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Middle and Late Jurassic carbon stable-isotope
stratigraphy and radiolarite sedimentation of the
Umbria-Marche Basin (Central Italy)

ANNACHIARA BARTOLINI! 23 PETER O. BAUMGARTNER? & JOHANNES HUNZIKER?
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ABSTRACT

A continuous carbon isotope curve from Middle-Upper Jurassic pelagic carbonate rocks was acquired from two
sections in the southern part of the Umbria-Marche Apennines in central Italy. At the Colle Bertone section
(Terni) and the Terminilletto section (Rieti), the Upper Toarcian to Bajocian Calcari e Marne a Posidonia For-
mation and the Aalenian to Kimmeridgian Calcari e Marne a Posidonia and Calcari Diasprigni formations were
sampled, respectively. Biostratigraphy in both sections is based on rich assemblages of calcareous nannofossils
and radiolarians, as well as some ammonites found in the upper Toarcian-Bajocian interval. Both sections re-
vealed a relative minimum of 83Cppg close to + 2%. in the Aalenian and a maximum around 3.5 %. in early
Bajocian, associated with an increase in visible chert. In basinal sections in Umbria-Marche, this interval in-
cludes the very cherty base of the Calcari Diasprigni Formation (e.g. at Valdorbia) or the chert-rich uppermost
portion of the Calcari a Posidonia (e.g at Bosso). In the Terminilletto section, the Bajocian-early Bathonian
interval shows a gradual decrease in 8'*Cppg values and a low around 2.3%.. This part of the section is charac-
terised by more than 40 m of almost chert-free limestones and correlates with a recurrence of limestone-rich fa-
cies in basinal sections at Valdorbia. A double peak with values of 8'*Cppp around + 3% was observed in the
Callovian and Oxfordian, constrained by well preserved radiolarian faunas. The maxima lie in the Callovian
and the middle Oxfordian, and the minimum between the two peaks should be near the Callovian/Oxfordian
boundary. In the Terminilletto section, visible chert increases together with §'*Cppg values from the middle Ba-
thonian and reaches peak values in the Callovian-Oxfordian. In basinal sections in Umbria-Marche, a sharp in-
crease in visible chert is observed at this level within the Calcari Diasprigni. A drop of 8'*C values towards
+ 2% occurs in the Kimmeridgian and coincides with a decrease of visible chert in outcrop.

The observed 8'3C positive anomalies during the early Bajocian and the Callovian-Oxfordian may record
changes in global climate towards warmer, more humid periods characterised by increased nutrient mobilisa-
tion and increased carbon burial. High biosiliceous (radiolarians, siliceous sponges) productivity and preserva-
tion appear to coincide with the 8'C positive anomalies, when the production of platform carbonates was sub-
dued and ceased in many areas, with a drastic reduction of periplatform ooze input in many Tethyan basins.

The carbon and silica cycles appear to be linked through global warming and increased continental weath-
ering. Hydrothermal events related to extensive rifting and/or accelerated oceanic spreading may be the endo-
genic driving force that created a perturbation of the exogenic system (excess CO; into the atmosphere and
greenhouse conditions) reflected by the positive 8'*C shifts and biosiliceous episodes.
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RESUME

Nous présentons pour la premiére fois une stratigraphie continue des isotopes stables du carbone du Jurassique
moyen et supérieur, basée sur des mesures de carbonates de la Téthys méditerranéenne.

Le Jurassique de I’Apennin sud-oriental de I'Ombrie-Marche-Sabina est caractérisé par I'abondance de
resédiments carbonatés pendant tout I'interval biosiliceux téthysien. Cette région était proche de la plateforme
de Lazio-Abruzzi, située paléogéographiquement au sud du bassin de I'Ombrie-Marche-Sabina. Les séries du
Jurassique moyen-supérieur sont caractérisées par des calcaires a silex interstratifiés avec des resédiments de
plateforme sous forme de «mass flows», turbidites fines et surtout de la boue carbonatée «periplateforme». Ces
séries se sont révelées particulierement utiles a la stratigraphie intégrée a I’aide de nannofossiles, radiolaires,
ammonites et isotopes stables.

Des analyses d’isotopes du carbone et de 'oxygeéne ont été effectuées dans la coupe de Colle Bertone (M.
Lacerona, Terni), dans la formation des Calcari e Marne a Posidonia (Toarcien — Bajocien) et dans la coupe du
Terminilletto (M. Terminillo, Rieti) dans les formations des Calcari e Marne a Posidonia et des Calcari Dia-
sprigni (Aalenien — Kimmérdgien). Les datations biostratigraphiques sont basées sur des riches faunes a nanno-
fossiles et radiolaires, ainsi que quelques ammonites du Toarcien supérieur, de I’Aalenien et du Bajocien.

Les deux coupes étudiées ont montré un minimum relatif du §'*Cppg d’environ + 2%. dans 1’ Aalénien et un
maximum d’environ + 3.5%o dans le Bajocien inférieur. Ce maximum est accompagné d’une augmentation de la
silice biogene, visible sous forme de silex dans la coupe. Dans le bassin, ce maximum est biostratigraphique-
ment correlé avec le début des Calcari Diasprigni & Valdorbia et avec la partie supérieure des Calcari a Posido-
nia, tres siliceuse, a Bosso. Le Bajocien supérieur —~ Bathonien inférieur du Terminilletto montre une diminu-
tion graduelle des valeurs 8'*Cppg et un minimum de + 2.3%o. Cet interval est représenté par plus de 40 m prati-
quement dépourvu de silex.

Un double maximum de §"*Cppg autour de + 3%o a été mesuré dans le Callovien — Oxfordien, daté par des
faunes a radiolaires bien préservées. Un premier maximum se situerait dans le Callovien moyen, un minimum
proche de la limite Callovo-Oxfordienne et un deuxieéme maximum serait daté de I'Oxfordien moyen. A Termi-
nilletto, les silex augmentent ensemble avec les valeurs de 8'*Cppg depuis le Bathonien moyen et sont domi-
nants dans le Callovo-Oxfordien. Dans le bassin les faciés les plus siliceux sont également datés du Bathonien
moyen-supérieur. Les valeurs de §3Cppp commencent a diminuer dés le Kimméridgien ensemble avec les silex
pour arriver a +2%o. :

Les maxima observés de §'*Cppp du Bajocien inférieur et du Callovien — Oxfordien se corrglent avec des
montées eustatiques du niveau marin et enregistreraient donc des changements climatiques globaux vers des
époques plus chaudes et humides. Ces époques était charactérisées par une mobilisation accrue de nutriments
ayant pour conséquence finale un enfuissement de carbone organique accrue, ce qui se traduit par des valeurs
plus positives de §'°Cppg enregistrées dans les sédiments. La mobilisation de nutriments aurait conduit a une
eutrophisation modérée des bassins téthysiens qui a causé une haute productivité et une bonne préservation des
organismes siliceux (radiolaires, éponges siliceuses). En méme temps la productivité des plateformes
carbonatées a sensiblement diminué, voire cessé dans beaucoup de domaines. Le Bajocien est une époque
privilégiée du début des radiolarites suite a une réduction drastique de I'apport de boue «periplateforme» dans
beaucoup de bassins téthysiens.

