mainly characterized

by up to 170m of chalks, interrupted by a brief marly
episode (Plenus Marls), sometimes enriched in organic matter,
and spanning the Geslinianum zone. Although no typical black
shales are known in the Anglo-Paris Basin, according to Jarvis
et al. (1988), both sediments and benthic faunas strongly suggest

oxygen-depleted deeper shelf environments during the
Plenus Marls.

3. Data and metrics

This study relies on a recent zonation based on Unitary
Associations (UAs), a deterministic and quantitative method established

by Guex (1991). This new zonation (Monnet & Bucher
2002) is in good agreement with the widely used standard
zonation of Wright & Kennedy (1984) in Western Europe, but
its resolution is three times higher. The revised time frame
includes a regional zonation for each separate basin and a

synthetic zonation (Fig. 2). This improved time frame is based on

382 C. Monnet et al.



Revised standard zones
Monnet & Bucher 2002)
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Fig. 2. Revised biochronological scale (after Monnet & Bucher 2002). Thick
vertical black bars indicate uncertainty intervals in the correlations between
the basins.

a taxonomically revised database in which taxonomic inconsistencies

are minimized (for details about the taxonomic
standardization, see Monnet & Bucher 2002). It includes 55 genera
and IK) species of ammonoids distributed among 34 UA-
zones, from latest Albian to Early Turonian. Details of the

biochronological revision, correlations between the three
basins, analysis of diachronism as well as the database are
given in Monnet & Bucher (2002).

Species richness is defined here as the number of
ammonoid species occurring within a given UA-zone. Species
richness is first counted separately within each basin and then
at the pooled level of the three basins. Counts of species richness

are given for entire faunas, for acanthoceratids only, and

for heteromorphs only. Species richness is presented with two
different types of plots: classic diversity curves against the
succession of UA-zones and phase diagrams (diversity at time /

against diversity at time t+1). The latter representation makes
it easier to visualize any dynamical trend during the entire
studied time interval.

Originations and extinctions correspond to the number of
species appearing (First Occurrence. FO) and disappearing
(Last Occurrence, LO) between two successive UA-zones.
Owing to the mode of construction of UA-zones (maximal sets

of actually or virtually coexisting species, see Guex 1991). FOs
and LOs are included into the separation interval between two
consecutive UA-zones (discrete zonation). The percentage of
origination is defined as the number of FOs divided by the
total number of species occurring in the next overlying UA-
zone. For example, in a pair of two consecutive UA-zones
(UA-zl, UA-z2), with UA-zl containing the set of species {a,

b. c, d. e, f) and UA-z2 containing the set of species {d, e, f, g,

h), the percentage of origination is 2/5=0.4 and the percentage
of extinction is 3/6=0.5. The turnover is defined as the sum of
the number of originations and the number of extinctions (i.e.
5 in our arbitrary example). The percentage of turnover
corresponds to the turnover divided by the total number of distinct
species present in the two bracketing UA-zones (i.e. 5/8=0.625
in our arbitrary example). Finally, it should be noted that no
distinction is made between pseudo and true originations
because we are considering local, within basin originations, as

well as new incoming migrants into the basin. When dealing
with counts of species richness of nektonic or nektobentic
organisms such as ammonoids, the most natural and "functional"
biogeographical entity is that of a basin, whatever the origination

mechanism and geographical provenance of taxa.
Further insights are provided by the poly-cohort analysis

and the taxonomic distinctness at the pooled level of the three
basins. Poly-cohort analysis is a classic analytic tool routinely
used to graphically investigate and compare survivorship
through time. A poly-cohort survivorship curve is a plot ofthe
percentage of all taxa from a community defined at time t still
existing at time t+dt (Van Valen 1973, 1979; Raup 1978,1986).
The poly-cohort curves' log-linearity is statistically tested using
two distinct approaches involving (i) the Epstein's test for
straightness (Epstein 1960a, b; see Raup 1975), and (ii) a new
statistical procedure developed by one of us (G.E.) and which
will be thoroughly described elsewhere. This new procedure,
close to that already proposed by Foote (1988), is based on a

Monte-Carlo procedure of random re-sampling with replacement

(non-parametric bootstrap) in order to estimate the
confidence intervals linked to the observed survivorship percentages.

As for the Epstein's test, it first allows to globally test the

departure of observed curves from the null expectation that,
for a given ammonoid community, survivorship percentages
are log-linearly arranged, i.e. that within poly-cohort extinction

risk is stochastically constant through time. Then, if the

alternate hypothesis is accepted, the event(s) of significant
departure from stochastic fluctuations in observed survivorship

Cenomanian ammonoid diversity and turnover 383
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percentages could be identified, thus providing additional
information of interest not given by Epstein's method.

The taxonomic distinctness method (Warwick & Clarke
1995, 1998,2001; Clarke & Warwick 1998,1999, 2001) processes

Presence/Absence data with two highly robust univariate
indices based on taxonomic "distance" between taxa: the Average

Taxonomic Distinctness index (AvTD, Clarke & Warwick
1998) and the Variation in Taxonomic Distinctness index
(VarTD, Clarke & Warwick 2001). These two indices reflect
the hierarchical structure underlying the studied assemblage of
taxa by weighting the taxonomic levels of all pairs of taxa from
the studied assemblage. Six taxonomic levels are here
distinguished and linearly weighted: suborder (weight 6), super-
family (weight 5), family (weight 4), subfamily (weight
3), genus (weight 2), and species (weight =1). Thus, the
taxonomic "distance" between any two species is the weight of
their highest different taxonomic level. For instance, if two
species belong to the same suborder, superfamily and family,
but to distinct subfamilies, then their taxonomic "distance"
equals 3. AvTD is the arithmetic mean taxonomic "distance"
(path length) between all pairs of species in a taxonomic tree
and can be considered as a measure of taxonomic disparity for
any given taxonomic assemblage. VarTD is the variance of
AvTD and can be considered as a measure of taxonomic un-
evenness. These two indices have many strengths among which
are their relative insensitivity to differences in taxonomic treat¬

ment and rigor between workers, sampling effort and taphonomic

biases (unlike other numerous classic biodiversity
indices). Moreover, they also appear to be biologically and

ecologically meaningful. For example, detailed study of marine
nematode assemblages has clearly proved AvTD to be

positively related to trophic diversity (Warwick & Clarke 1998).
while VarTD is likely to be negatively related to habitat diversity

(Clarke & Warwick 2001). These two indices can also be

statistically tested by bootstrapping (see Clarke & Warwick
1998, 2001) to detect non-random taxonomic structures in the
studied assemblages, i.e. taxonomical assemblages with AvTD
and/or VarTD values significantly higher or lower than what

might be expected if taxa were randomly distributed through
samples.

4. Results

4.1. Counts ofall taxa at the species level

Figure 3a-c shows the curve of species richness for all
ammonite species within each basin for the latest Albian-Early
Turonian. During this time span, the total species richness of
the Vocontian, Anglo-Paris and Münster basins is 106, 82 and
42 taxa, respectively. In the Vocontian and Anglo-Paris basins,

highest values persist during Early and Middle Cenomanian.
Species richness then declines more or less abruptly around

384 C. Monnet et al.
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the Middle/Late Cenomanian boundary (MLCB). Finally, for
the time span considered here, it reaches its minimum values

during Early Turonian, shifting from an average value of 16 to
4. In the Münster Basin, the apparent earlier decline at the
base of the Middle Cenomanian may largely be influenced by
the comparatively poorer quality of the record around the
MLCB. As the duration of the Late Cenomanian is estimated
to about 1.2 my (Obradovitch 1993; Gale 1995), the consistent
decrease of species richness observed in each basin appears as

a general protracted trend, which initiated at the MLCB. As
noticed by Thomel (1992). a marked and abrupt decrease in
abundance of ammonoids also occurred during the Late
Cenomanian of Europe. Figure 3d also summarizes the general
trends of species richness of all ammonoids at the pooled level
of the three basins.