Les cycles du carbone et de la silice semblent liées par les processus climatiques du rechauffement et d’'une
altération continentale accrue, ce qui aurait provoqué un cyclage plus élevé a la fois du carbone et de la silice.
Nous pensons que des processus endogéniques soyent a I’origine des fluctuations observées: 'augmentation des
taux de dérive océanique et du rifting aurait introduit un excés de CO; et de silice dans le systéme exogéne
provoquant ainsi un processus de régulation par des méchanismes de «feedback». Cette régulation aurait
ramené le systéme exogene a des conditions proche des initiales.

1. Introduction

Our incentive to study the stable isotope stratigraphy of the Middle-Late Jurassic is two-
fold. (1) A detailed, continuous and biostratigraphically calibrated carbon isotope record
could potentially serve as a tool for global correlation (Scholle & Arthur 1980; Jenkyns et
al. 1994). (2) Independent geochemical data pertaining to Jurassic paleoenvironments is
needed to understand the onset and the wide distribution of radiolarites in the Tethyan
realm and elsewhere.
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Carbon-isotopic variation has been linked to changes in ocean structure, productivity
and ultimately to the concentrations of greenhouse gases in the atmosphere (Kroopnick
et al. 1977; Arthur 1982; Arthur et al. 1985; Berner et al. 1983; Berner & Lasaga 1989;
Berner 1990; Lasaga et al. 1985; Shackleton & Pisias 1985; Berger & Vincent 1986; Dela-
ney 1989; Weissert & Bréhéret 1991; Arthur et al. 1991; Kerrick & Caldeira 1993 and
many others). Positive carbon-isotope events reflect perturbations in the global carbon
cycle and generally coincide with stratigraphic evidence for increased organic carbon
burial (Schlanger et al. 1987; Arthur et al. 1985; Arthur et al. 1990). Since organic carbon
is preferentially enriched in the lighter isotope '>C, its removal from the oceanic reservoir
and escape from oxidative recycling renders ocean waters relatively enriched in 1*C
(Scholle & Arthur 1980). In recent years, the carbon isotope stratigraphy of the Lower
Cretaceous for low latitudes has been refined (Weissert 1989; Weisssert & Lini 1991; Lini
et al. 1992; Channell et al. 1993). The Late Valanginian positive 8'3C event has been pos-
tulated to be due to accelerated carbon cycling triggered by elevated atmospheric CO>
levels coupled with a warm and humid climate (Weissert & Lini 1991; Lini et al. 1992).
These episodes of greenhouse climate conditions may be related to increased COz emis-
sions caused by extensive volcanic activity (see Larson 1991a, b). Enhanced continental
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weathering and increased runoff may have led to elevated transfer rates of nutrients to
the oceans, favouring primary productivity and increasing rates of biological carbon buri-
al in marine sediments. Jenkyns (1985, 1988), Jenkyns & Clayton (1986) and Jenkyns et
al. (1991) investigated black shales and carbon isotopes in pelagic sediments from the Te-
thyan Lower Jurassic. The positive carbon anomaly of the Early Toarcian was attributed
to an “oceanic anoxic event”, correlating to an Early Toarcian transgression (Hallam
1981), high productivity and the production of an extensive oxygen-minimum zone in
both epicontinental and oceanic environments. No continuous carbon-isotope curve for
the Middle-Late Jurassic is available. The Bajocian-Kimmeridgian interval of the Alpine-
Mediterranean area is generally very siliceous in basinal settings and condensed or ab-
sent on submerged structural highs. Weissert & Channell (1989) produced a 8'°C curve of
the Upper Jurassic (Kimmeridgian-Tithonian) from Southern Alpine sections. Corbin
(1994) studied the Middle Jurassic of the Digne area (Southern France). Bill et al. (1995)
and Weissert & Mohr (in press) have studied the Oxfordian from the Helvetic nappes
and the Swiss Jura. Jenkyns (in press) has analysed pelagic limestones, ranging from Cal-
lovian to Oxfordian in age, from the sections of Chabrieres (southern France), Camposil-
vano and Rovere Veronese (north Italy).

In the Mesozoic basins of Western Tethys the onset of radiolarite sedimentation is di-
achronous, varying from Late Triassic to Late Jurassic in age (Baumgartner 1984; De
Weaver 1989; Gorican 1994). Previously, increased subsidence was seen as the cause of
the “drowning” of carbonate platforms and the onset of siliceous sedimentation. Ra-
diolarites were considered as a solution-resistant sediment that accumulated wherever
the seafloor dropped below the calcite compensation depth (Garrison & Fischer 1969;
Bosellini & Winterer 1975; Hsii 1976; Kilin et al. 1979; Winterer & Bosellini 1981: Jen-
kyns & Winterer 1982). Radiolarian biostratigraphy and basin-platform correlation in the
Western Tethys clearly shows that the onset of radiolarites is controlled by productivity
and paleogeography (Baumgartner 1987; Baumgartner 1990; Gorican 1994). Predomi-
nantly siliceous sedimentation in the Western Tethys can occur at any time since the mid-
dle Triassic in areas connected to an open ocean (Neotethys), provided the basin was
sheltered or away from carbonate input from the neighbouring platforms.

For the combined objectives of carbon isotope stratigraphy and the understanding of
radiolarites we have chosen an area that is ,sensitive” to monitor the changes in car-
bonate versus biosiliceous sedimentation. The South-Eastern sector of the Umbria-
Marche-Sabina Apennines (Fig. 1) was close to the Lazio-Abruzzi Carbonate Platform.
The Middle-Upper Jurassic is characterised by thick, continuous pelagic sections with
cherty limestones and abundant platform-derived resediments that occur both as coarse
mass flow deposits, fine turbidites, and as periplatform ooze. Well preserved radiolarians
occur throughout, allowing for an integrated biostratigraphy by mean of radiolarians,
nannofossils and ammonites (Tonielli 1991; Bartolini 1995; Mattioli 1995; Bartolini et al.
1995).

2. Geological Setting

During the Mesozoic, the Umbria-Marche-Sabina (UMS) Basin of Central Italy (Fig.1)
was part of the southern continental margin of the Western Tethyan Seaway. During the
early Liassic, a large carbonate shelf in this region broke up and drowned due to the com-
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Fig. 2. (a) Simplified columnar sections and (b) paleogeographic transect of the Umbria-Marche-Sabina (UMS)
Basin and the adjacent Lazio-Abruzzi (PLA) Platform. (A = Valdorbia, B = Colle Bertone, C = Terminilletto).
The studied sections Colle Bertone and Terminilletto are located close to the area that represented the margin
between the UMS Basin and the PLA Platform. This area was characterised by abundant carbonate resediment
input from the platform, resulting in thicker and more calcareous sections than those out in the basin.
(c) Schematic block model of the Lazio-Abruzzi Platform (PLA), and the proximal UMS Basin, The Valnerina
Line (VN) formed a structural high during the Jurassic rifting (after Lavecchia 1985).
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bination of ecological factors and intensified extensional tectonics related to continental
rifting (Colacicchi et al. 1970; Colacicchi et al. 1988; Alvarez 1989; Bice & Stewart 1990;
Santantonio 1993). By the late Sinemurian, shallow-water sediments were replaced by
pelagic and resedimented facies. Throughout the Jurassic, shallow water carbonate sedi-
mentation persisted to the south of the UMS basin, in the adjacent Lazio-Abruzzi (LA)
carbonate shelf .

The studied sections (Colle Bertone and Monte Terminilletto) crop out in the south-
ern part of the UMS Apennines (Fig. 1). These sections were located proximal to the ad-
jacent Lazio-Abruzzi platform, and therefore received abundant carbonate resediments
from the platform (Fig. 2). For this reason, the studied successions are more calcareous
than those from the central part of the Umbria-Marche Basin, such as Valdorbia and
Bosso (McBride & Folk 1979; Baumgartner 1984, 1987, 1990; Cresta et al. 1988; Monaco
et al. 1994). As calcareous plankton was scarce throughout most of the Middle Jurassic,
periplatform ooze (Schlager et al. 1976; Schlager & James 1978; Schlager & Chermak
1979) probably constituted the main limestone component present in the basinal sections
in the Calcari e Marne a Posidonia and part of the Calcari Diasprigni formations. Sedi-
mentation rates are high through the Early Middle Jurassic and become greatly reduced
during the late Middle and Late Jurassic, probably due to a reduced input of periplatform
ooze. At Colle Bertone and Terminilletto, the succession is well developed and continu-
ous from the Corniola Formation (lower-middle Lias) to the Maiolica Formation (late
Tithonian). The Calcari e Marne a Posidonia are a well-bedded limestone with local
chert in nodules or ribbons and common levels of posidoniid bivalves. The Calcari Dia-
sprigni are characterised by cherty limestones and interbedded cherts (Cresta et al. 1988).

Both sections are rich in calcareous nannofossils and radiolarians, and sporadic am-
monite-bearing horizons have also been found (Bartolini et al. 1995). The nannofossil bi-
ostratigraphy is from Mattioli (1995) (PI. 1, 2).

3. Colle Bertone Section

The Colle Bertone section (Fig. 3, P1. 1) crops out on the south-western flank of Monte
La Pelosa, along an unpaved track branching off the Polino-Colle Bertone road, shortly
after the Fountain of Acquaviva. As resedimented lithologies are mainly intraformation-
al, the Colle Bertone section was probably located in an area protected from direct plat-
form input. Periplatform ooze, however, must have greatly diluted the autochthonous
planktonic sedimentation. In the present study we only deal with the Calcari e Marne a
Posidonia comprising pale brown-whitish micritic limestones, rich in posidonid remains
and radiolarians. Centimetric greenish marly intercalations are also present. Bedding
thickness ranges between 20 and 30 cm in the lower portion (0.00 m—43.00 m) and be-
come thinner, from 15 cm to 30 cm, in the upper portion (43.00 m-69.00 m). In the inter-
val from 0.00 m to 43.00 m grey chert is found discontinuously as ribbons and nodules.
Most chert replaces carbonate and chert ribbons are often found within resedimented
beds. In the interval from 43.00 m to 69.00 m grey-white chert is found regularly in rib-
bons ranging from few to ~20 cm in thickness. Chert contains abundant and locally well-
preserved radiolarians and represents original radiolarian sand layers (radiolarites).
Chert becomes red from 64.35 m. Both intraformational pebbly mudstones and graded
and laminated calciturbidites occur. Calciturbidites are characterised by posidoniid-echi-
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Fig. 3. Summary log of the Colle Bertone section. Lithology, visible chert percentage curve, 8'3C and §'80
curves of bulk carbonates are simplified. For more details on lithology, sample locations, sample numbers and
biostratigraphy see Plate 1.

noderm packstones that show normal grading, parallel and low-angle cross-laminations.
Pebbly mudstones are largely composed of intraplasts and intraclasts of micritic lime-
stones rich in echinoderm and posidoniid fragments. Upsection, calciturbidites and peb-
bly mudstones occur only sporadically.

4, Terminilletto section

The section (Fig. 4, Pl. 2) is exposed along the E-SE side of Monte Terminilletto (Termi-
nillo Group) and its base crops out along the road that leads from Terminillo to Campof-
orogna and to Sella di Leonessa. During the Jurassic Terminillo area was close to a nor-
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Fig. 4. Summary log of the Terminilletto section

. Lithology, visible chert percentage curve, 8'3C and 8'*0

curves of bulk carbonates are simplified. For more details on lithology, sample locations, sample numbers and
biostratigraphy see Plate 2. The visible chert percentage and 8'3C polynomial regression curves are in phase. In

addition to the fluctuations, an upwards increase

of visible chert % throughout the Middle Jurassic was ob-

served. Note a sharp increase at about 163 m (middle Bathonian) and a decrease around 225 m (upper Kimme-

ridgian/lower Tithonian).
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mal fault trending N-S, that divided the UMS basin from the Lazio-Abruzzi (LA) carbo-
nate platform (Castellarin et al. 1978; Cantelli et al. 1982; Castellarin et al. 1984). Abun-
dant carbonate resediments derived from the platform occur therefore in the Jurassic
sections of this area. The data presented in this paper were obtained from the Calcari e
Marne a Posidonia (0.00 m—160 m, upper Toarcian-Bajocian) and the Calcari Diasprigni
(160 m-256 m, Bajocian/early Tithonian).

The interval from 0.00 m to 40.00 m (upper Toarcian/middle Aalenian) mainly com-
prises medium bedded (10 to 20 cm) pale brown micritic limestones, showing mudstones
and wackestones with posidoniids. Laminated wackestones and mudstones occur in cy-
cles of about 30 cm thickness. Platform resediments consist of 20-30 cm thick intercala-
tions of oolitic grainstones with parallel and cross laminations and 40-90 cm thick pebbly
mudstones. White chert is sporadically present (visible chert 0-5%) in small nodules
(2-3 cm in diameter). The interval from 40.00 m to 110 m (middle Aalenian to lower Ba-
jocian) is mainly comprised of mudstones and resedimented beds that decrease in abun-
dance up section. Bed thickness varies around 5 cm. The visible chert content tends to in-
crease to 10-15%, and occurs as nodules and thin, laterally continuous ribbons. Up sec-
tion from 45 m, chert becomes red. From 100 m upwards, resedimented oolitic grain-
stones, partially replaced by chert, occur. From 110 m to 160 m (lower Bajocian middle
Bathonian) resedimented beds are frequent. Bioclastic packstones-grainstones with dom-
inant echinoderm fragments alternate with fine calcarenites to mudstones-wackestones
bearing posidonid shells. Fining-upward cycles can be observed. Chert tends to become
sporadic and disappears completely between 130 m and 160 m. From 160 m to 168 m
(middle Bathonian) the lower portion of the Calcari Diasprigni is mainly constituted by
thin beds (~4-10 cm) of whitish radiolarian mudstones with abundant red chert
(3040%) in irregular nodules and ribbons. Sporadic levels of detritic oolitic white chert
of 16-18 cm thickness are found. The interval from 168 m to 196 m (middle Bathonian/
Upper Oxfordian) mainly comprises micritic limestones and greenish, thinly stratified
(2-8 cm) and laminated cherty limestones, rich in radiolarians, rhythmically alternating
with varicoloured, but dominantly green, ribbon chert (40-50% visible chert). Horizons
bearing radiolarian and spicule sands are also present. Resedimented beds of 3-5 m
thickness constituted by ooids, crinoids and shelf-derived bioclasts are frequent. Levels of
white chert replacing oolites are present. From 196 m to 256 m (Upper Oxfordian/Kim-
meridgian), the sediments are mainly composed of whitish radiolarian-rich micritic lime-
stones and fine pale brown calcarenites arranged in thin beds (8-10 cm in thickness)
bearing ribbons and nodules of red chert. Up to 236 m, chert is abundant (40-50%),
while up section (254.50 m) a decrease in chert content to 18-26% is evident. Resedi-
mented beds are mainly oolitic up to 220 m, and tend to become bioclastic further on. A

large shelf resedimented lens-shaped body of about 18 metres of thickness occurs at
2248 m.