As well displayed by the phase diagrams for each of the
three basins (Fig. 4a-c), fluctuations of species richness in time

generally isolates two non-overlapping clusters. Within each

basin, species richness rapidly shifts (within a time interval of
about 2 UA-zones) from high to low value clusters around the

MLCB. For the two best documented basins (Vocontian and

Anglo-Paris), Late Cenomanian and Early Turonian values

only partially overlap. Early Turonian ones being systematically

at the low end of the cluster. Since there is a continuous
species turnover, these two clusters suggest the presence of
two successive dynamical equilibria separated by a threshold
(Fig. 4d), which is strongly reminiscent of the logistic growth
model of diversification (e.g. Carr & Kitchell 1980; Gotelli
1998; Kot 2001). According to this model, a dynamical equilibrium

of species richness may reflect the carrying capacity of

Cenomanian ammonoid diversity and turnover 385
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each basin. The logistic model predicts such a sudden shift
toward lower equilibrium values and accordingly, such a

dropdown is interpreted as a thresholded response caused by a

decreasing carrying capacity. Along the lines of this model, the
Late Cenomanian corresponds to lower carrying capacities for
each of the basins (Fig. 4e).

Absolute values (bars) and percentages (shaded areas) of
origination and extinction are plotted in Fig. 5a-c. Throughout
the entire Cenomanian. absolute values of both origination
and extinction fluctuate within a limited range. Highest extinction

values occur in the Late Albian, in the early Middle
Cenomanian, and at the MLCB, whereas highest origination values

occur only in the Late Albian and in the early Middle
Cenomanian. Therefore, the MLCB appears as a time of prevailing
extinction in the Vocontian and Anglo-Paris basins. Average
values per substages also suggest a weak prevalence of extinction

during the Late Cenomanian. Percentages of origination
and extinction closely match absolute values, except for those
around the CTB where they reach their maximum value. Such

a discrepancy between absolute values and percentages is

produced by the comparatively reduced number of species around
the CTB. After initiation of the decline of species richness at
the MLCB, the protracted, decreasing trend in species richness

was fueled by a slight unbalance in favor of extinctions. Hence,
a sudden dropdown in origination or a catastrophic peak of
extinction can be safely excluded.

Absolute turnover values (bars) and percentages of
turnover (shaded areas) are plotted in Fig. 5d-f. The turnover
is a measure of the intensity of the restructuration of the whole

community, but alternatively, it may also be artificially
increased by the presence of documentation gaps in the faunal
successions. Absolute values of turnover show a brief peak
around the Early/Middle Cenomanian boundary. However,
this peak is probably spurious because late Early Cenomanian
faunas (Dixoni Zone) are wanting in the Vocontian Basin and
because a general hiatus in the sedimentation of Western
Europe has long been recognized around this substage boundary
(Kennedy & Hancock 1977). During the Late Cenomanian
and Early Turonian, absolute values of turnover do not
display any positive or negative trend, whereas percentages of
turnover gradually increase because of the concomitant
decrease in species richness.

4.2. Counts ofacanthoceratids and heteromophs at the species
level

The proportion of species per family present in our database is

summarized in Figure 6. This pie chart clearly highlights the

preponderance of the Acanthoceratidae. which amounts to
41% of the Cenomanian species in Western Europe. From our
own field experience in the Vocontian Basin, this preponderance

is even greater when considered in terms of relative
abundance. Heteromorphs represent the second largest group, with
23% of the total number of species. Others group or families
have too low percentages for any reliable recognition of trends

Acanthoceratidae (41%)
Vascoceratidae (10%)

110
taxa

Pseudotissotildae (2%)

Hoplitidae (4%)

Schloenbachndae (7%)

Desmoceratldae (3%)

Pachydiscidae (< 1 %)

Scaphitidae (5%) -
Anisoceratidae (2%)

Baculitidae (5%)

Hamitidae (3%)

Lyelliceratidae (3%)
Forbesiceratidae (3%;

Brancoceratidae (3%

Turnhtidae (8%)
Phylloceratidae (< 1%)

Gaudryceratidae (< 1%)
Tetragonitidae (< 1%)

Fig. 6. Relative species richness of ammonoid families in the Cenomanian of
Western Europe.

during the Cenomanian. Hence, trends in species richness

appear to be mainly governed by acanthoceratids and
heteromorphs.