5. Stratigraphic distribution of visible chert

Rock names such as “cherty limestone” or “radiolarite” only qualitatively represent sedi-
ment compositions and are inadequate for a paleoceanographic interpretation of pelagic
sequences. In soft sediments, semiquantitative sediment compositions are usually ob-
tained from smear slide studies (e.g. ODP practice). In orogenic belts, lithification and
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burial diagenesis have enhanced lithologic contrasts to the extent that it is difficult to es-
timate long term shifts in sediment composition based on individual samples.

However, in pelagic sequences, the carbonate/silica ratio of the sediments certainly
bears an important paleoceanographic signal (Jenkyns & Winterer 1982). In order to
overcome bed-to-bed diagenetic variation, E.L. Winterer (oral communication) devel-
oped a semiquantitative field technique to estimate the percentage of visible chert. A me-
tre stick is placed on the section and the number of centimetres of visible chert crossed
by the stick is noted for every metre of the section. This method has been used to pro-
duce the plots of Plate 1 and Plate 2, Figure 3 and Figure 4.

This method does not account for finely dispersed silica in limestones or shales. The
actual bulk silica content of metre-intervals of section is certainly higher by 10% or more
than the % of visible chert. Significant amounts of clay in the section may have partially
or totally hindered the formation of macroscopically visible chert. Therefore, this method
is only useful to show fluctuations of chert content over several metres of section, if the
overall clay content is low.

The % of visible chert is thought to be indicative of the evolution of silica/carbonate
ratios of an individual section, which is controlled by productivity and sedimentation pro-
cesses, as well as by dissolution and diagenesis.

6. Stable-isotope stratigraphy

All stable-isotopic analysis were carried on bulk carbonate samples. Previous work has
proven the usefulness of bulk carbonate analysis in fine-grained and homogenous rocks
(Scholle & Arthur 1980; Anderson & Arthur 1983; Weissert 1989). Only micritic lime-
mudstones and wackestones have been sampled, the sampling points being carefully se-
lected in the field and in the laboratory to avoid material containing stylolites and calcite
veins. We sampled the sections at intervals of about one metre or less, when the lithology
permitted. Bulk carbonate samples of the Aalenian-Bathonian samples are composed
mainly of periplatform ooze, while the Callovian-Kimmeridgian interval yields increasing
calcareous nannofossil percentage. In some levels calcareous nannofossils become the
predominant constituent of limestone (Mattioli 1995). The penecontemporaneous down-
slope displacement of periplatform ooze should not have affected the long term fluctua-
tions of the carbon isotope values. Platform-derived ooze reaches mineralogical stability
in the first few metres of burial (Marshall 1992). The early diagenetic products, therefore,
should record average “marine” isotopic signals close to those of the original platform
ooze.

The samples were prepared following the conventional procedure of McCrea (1950).
We analyzed CO; released from a 15 hour reaction between powdered bulk samples and
100% phosphoric acid at 25 °C. A H3PO4—CaCO:s fractionation factor of 1.01025 at 25 °C
(Sharma & Clayton, 1965) was used. The 8!3C and the 880 composition of the released
COz gas was analysed on a Finnigan MAT 251 spectrometer. The results are reported in
the usual per mil d-notation relative to the PDB (Pee Dee Belemnite) international iso-
topic standard. In the isotope laboratory at the University of Lausanne, calibration to
PDB is performed by Carrara marble versus NSB19 standard. Replicate analysis of se-
lected samples showed a reproducibility of 0.05 per mil for §3C and better than 0.1 per
mil for 3'%0.



Jurassic carbon stable-isotope stratigraphy, Umbria

0

Terminilletto section

,.’ xx } x x x
R = "
g i L A
e x“x‘ ll’l}“ * ) u* ‘u:" o )
c x " i af?" x ® > x®
£ 15 L .
w0 ®oax X ¥ x > x
x #% x .'. x
-2 - Flayg - L
25 ) * "
18 2 22 24 26 28 3 32 34 36 38
813C %
Colle Bertone section
-8 e -
=14 - x " %
1.2 S .t )
- = n " = " l- ’
& " x .' x * e
o 1.4 x . " N -
= -
“ 1.6 ) LI
1.8 * " % n-
2]
-2.2 - - - -

821

Fig. 5. 83C versus 8'%0 scatter diagrams of
the Terminilletto section and the Colle Ber-
tone section. Data show no covariance, sug-
gesting that the C-isotopic composition of
the analysed sediments has not been altered
significantly by burial diagenesis.

In both sections, the Aalenian shows a relative minimum of 8*Cppg close to + 2%o
(P 1, 2, Fig. 3, 4). In the early Bajocian, the values of §'*Cppp gradually increase towards
a maximum of about 3.5%.. The increase of values starts in the Laeviuscula ammonite
zone. In the Terminilletto section, the results of the Upper-Middle and Upper Jurassic
intervall shows a gradual decrease of the 8'*Cppg values in the upper part of the lower
Bajocian and a minimum of 2.3%o in the upper Bajocian/lower Bathonian. A small varia-
tion can be discerned in the middle Bathonian, then two distinct peaks around + 3%. fol-
low in the Callovian and in the middle Oxfordian. The minimum between the two peaks
should be near the Callovian/Oxfordian boundary. Small perturbations are present in the
upper Oxfordian and lower Kimmeridgian and a drop towards + 2% follows during the
Kimmeridgian.

380ppp values are scattered (+ 0.5%o), and show no covariance with 8*Cppp
(Fig. 5). The lack of covariance of 8'*Cppg and 8'®Oppg suggests that the C-isotopic com-
position of the analysed sediments has not been altered significantly by burial diagenesis
(Jenkyns & Clayton 1986).
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Fig. 6. 880 versus visible chert percentage
scatter diagram of the Terminilletto section.
Note the rough negative covariance between
the values. For discussion see text.

Fig. 7. 8'3C versus visible chert percentage
scatter diagram of the Terminilletto section.
The values show no covariance indicating
that §'*C-values are not affected by the silica
diagenesis.

The 8'%Oppe curve of the Terminilletto section presents a negative shift at 163 m
(middle Bathonian) with a decrease from ~ —1.6%o to ~ —2.0%.. This change in 8'%0 coin-
cides with a marked lithological change towards more cherty limestones (Calcari Dia-
sprigni Formation) with a sharp increase of visible chert (Fig. 4). Plotted on a §'80-visible
chert % graph, 8'%0 values and percentage of visible chert show a negative covariance

(Fig. 6). This means that 830 values of limestones are more negative in the presence of
abundant chert.