Species richness and origination-extinction of
heteromorphs are displayed in Figure 7. The diversity curve (Fig. 7a)

of these predominantly pelagic species shows a clear dropdown
at the MLCB and a minimum value at the CTB as for the entire
fauna (Fig. 3d). In the Late Albian and Early Cenomanian.

more or less balanced bursts of originations and extinctions
dampen out until extinctions become unbalanced by origination

in the Middle Cenomanian (Fig. 7b). It is also worth noting
that the MLCB and the CTB are both marked by moderate
extinctions without any concomitant origination (Fig. 7b).
Accordingly, pulsated percentages of turnover (Fig. 7c) decrease

from the Albian-Cenomanian boundary to the MLCB, whereas
the MLCB and latest Late Cenomanian peaks are mainly
generated by extinctions. In Western Europe, the local disappearance

of the Turrilitidae largely accounts for the MLCB extinction

high among the heteromorphs.
Changes in species richness of acanthoceratids (Fig. 8a) are

also in good agreement with those of the global species curve
(Fig. 3d), with high values during the Early-Middle Cenomanian

and low values during the Late Cenomanian-Early Turonian.

In the Early Cenomanian, the slow and sustained increasing

species richness results from the combination of a moderate

amount of origination with little or no extinction, thus leading

to low percentages of turnover (Fig. 8b-c). The increasing
trend of diversity is briefly interrupted at the end of the Early
Cenomanian. which is marked by a first turnover peak. However,

this turnover peak is likely to result from the generalized

gap known at the EMCB. Increase of species richness resumes
in the Middle Cenomanian and reaches its maximum in the

early Late Cenomanian. The main decline of acanthoceratid
species diversity occurs in the mid-Late Cenomanian, which
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clearly indicates a delay with respect to both the main decline
of the global curve of species richness and the decreasing
diversity of heteromorphs. both of these occurring around the
MLCB (see Figs 3 and 7). This later diminution of acanthocer-
atid diversity is generated by the difference between extinction

and origination, the latter being at its lowest values (Fig.

8b). The lowest diversity values span the late Late Cenoman-

ian-Early Turonian time interval, in combination with peak
values of percentages of turnover (Fig. 8c).

At the species level, additional insights on the diversity
dynamics of acanthoceratids are also provided by the assessment
of longevities (Fig. 9). Absolute durations of zones used for as-
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sessment of longevities are derived from correlations between
the Western European succession and the well-calibrated
Western Interior succession (Obradovitch 1993) and from the

cyclostratigraphic interpretation of Gale (1995). The evolution
of mean values of species longevity suggests a three steps
pattern. A first plateau consisting of high mean values ranging
between 2 and 3 my spans the Early Cenomanian. It ends abruptly

at the EMCB, and is followed by a second plateau with
mean values between 1 and 1.5 my during the entire Middle
Cenomanian. This significant decrease of mean longevities
does not appreciably alter the range of minimal and maximal
values. From the MLCB on, mean values gradually decrease

until they reach their lowest limit around the CTB, with a drastic

reduction of the range of minimal and maximal values. The
Late Cenomanian is thus characterized by the presence of
short-lived acanthoceratid species. This pattern is believed to
be reliable because the possible bias introduced by the
taxonomic treatment is in fact relatively minimal. The revision of
the acanthoceratids (notably by Wright & Kennedy 1981,1984,
1987, 1990) is consistent throughout the studied interval and

always takes intraspecific variation into account even during
the Late Cenomanian (for example, see Kennedy et al. 1981;

Thomel 1992).

Some survivorship curves of poly-cohorts, with their
bootstrapped statistical confidence intervals, are illustrated in

Figure 10 (only 7 poly-cohorts are reported here, but the
results are very similar for all others). For each poly-cohort,
the two statistical methods used to test for log-linearity of
survivorship curves demonstrate that all poly-cohorts of the
entire studied time interval are not significantly non log-linear

(Ho not rejected), which implies that, for a given poly-
cohort, the extinction risk is stochastically constant through
time (earlier taxa have statistically the same risk of extinction

as do later taxa). Consequently, these tests indicate that
no statistically significant extinction phase can be detected

during Cenomanian times on the basis of the poly-cohorts
analysis. As previously hypothesized (see 4.1), this result

supports the hypothesis that the observed dropdown of
species richness during the Late Cenomanian results from of
a lack of origination.