Fig. 8. Correlation of the 8C curve of Terminilletto section with the lithological changes in the basinal sec-
tions. The correlation is based on radiolarians, calcareous nannofossils and ammonites (Bartolini et al. 1995;
INTERRAD Jurassic-Cretaceous Working Group 1995). The numbers to the right of the logs indicate the ra-
diolarian samples. The lower Bajocian carbon positive shift is correlated with the very cherty base of Calcari
Diasprigni in the Valdorbia section and with an increase in visible chert within the Calcari a Posidonia seen in
the Terminilletto and Bosso sections. The Callovian and Oxfordian carbon positive shifts are associated with an
increase in visible chert within the Calcari Diasprigni at Terminilletto and Bosso sections.
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7. 8'3C values and visible chert percentages

If we plot 8'°C values against visible chert percentages for metre-intervals of the Termi-
nilletto section no covariance is seen (Fig. 7). This suggests that 8'*C values are not influ-
enced by the silica diagenesis, although positive fluctuations of 8!3C are accompanied by
a general increase of visible chert (Fig. 8). 8'°C and the visible chert % curves (confi-
dence interval from 90 to 95%, selected regression order of 9) are in phase. The early
Bajocian, the Bathonian, the Callovian and the Oxfordian positive 8'3C shifts are all ac-
companied by positive fluctuations of visible chert %. The actual values of % visible
chert are not comparable between shifts, because they are controlled by sedimentation
processes (e. g. the rate of input of periplatform ooze and platform resediments) rather
than silica productivity alone. Radiolarian biostratigraphy has allowed us to correlate
fluctuations of the carbonate/silica ratio observed at Terminilletto to other sections of the
UMS Basin (Fig. 8). The early Bajocian 8'C peak is related to an increase of visible
chert in the Calcari e Marne a Posidonia of Terminilletto section, which biostratigraphi-
cally correlates with the chert-rich uppermost portion of the Calcari e Marne a Posidonia
of the Bosso section (Baumgartner 1984, 1987a, 1990), and to the very cherty base of the
Calcari Diasprigni Formation of the Valdorbia section (McBride & Folk 1979; Baumgart-
ner 1984, 1987, 1990). The Bajocian/early Bathonian interval produced low 8*C values
around 2.3%.. At Terminilletto this part of the sequence is characterised by more than 40
m of almost chert-free limestones. In basinal sections a recurrence of limestone-rich fa-
cies is observed at Valdorbia in the Calcari Diasprigni Formation. In the Terminilletto
section visible chert increases together with 8!*C values from the middle Bathonian and
reaches peak values in the Callovian-Oxfordian. In basinal sections a sharp increase in
visible chert can be observed within the Calcari Diasprigni. At Bosso section it is roughly
dated as mid-Bathonian/early Callovian and at Valdorbia it is constrained to the middle-
late Bathonian by radiolarian biostratigraphy (Baumgartner 1990; INTERRAD Jurassic
Working Group 1995).

8. Interpretation of oxygen-isotope record

The oxygen-isotope record of Mesozoic sediments is always suspect and is probably influ-
enced by diagenesis as the ratio of oxygen in pore waters to oxygen in carbonate sedi-
ment is high, unlike the situation with carbon isotopes. In addition, burial diagenesis at
elevated temperatures and the influence of meteoric-water can add isotopically light ce-
ment during late diagenesis. The presence of biogenic silica also seems to alter the oxy-
gen-isotope record. Our data from the Terminilletto section (Fig. 6) clearly show a lower-
ing of 8'80-values in the presence of abundant chert. Brennecke (1977) pointed out the
same phenomenon after studying the isotopic composition of Jurassic and Cretaceous
limestones of DSDP site 367, where nodular chert is associated with carbonates depleted
in 180. Lighter 8'30 values in chert-rich carbonates are reported from the Valdorbia and
Fonte Avellana sections (Umbria-Marche) (Hadji 1991), where a positive shift in §'30
coincides with the passage from chert-rich (Calcari Diasprigni) to chert-poor (Scisti ad
Aptici and Maiolica) lithologies.

Lawrence (1973) suggested that the alteration of biogenic silica to chert may be im-
portant in lowering the '30/'0 ratio of the pore waters. According to Brenneke (1977)
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current theories regarding chert formation can not explain the lighter *O/!°O ratio in
carbonates associated with biogenic chert. Biogenic silica ranges in oxygen isotope com-
position from + 2.4%o to + 6.3%0 (Mopper & Garlick 1971; Knauth & Epstein 1975). Mes-
ozoic and Cenozoic deep-sea cherts range in composition from + 0.5%. to + 6.0%0 and mi-
crocrystalline quartz is depleted in %O relative to co-existing opal-CT (Knauth & Epstein
1975; Pisciotto 1981). Thus the transition from opal-CT to quartz or the direct precipita-
tion of quartz tends to enrich pore waters in '*O. Knauth & Epstein (1975) have present-
ed data suggesting that opal-CT forms during shallow burial (less than 100 m in depth).
Opal-CT replaces the calcite matrix, releasing calcium carbonate which reprecipitates in
the surrounding carbonate ooze. Authigenic carbonate formed at this temperature (very
shallow burial) should be relatively heavy in 3'0, even if the pore water was somewhat
depleted in %O due to chert formation.

We speculate that the release of isotopically highly negative water during the transi-
tion from opal-CT to quartz could account for the lower 8'%0 values of the pore water
around the chert. Knauth & Epstein (1975) provided some data to support such a specu-
lation. When they dried an opal-CT sample at 1000 °C, they found a total water loss of
1.2 wt % with a corresponding gain of 0.7%o in 8'*Osmow. This means that the lost water
had an 8O composition of around — 60%.. In order to shift porewater composition
around chert by — 2%o (as observed by Lawrence 1973), we would need to add about 3%
lighter water from opal-CT. This is only possible in the immediate vicinity of chert, since
the opal-CT chert transformation possibly releases only around 3 vol. % of light water
which rapidly becomes diluted by diffusion away from chert bodies.

The observed negative shift of 8'0 may be a primary paleoceanographic signal, re-
cording a change in paleotemperature and/or isotopic composition of sea-water. If the
temperature coefficient of A0 (CaCOs3 - H;0) is ~ 0.2%0 per 1 °C (McCrea 1950), this
change in 880 may account for an increase in temperature of ~ 2 °C. Although the oxy-
gen isotopic values of the studied sediments have a clear diagenetic overprint (see the
scatter trend), general primary trends may still be preserved. Jenkyns et al. (1994) ob-
served a consistent trend in the oxygen-isotope values of various Cretaceous British
Chalk sections and of the more lithified Scaglia Rossa and Scaglia Bianca formations in
the Umbria-Marche Apennines. The authors concluded that this trend may reflect real
variation in palaeotemperature. In any case, further analyses of more sections of the
same age and from different depositional environments are needed to find out if the ob-
served negative shift is diagenetic or paleoenvironmental in origin.

9. Correlation of Middle-Late Jurassic carbon isotope stratigraphy

In Figure 9, we present a tentative correlation among Jurassic carbon-isotopic stratigra-
phies. The correlation of Middle-Upper Jurassic carbon-isotope events is an important
step towards understanding their origin. The early Bajocian carbon isotope excursion ob-
served in the UMS Basin correlates with an analogous excursion reported from the
Digne area, in the Northern Tethyan margin (Corbin 1994). The Chaudon-Norante sec-
tion studied by Corbin (1994) yielded an exceptional Bajocian ammonite record (Pavia
1973, 1983). Although the absolute 8'3C values of the Chaudon-Norante section are off-
set by about 1%. with respect to the UMS Basin pelagic limestones (a fact that presum-
ably relates to different diagenesis), an analogous positive excursion of about 1.3%0 can
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be observed. The 8"3C values increase in the lower part of the Laeviuscula Zone and
reach maximum values in the upper part of the Sauzei Zone. Corbin’s 8'3C curve repre-
sents a composite peak, where the values decrease in the lower part of the Humphriesia-
num Zone and increase again in the middle to upper part of the same zone. This pattern
was not observed in the UMS Basin sections.