Although no significant change in the extinction rate of
each separate poly-cohort can be demonstrated, it is nevertheless

interesting to compare the timing of the fluctuations of
percentages of extinction across all poly-cohorts. Figure 11

presents the contour intervals of the percentage of survivorship

through time. This graph assesses the synchronism of
fluctuations of percentages of extinction across all poly-cohorts.
Such a plot implies that if all poly-cohorts have a constant
extinction rate through time, then all contour lines should be

statistically parallel to the "origination time" axis. On the other
hand, horizontal contour intervals imply a concomitant
increase of percentages of extinction across several poly-cohorts.
Four episodes of increasing percentages of extinction simultaneously

affect several poly-cohorts and are all concentrated in
the Late Cenomanian, whereas no such events can be detected

during the Early and Middle Cenomanian. Despite the fact
that the number of taxa in the Late Cenomanian is comparatively

much smaller (therefore precluding any firm, statistically
robust interpretation), this last result somewhat opens the

possibility that the Late Cenomanian restructuring of the
ammonoid community may result not only from decreasing
percentages of origination, but also from minor, synchronous
extinction events.

4.4. Taxonomic distinctness

Probability Distribution Functions of AvTD and VarTD under
the null hypothesis of randomness of assemblages' composition

from a common taxonomical pool have been computed
with the randomization procedure proposed by Clarke & Warwick

(1998, 2001). Figure 12 illustrates these confidence intervals

for our ammonoid database. These graphs underline the

fact that the median simulated AvTD value under the null
hypothesis of randomness is almost unchanged for species richness

greater than about five, while VarTD values are almost

unchanged from ten species onwards.
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brownei Zone) and 20 to 22 (Guerangeri Zone). UA-zones 23

to 34 (late Late Cenomanian-Early Turonian) have too low
species richness for making statistically sound interpretations.
The high AvTD values of the Albian-Cenomanian boundary
suggest that there are too many taxa at the supra-familial level
than expected under the null hypothesis of randomness, i.e.
too many super-families in comparison to the observed species
richness. Conversely, the low AvTD values of the early Late
Cenomanian suggest that there are too few familial and supra-

familial taxa in comparison to the number of species. This fact

may correspond to the extinction of most heteromorphs and
families such as Schloenbachiidae and Forbesiceratidae.
Indeed, the Acanthoceratidae almost exclusively dominates
ammonoid assemblages of the Late Cenomanian.

An interesting feature can be seen at the Middle/Late
Cenomanian boundary: a significantly lower than expected
AvTD and a significantly higher VarTD characterize the

Guerangeri Zone. According to the ecologie meaning of these
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two indices (see Warwick & Clarke 1998; Clarke & Warwick
2001), this combination is diagnostic of ecosystems with low
trophic diversity (low complexity of food webs) and limited
habitat. Moreover, the "normal" AvTD values and higher
VarTD of the Jukesbrownei Zone (late Middle Cenomanian)
also suggest that degradation of the ecosystem began with
reduction of the number of habitats (or number of ecologie
niches) and was then followed by the lowering of trophic
diversity.

4.5. Counts of acanthoceratids at the genus level

Diversity, origination and extinction of acanthoceratids at the

genus level are plotted in Figure 14. Diversity slowly increases

throughout the entire Cenomanian in a step-like fashion and
thus appears largely uncoupled with diversity at the species
level (compare with Fig. 8). A first step occurs at the EMCB
and a second one appears within the late Cenomanian (late
Guerangeri Zone). The CTB is marked by a short-term drop¬

down with values close to those of the Early Cenomanian.
Therefore, the diversity of acanthoceratids at the genus level
reveals somewhat different trends than those observed at the

species level. The most salient differences are (i) opposite
trends around the EMCB, with an increasing number of genera

and a dropdown of species richness, (ii) the delayed
decline of genus richness in comparison with that of species richness

in the Late Cenomanian. The latter decoupling reflects a

significant increase in morphological disparity of NW European

representatives of acanthoceratids. which is directly
expressed at the genus level.

Ranges of NW European and North American genera are
illustrated in Figure 15. The phylogenetic hypotheses between

genera are compiled and partly reinterpreted from several
contributions (Thomel 1972.1992; Kennedy et al. 1980; Wright
& Kennedy 1980, 1981, 1984, 1987, 1990; Kennedy & Wright
1985; Robaszynski et al. 1993; Cooper 1997, 1998). The
phylogeny of the Acanthoceratidae is still largely amenable to
further modifications, therefore most of the phylogenetic
relationships illustrated in Figure 15 should be considered as a
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working hypothesis. A first large-scale pattern is the increasing
number of genera paralleled by a decreasing longevity during
the Late Cenomanian-Early Turonian time interval. A second
feature of the Late Cenomanian acanthoceratids is the relative
abundance of paedomorphic transformations (mostly proge-
netic dwarf offshoots) well exemplified by the Acanthoceras-
Protacanthoceras lineage (Wright & Kennedy 1980; Kennedy
& Cobban 1990). Although not all Late Cenomanian lineages
can be interpreted as progenetic, reduction of adult size seems
to have affected the majority of lineages. Juvenile innovations
also occur, as illustrated by the inception of coronate, spinose
morphologies as seen in the transition between Calycoceras
(Calycoceras) and Lotzeites (see Wright & Kennedy 1990). A
significant amount of paedomorphoses, juvenile innovations
and size reductions seem to be concentrated throughout the

European Late Cenomanian, therefore suggesting that
evolutionary reactions at the origin of the main radiation phase of
acanthoceratids were triggered by environmental cues predating

the end-Cenomanian anoxic event.

5. Discussion

The Cenomanian/Turonian boundary event is usually considered

as a moderate mass extinction event (Raup & Sepkoski

1986; Hallam & Wignall 1997; Harries & Little 1999). Because
it is closely associated in time with the Oceanic Anoxic Event
2, the most frequently invoked kill mechanism is that of habitat

destruction caused by the extension of oxygen-poor waters
onto the shelves. Changes in benthic and nektonic communities

have customarily been interpreted along this line of
thought (e.g. Jarvis et al. 1988; Philip & Airaud-Crumiere
1991; Grosheny & Malartre 1997; Keller et al. 2001). Despite
its worldwide recognition, some uncertainties remain about
the intensity and selectivity of the end-Cenomanian mass
extinction. The most radical view is that of Smith et al. (2001)
who suggested that the end-Cenomanian extinctions are only
artifacts resulting from gaps in the nearshore sedimentary
record during the great transgression of the Late Cenomanian-
Early Turonian. The results of our study of Western Europe
ammonoids contrast with most of these interpretations. We
find a decline in ammonoid species richness that is associated
with the highest percentages of turnover, major evolutionary
changes of acanthoceratids. as well as reduced longevities and
size reductions of acanthoceratids.

Our results indicate that the dropdown in ammonoid
species richness in NW Europe began around the Middle/Late
Cenomanian boundary, not around the Cenomanian/Turonian
boundary. Because the anoxia is undoubtedly of late Late
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Cenoimanian age (late Geslinianum and Juddii zones), it is

hardly possible to reconcile the diversity patterns of
ammonoids with the timing of anoxia as a single causative mechanism.

Although the timing of anoxia coincides with the minimum

diversity of ammonoids in Western Europe, it cannot be

interpreted as the initial and single cause responsible for their
diversity dropdown (Fig. 16). Moreover, diversity declines also
affected planktonic foraminifera and ostracod assemblages as

early as the end of the Middle Cenomanian as documented by
Babinot et al. (1998) in the Vocontian Basin and Rodriguez-
Lazaro et al. (1998) in the western Basque Basin. These
authors also pointed out that the end-Cenomanian time is mainly
characterized by very high percentages of turnover, but not by
a marked decrease of species richness. Last but not least.