The Callovian positive excursion observed at Terminilletto section can be correlated
to peaks of 8'3Croc %o picked out in the Peterborough and Stewartby Members of the
British Oxford Clay formation (Kenig et al. 1994). The more evident 8"*Croc peaks are
in the Calloviense Zone (lower Callovian) and in the Jason Zone (middle Callovian).
Carbon-isotope stratigraphy from condensed pelagic section of Camposilvano (north Ita-
ly) revealed a positive 8'3C in the Lower-Middle Callovian interval (Jenkyns, in press).

Coralliferous mid-Oxfordian facies from northern Poland show &'3C values in the
range 2.5 to 3.5%0 (Gruszczynski et al. 1990). Hoffman et al. (1991) found positive excur-
sions in the Cordatum Zone and Transversarium Zone from brachiopod calcite taken
from Oxfordian sponge facies in central Poland. Carbon-isotope data from brachiopods
from Late Jurassic carbonates in eastern Spain show 8'3C values that increase through
the mid Oxfordian (Pisera et al. 1992). Bill et al. (1995) found a positive 2-2.3%. excur-
sion of 8°C in the Transversarium Zone (middle Oxfordian) from the platform carbo-
nate echinoderm fragments of the Liesberg Beds Member of the Swiss Jura. A §'3C posi-
tive excursion in the transversarium Zone was documented by Jenkyns (in press) in the
pelagic limestones from the sections of Chabrieres (southern France), and Camposilvano
and Roveré Veronese (northern Italy). A similar Upper Jurassic 8'3C trend has recently
been reported by Weissert and Mohr (in press). The authors studied carbon and oxygen
isotopic compositions from Northern Tethyan shallow-shelf pelagic sediments of the
Schilt Formation (lower to middle Oxfordian) and of the Quinten Formation (upper Ox-
fordian to upper Tithonian) of the Helvetic nappes of eastern Switzerland. Their data
show a change in the 8'3C of + 1%o in the middle-late Oxfordian, with a minor positive
shift in the late Kimmeridgian (~ 0.5%0). A 8'3C shift of — 1.5%. is recognised between
early and late Tithonian corresponding to a comparable decrease in carbonate carbon-
isotope records established in the North Atlantic (Brennecke 1977; Létolle et al. 1978), in
the Southern Alps (Weissert & Channell 1989) and in the Umbria-Marche Basin (Hadji
1991). The positive 8'3C events of the early Bajocian and middle Oxfordian are recorded
in both Southern and Northern Tethyan margin sediments, and the middle Oxfordian
event has been found in pelagic and carbonate-platform sediments. Further analysis is re-
quired to evaluate the other events.

10. Positive 5'3C events and the sedimentary record

Positive shifts in carbon-isotope values in biogenic carbonate are conventionally inter-
preted in terms of local or regional burial patterns of organic carbon. The Early Jurassic

Fig. 9. Tentative correlation between the carbon isotope events described in this paper (grey shading), results
published previously, and the sea-level curves of Hallam (1988) and Haq et al. (1987). Sources: (1) Jenkyns
(1988, 1991); (2) Corbin (1944); (3) and (4) this paper; (5) Bill et al. (1995); (6) Haidji (1991); (7) Brenneke
(1977); (8) Weissert & Channell (1989); (9) Jenkyns (in press). Timescale after Odin (1994) informal stage sub-
divisions after Gradstein et al. (1994).
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Toarcian positive anomaly is clearly related to the deposition of widespread and short
ranging black-shales (Fig. 10). For this reason, Jenkyns (1988, 1991) named the early
Toarcian event as an “Oceanic Anoxic Event”. On the other hand, individual Middle-
Late Jurassic carbon isotope shifts cannot be easily related to individual black-shale
events. Other positive carbon-isotope excursions that are not accompanied by an obvious
“global” marine black-shale record are the Paleocene (Shackleton 1986), the Late Valan-
ginian (Lini et al. 1992) and the mid-Cenomanian (Jenkyns et al. 1994). Storage of terres-
trial organic carbon may have to be considered in these cases (Shackleton 1987). Exam-
ples of Bajocian black-shales are known in Southern Pieniny Klippen Belt (Ogg et al.
1983) and in Southern Argentina (Los Molles Formation ranging from Pliensbachian to
lower Bajocian, Jenkyns 1988). Lower-middle Callovian black shales occur in the Lower-
Oxford Clay outcropping in Central-Southern England (Hallam 1987a; Kenig et al.
1994). In the Svalbard, Callovian-Tithonian black-shales are present (Steel & Worsley
1984). In the Central Graben of the North Sea, Callovian hydrocarbons are characteristic
of the Pentland Formation (Brown 1989). Ulmishek & Klemme (1990) dated up to 29%
of available fossil fuel reserves as Late Jurassic in age. Near Staffin Bay, on the Isle of
Skye (Scotland), the mid Oxfordian locally shows a change in facies from sandy siltstones
(Digg Siltstone) to bituminous shales and mudstone (Flodigarry Shale) within the Trans-
versarium Zone (Jenkyns, in press). Jenkyns (in press) suggested the correlation of the
black locally bituminous clay unit in the central Russian platform, (attributed to the A/-
ternoides Zone of the upper Oxfordian) with, at least part of, the Transversarium Zone
of the middle Oxfordian. The black shales of the Nupra Formation (Central Nepal) has
yielded a rich ammonite fauna of Transversarium-Zone age (Gradstein et al. 1991; Ogg et
al. 1992). Stratigraphically wide-ranging black shales, including Oxfordian ones, are doc-
umented in Northern Alaska (Upper Kingak Formation, Oxfordian-Kimmeridgian,
Embry 1989), in the North American Gulf Coast (Smackover Formation, Oxfordian;
Claypool & Mancini 1989, Fails 1990); in the Svedrup basin (Ringnes Formation, Oxfor-
dian-?, Embry 1989), in the Western Barents Sea (Hekkingen Formation, Oxfordian-
Berriasian, Dalland et al. 1988), in the Haltenbanken (Norway, Spekk Formation, Oxfor-
dian-Berriasian, Dalland et al. 1988), in the Eastern Rift of the Greenland (Hareelv and
Bjernberg Formations, Oxfordian-?, Surlyk 1978), in the North Sea (Brown 1989; Vollset
& Dore 1984), in Siberian Basin (Oxfordian and Volgian/Tithonian, Nesterov et al. 1990)
and in the Arabian Shield (Oxfordian-Kimmeridgian, Alsharhan 1993) .

A more detailed survey on the stratigraphic position of major organic carbon-rich de-
posits shows major peaks in the Late Oxfordian, the Kimmeridgian and in the Early Ti-
thonian (Hallam, 1987; Ulmishek & Klemme 1990; Doré 1991; Weissert & Mohr, in
press), but the 8'3C curve presents only modest positive excursions. Some other mecha-
nisms must have affected the mass balance of carbon reservoirs and counterbalanced the
high organic-matter burial during the Late Jurassic.