O'Dogherty & Guex (2002) also documented that after a

period of stability during the Middle Cenomanian, a decline of
radiolarian species richness occurred during the Late
Cenomanian, while the C/T boundary is mainly characterized by a

higher turnover rate. They also noted that the majority of
Cenomanian radiolarian extinctions occurred earlier than the
anoxia. Therefore, OAE2 probably participated in the disruption

of marine ecosystems and contributed to extinctions, but
different causes must be sought for the initiation of this
biological crisis.

Among other factors frequently invoked for the CTBE is a

change in productivity, nutrient supplies being a very important

ecological factor in determining marine diversity (Valentine

1971). The Late Cenomanian is well known to be associated

with a positive carbon isotope excursion (Fig. 16), which is

documented in the three basins (e.g. Gale et al. 1993; Gale &
Christensen 1996; Mitchell et al. 1996; Paul et al. 1999; Voigt
2000). A change of productivity is among the favored causes
for this carbon excursion, but there is no clear consensus on
whether this excursion is linked to high (see Schlanger &
Jenkyns 1976; Arthur et al. 1987) or low productivity (see De-
Boer 1986; Paul & Mitchell 1994). Low productivity may lead
to a diversity dropdown, but high productivity leading to
eutrophication may cause a diversity dropdown as well (Hallock
1987; Rosenzweig 1995). Weissert et al. (1998) and Wilmsen
(2000) suggest that positive carbon isotope excursions reflect
warmer climate and higher nutrient levels leading to eutrophication

of biota, which then contribute to the drowning of
platforms by negatively influencing the carbonate budget of the

depositional system. Until a clear understanding of why carbon
isotopie concentrations vary, any firm link with diversity
decreases cannot be established, even if the carbon isotope curve
and the species richness curve show a strikingly similar trend.
On the other hand, both the reduced coccolith abundance

(Lamolda et al. 1994; Paul & Mitchell 1994) and the decreasing
dinocyst abundance (Lamolda & Mao 1999) suggest a productivity

decrease during the latest Cenomanian. Unfortunately,
these studies encompass only the short time interval of the
Cenomanian/Turonian boundary and, compared with the long-
term ammonoid diversity pattern, no firm conclusion about the

timing of the decreasing coccolith and dinocyst abundances

can be reached. It remains to be investigated how far back in
the Cenomanian this trend initiated and if it coincides or not
with the Middle/Late Cenomanian boundary.

According to the ammonoid record of Western Europe,
the MLCB coincides with the demise of the heteromorphs.
These ammonoids are usually considered as microphagous and

vertical scanners of the food-rich layers throughout the water
column (Westermann 1996). Because variations in primary
productivity would surely have a profound impact on such a

trophic regime (Cecca 1997). it is tempting to relate their
demise to a change in productivity. Such a hypothesis needs

confirmation from other productivity markers such as coccoliths

and dinocysts throughout the entire Cenomanian. Along
the same line, it is worth noting that Rodriguez-Lazaro et al.

(1996) documented a major biosedimentary event among
foraminifera and ostracods at the MLCB, which they
interpreted as resulting from paleoceanographic changes and a

decrease of nutrient supplies in the Basque Basin.
Sea level changes are also commonly related to fluctuations

in ammonoid species richness and turnover (e.g. Wiedmann
1988; House 1989; Becker 1993; Hoedemaeker 1995;

O'Dogherty et al. 2000; Sandoval et al. 2001) but without a

clear relationship on whether ammonoid diversity typically
increases during transgression or regression. Even if the
regression-extinction nexus is significantly more cited, both relationships

are observed (Hallam & Wignall 1999). This non-direct
relationship between sea level changes and ammonoid diversity

have been already noted by Macchioni & Cecca (2002) and
discussed by Cecca (2002). In Western Europe, the direct
comparison between the third-order sequences (recently revised

by Robaszynski et al. 1998) and ammonoid species richness
does not show any obvious relationship. Indeed, the
ammonoid species richness of Early-Middle Cenomanian remains
almost steady throughout four sequences (Fig. 16). Nevertheless,

we believe that the most relevant fact is the Late
Cenomanian second-order transgression (Haq et al. 1988), which is

known as the highest highstand of the Mesozoic (Hancock &
Kauffman 1979). Such a high sea level resulted in a substantial

expansion of shallow seas, in the drowning of platforms (Wilmsen

2000), and in a shift toward deeper-water environments in
the Late Cenomanian (see Smith et al. 2001, Fig. 1). This

flooding may have had several consequences among which the

most obvious is a decreased partitioning of epicontinental seas.

Such sea level changes may directly influence the endemism of
ammonoid faunas and then their diversity (see Cecca 2002).
For example, times of high sea level would allow increased in-
terbasinal migrations leading to reduced provincialism (Cooper

1977), but the opposite case has also been documented (e.g.

Bretsky 1973). Cooper (1977) already noted that the
ammonoid faunas of Late Cenomanian are mostly cosmopolitan,
but the absence of a recent ammonoid biogeographical analysis

(taking into account the taxonomic revision of the
Cenomanian faunas) precludes a detailed investigation of the

relationship between endemism and diversity in our case. This
substantial flooding may also have important climatic conse-
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quences: according to available global atmospheric circulation
models, such flooding is accompanied by a more uniform
climate with a drastically reduced seasonal contrast of sea surface

temperature in the epicontinental seas (Fluteau 1999), as well
as a reduction of the equator-to-pole sea surface temperature
gradient (Poulsen et al. 1999). A more equable climate together

with a weak geographical partitioning may have contributed
to the homogenization of marine habitats, which in turn may
have caused species richness to decline. This sea level rise also

initiated poleward migration of warm surface waters (Johnson
et al. 1996). thus favoring northward migration of tropical faunas.

Among the ammonoid faunas, such a change is well
exemplified by the Late Cenomanian northward migration of
Tethyan taxa (e.g. vascoceratids) within the NW European
realm, which was previously under a Boreal influence (e.g.
schloenbachiids).

6. Conclusions

Analysis of the diversity dynamics of ammonoids in the
Vocontian, Anglo-Paris and Münster Basins (Western Europe)
reveals that major changes initiated as early as the

Middle/Late Cenomanian boundary. The Early-Middle
Cenomanian was a period of high species richness. The Late
Cenomanian was characterized by a decrease in diversity (resulting
mainly from non compensation of background losses by
origination), a switch between two dynamic equilibria, and significant

evolutionary changes of acanthoceratids (e.g. important
decrease of their longevity and adult size). Hence, the decline
of ammonoid diversity appears as a thresholded process
around the Middle/Late Cenomanian boundary, which largely
predates the known anoxic events at the end of the Late
Cenomanian. The C/T boundary itself only coincides with minimum
values of species richness and highest percentages of turnover.
These same trends emerge in each of the three studied basins,
thus substantiating a general pattern at the Western European
scale. Such trends were essentially dictated by the acanthoceratids

and the heteromorphs. the first having concomitantly
experienced a marked evolutionary radiation with the appearance

of new genera containing few species each, while the
second went locally extinct. Thus, anoxia cannot be interpreted as

the initial and single cause that contributed to the decrease in
ammonite species richness during the Late Cenomanian of
Western Europe. Moreover, the Late Cenomanian evolutionary

changes of acanthoceratids cannot be entirely and satisfactorily

explained by the onshore migration of epicontental
facies belts, thus differing from the case of benthic organisms
(Smith etal. 2001).

Among other abiotic changes that may coincide with the

Middle/Late Cenomanian boundary is the start of a general
flooding and drowning of the platforms in Western Europe. In
the Late Cretaceous context, which records the highest relative
sea level ever documented, such a transgression may have
been accompanied'by important changes in oceanic circulation
and productivity, a more uniform climate at mid-paleolatitudes

and a decreasing partitioning of epicontinental seas, some of
which may have potentially contributed to the decline of
ammonoid diversity. Such an interpretation is also compatible
with the higher degree of cosmopolitanism, as documented by
the enlarged biogeographical distribution of North American
as well as Tethyan taxa. Although such an interpretation is

only drawn from the ammonoids, the timing of their diversity
and evolutionary patterns do not support the C/T anoxic event
as a single causative mechanism in this biodiversity crisis. The
so-called CTBE thus appears to be a long-term crisis (~1 m.y.).
which started at the Middle/Late Cenomanian boundary as

indicated by the ammonoid record of Western Europe.
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