Fig. 10. Carbon-isotope events (grey shading) compared to occurrences of organic-rich sediments. Facies and
stratigraphic ranges are taken from the indicated literature. The lower Toarcian positive anomaly is clearly re-
lated to the deposition of widespread and short ranging black-shales (early Toarcian “Oceanic Anoxic Event”,
Jenkyns 1988, 1991). In contrast, Middle and Upper Jurassic carbon-isotope events are not easily related to
peak occurrences of organic-rich sediments.
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The Middle-Late Jurassic was a time of widespread accumulation of radiolarites in
Tethys and elsewhere. Until recently, radiolarites were considered to be-typically of top
Middle and early Late Jurassic age (Jenkyns & Winterer 1982), but their age ranges in
fact from Late Triassic to middle Cretaceous (Baumgartner 1987; De Wever 1989; Gori-
can 1994). The onset of radiolarites over shallow-water carbonates or deeper-water car-
bonate resediments is highly diachronous and may extend from Late Triassic to Late Ju-
rassic in age (Jenkyns and Winterer 1982; Baumgartner 1984, 1987, 1990; De Wever
1989). Detailed biostratigraphic work in many areas (INTERRAD Jurassic-Cretaceous
Working Group 1995) (Fig. 11) unravels three privileged times of onset of radiolarite
sedimentation: the late early Toarcian, the early-middle Bajocian and the Callovian-Ox-
fordian. These periods correspond to times of positive 8'°C shifts.

11. Siliceous versus carbonate sedimentation

A drastic reduction of sedimentation rates on the Lazio-Abruzzi (LA) Platform that be-
gan in the middle-late Toarcian, but essentially characterised the Middle and early Late
Jurassic, was documented by Colacicchi & Bigozzi (in press). Sedimentation rates
dropped from 5-7 cm / 1000 y to 1.3-1.5 cm / 1000 y (Fig. 12). The authors suggested that
this drop of carbonate productivity is a general phenomenon, observed also in other are-
as. Despite the drop in carbonate production, the LA Platform did not drown, but contin-
ued to accumulate slowly in the photic zone. This is ascribed to very low subsidence rates
(Colacicchi & Bigozzi, in press).

During the Middle and early Late Jurassic, crinoid-bioclast resediments were deposit-
ed in the most proximal marginal areas (e.g. Sella Dei Due Corni Section, Gran Sasso).
According to Follmi et al. (1994) the dominance of crinoid-bryozoan carbonate produc-
tion indicates deteriorated platform conditions due to eutrophication. In more distal mar-
ginal settings (e.g. Terminilletto section) abundant resedimentation of siliceous sponge
spicules reflects a crisis of carbonate production and meso-eutrophic sea water conditions
on the platform edge (Kitchell 1983; Hallock et al. 1988). In the internal part of the plat-
form cyclothemic sediments, characterised by an oligotypic community with dominant
green algae, accumulated (Bigozzi 1993; Colacicchi & Bigozzi, in press).

During the late Oxfordian/early Tithonian, carbonate productivity recovered on the
LA platform. Coral-chetetid patch reefs grew in the marginal areas and established a
progradation tendency (Colacicchi & Bigozzi, in press). Reef growth was a widespread
phenomenon during this time, both on Southern and Northern Tethyan margins (Wilson
1975; Beauvais 1980; Gygi 1986; Fliigel & Fliigel-Kahler 1992; Leinfelder et al. 1993), as
well as in the Arabian Shield and in Central Asia (Nalivkin 1973; Wilson 1975). During
the Kimmeridgian/early Tithonian, colonies of thamnastreid corals became common also
on highs of Umbria-Marche Basin (Cecca et al. 1981; Pallini & Schiavinotto 1981).

The drop in platform sedimentation rate during the Middle and early Late Jurassic
must correspond to a crisis of carbonate productivity and it is reflected in the basin as a
reduction of periplatform ooze input. Our observations in the proximal Terminilletto sec-
tion allow us to date the onset and the peak of this crisis in carbonate productivity. Dur-
ing the Aalenian/early Bajocian the periplatform ooze input to the basin was substantial
(Fig. 12). By middle Bathonian time a sharp decrease of periplatform ooze input is evi-
denced by much more siliceous sediments. Of course, basinal sedimentation rates are al-
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Fig. 12. Carbon-isotope events (grey shading) compared to Jurassic sedimentation rates on the Lazio-Abruzzi
Platform (PLA) and some thick Umbria-Marche-Sabina basinal sections. PLA data are after Colacicchi & Big-
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rassic data of Valdorbia and Bosso sections are after Baumgartner (1990) and INTERRAD Jurassic-Creta-
ceous Working Group (1995).
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so a function of the distance from the platform, paleotopography and local synsedimen-
tary tectonics.

The onset of radiolarites took place in the deepest part of the UMS basin during the
early Bajocian (e.g. Valdorbia section) or the middle-late Bathonian (e.g. Bosso, Termi-
nilletto sections), depending on the paleotopography and the paleogeographic position
with respect to the platform. Since the middle-late Oxfordian basinal biosiliceous sedi-
ments became gradually diluted by carbonate, that was supplied mainly by planktonic
nannofossils.

Besides nutrient availability, the presence/absence of radiolarite sedimentation was
controlled by dilution by other sediments, such as clays, periplatform ooze or calcareous
planktonic ooze (Baumgartner 1987). During the Paleozoic-Jurassic period, however, ra-
diolarians were the only major producers of zooplanktonic skeletal material. Any medi-
um-to high-fertility zone in the Jurassic ocean may have resulted in sufficient radiolarian
productivity and preservation to produce radiolarites (Caulet 1974; Renz 1976; Kennett
1982; Baumgartner 1987, 1990; Takahashi 1988; De Wever et al. 1993). Even low-fertility
areas may have accumulated siliceous shales at very low rates containing radiolarians as
the only fossils (Murchey 1984; Baumgartner 1993; Holdsworth & Nell 1992). In mar-
ginal basins such as the Jurassic UMS-basin and most other Western Tethyan basins, car-
bonate and terrigenous input from the margins largely determined basinal facies evolu-
tion. Meso-eutrophic sea-water conditions caused the carbonate productivity crisis and
the reduction of periplatform ooze input into the basins. At the same time, meso-eu-
trophic sea-water conditions favoured high radiolarian productivity. The combined effect
of these two tendencies is a change to radiolarite accumulation in the basin.

Radiolarite facies attained a maximum areal extent during the early-middle Ox-
fordian and encroached onto many submerged platforms and pelagic paleohighs (Baum-
gartner 1984, 1987, 1990). Soon after, coral buildups became common on Southern Te-
thyan platforms. The apparent coexistence of radiolarites in basins and coral buildups on
platforms is incompatible with a fertility-controlled carbonate/silica sedimentation pat-
tern as developed above. In the Budva Basin (Gorican 1994) pure radiolarites, were de-
posited during the Oxfordian-Kimmeridgian, while reef buildups developed on the adja-
cent High Karst margin. These buildups must have prevented periplatform ooze and cal-
citurbidites from entering the basin (bypass situation, Gorican 1994). It is interesting to
note that radiolarite accumulation rates were minimal at the same time (Gorican 1994).
A similar minimum can be observed in the UMS basin (Baumgartner 1990). At least the
late Oxfordian-Kimmeridgian radiolarites of the Budva and other basins could represent
slow accumulations in an overall low to medium fertility area, where reefs developed and
silica preservation at the bottom was enhanced by silica-rich compaction waters from
underlying radiolarites. On the other hand, the apparent coexistence of reefs and ra-
diolarites may result from poor dating of the reefs. In the Swiss Jura, reef buildups (St.
Ursanne Formation) rapidly prograde over organic-rich shales (Terrain a Chailles) with-
in the Transversarium Zone (mid Oxfordian) (Gygi 1995; Bill et al. 1995). It is likely that
the widest expansion of radiolarites coincides with the observed mid Oxfordian §'3C
peak and precedes the late-middle Oxfordian 8!3C decline.
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12. Carbon burial in carbonates and the carbon isotope record

The Early-Middle Jurassic carbonate production was essentially relegated to the carbo-
nate platforms, with only a small part to calcareous plankton. Nannofacies studies in
Lower-Middle Jurassic pelagic limestones in the UMS Basin (Farinacci 1968; Kilin &
Bernoulli 1984; Bombardiere 1993; Mattioli 1995) suggest that most of the calcareous
portion can be ascribed to periplatform ooze and only a minor part to nannofossils. Dur-
ing Jurassic the isotopic composition of dissolved inorganic carbon in sea-water was
probably controlled by the organic- matter burial rate, as well as by the productivity and
health state of carbonate platforms (Schidlowski 1987; Weissert and Mohr, in press;
Baumgartner et al. 1995). In times of global high platform carbonate productivity, the
carbon cycle was dominated by carbon burial in carbonates at §'3C values close to zero.
This situation tended to stabilise the isotope record and the burial of moderate amounts
of negative organic carbon, did not result in evident shift of the isotope curve. On the
other hand, during times of crisis in carbonate-platform productivity a small increase of
Corg burial must have resulted in a positive 8'*C shift. During part of Middle Jurassic, car-
bonate platforms suffered from eutrophication and a global carbonate productivity crisis
can be postulated. Budyko et al. (1987) calculated that the ratio Ccarb:Corg Was of 5:1 dur-
ing the Early Jurassic and changed to 3:1 during the Middle Jurassic. During these times
even a moderate increase of organic carbon burial rate became quantitatively important
and resulted in positive shifts of the isotope curve. Hence, the scarcity of black-shale
records coeval with the Middle Jurassic carbon isotope shifts may turn into a positive ar-
gument for the important control of carbonate burial on the Jurassic global isotopic com-
position of sea water. During the Late Jurassic, organic rich sediments accumulated in
many epicontinental basins of North-Eastern Europe, while the productivity of carbonate
platforms recovered both on Southern and Northern Tethyan margins. As a result, the
Late Jurassic represents a time of high Corg burial rate in basins at middle to high lati-
tudes and a re-established growth of carbonate platforms at low latitudes. Budyko et al.
(1987) outlined the Late Jurassic as a period of efficient carbonate accumulation with a
ratio of Cearb: Corg Of 6: 1. This explains why late Jurassic 8'°C shifts are modest, despite a
well documented black-shale deposition. According to Weissert and Mohr (in press)
these 8'3C values could reflect a new stabilised mode of carbon cycling with both elevat-
ed Corg and Cearb burial rates during the Late Oxfordian/Early Tithonian.

13. 83C values versus sea-level variations and hydrothermal events

The observed 8'3C fluctuations can be correlated with global sea-level curves (Hagq et al.
1987; Hallam 1988; Fig. 9). The link between high relative sea-level and positive carbon
isotope anomalies has been noted in a large number of studies (Tappan 1968; Berger
1977; Fisher & Arthur 1977; Arthur 1982; Broecker 1982; Woodruff & Savin 1985; Jen-
kyns 1985, 1988; Myers & Wignall 1987; Magaritz & Holser 1990; Weissert & Lini 1991;
Hallam 1992; Follmi et al. 1994; Weissert & Mohr in press; Jenkyns in press). The Juras-
sic long-term sea level changes were probably induced, in large part, by the variations of
spreading rates and mid-ocean ridge volumes.

Jones et al. (1994) produced a detailed curve of strontium isotopic variations in Juras-
sic and Cretaceous sea water. In their view, the Jurassic 8’Sr/%Sr curve should be more
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“sensitive” to the hydrothermal events than weathering, and the downward excursions of
87Sr/%Sr can be best interpreted in terms of increased hydrothermal activity. The 87Sr/8Sr
ratio decreases from the early Bajocian, correlative with the early Bajocian positive car-
bon isotope shift. Evident minima of the ¥’Sr/*Sr ratio have been identified in the early
Callovian and early Oxfordian and seem to precede the positive carbon-isotope shifts ob-
served in this study.

Hydrothermal activity due to extensive seafloor spreading and/or rifting phases cer-
tainly had their impact on Jurassic climate. The history of atmospheric CO> levels and of
the global carbon cycle must be mirrored in the marine carbonate carbon isotope curve (-
Scholle & Arthur 1980): positive 8'3C excursions may be regarded as response signals to
fluctuations of global climate linked to atmospheric carbon dioxide concentrations (Ar-
thur et al. 1985; Weissert 1989; Hollander & McKenzie 1991; Weissert & Lini 1991; Weis-
sert & Mohr, in press).

During the Bajocian, Callovian and Oxfordian, hydrothermal events may have pro-
voked high atmospheric CO; levels and an accelerated carbon cycling (Fig. 13): warmer-
humid climate (greenhouse effect) led to an intensified global water cycling with in-
creased continental weathering and runoff and higher input of nutrients (Weissert 1989).
Consequently, the biosphere responded to these high energy climates with a hyper-pro-
ductivity (“biological pumping”, Volk & Hoffert 1985) that tended to remove the exces-
sive CO; from atmosphere and bury it in the sedimentary reservoir (Weissert & Lini
1991; Weissert & Mohr in press).

14. Conclusions

The presently available data suggest that rifting and/or oceanic spreading, relative sea-
level changes, positive carbon-isotope shifts, carbonate-platform crises and radiolarite
onset, may be directly or indirectly linked. Biosiliceous sediments, chiefly radiolarites,
are common in oceanic areas throughout the Late Paleozoic and the Mesozoic (Maliva et
al. 1989). They become more episodic during the Cretaceous-Tertiary as a result of more
efficient calcareous plankton production and probably fundamental differences in silica
cycling (Siever 1957; Wollast 1974; Wollast & MacKenzie 1983; Maliva et al. 1989; De
Master et al. 1991; Takahashi 1991). Radiolarites and siliceous shales certainly constitute
the bulk of pre-Cretaceous oceanic sediments in the Circumpacific and Tethyan realms.
Silica accumulation rates, however, may vary by an order of magnitude, as revealed by
refined radiolarian biostratigraphy (Baumgartner 1984; Baumgartner 1987; INTERRAD
Jurassic-Cretaceous Working Group 1995). Local, regional and global episodes of high
silica burial can be determined and related to local, regional or global paleoceanographic
and/or paleoclimatic situations. During the Jurassic, episodes of expanding biosiliceous
sedimentation are clearly related to times of elevated §13C-values measured in coeval
carbonates.

Hydrothermal events related to extensive rifting and/or accelerated oceanic spreading
must be the endogenic driving force that created a perturbation of the exogenic system
reflected by the positive 8'*C shifts and biosiliceous episodes (Fig. 13). Global episodes
of high silica burial necessitate high silica input into the ocean system by continental
weathering and/or hydrothermal input. The silica and the carbon cycles were linked dur-
ing the Middle-Late Jurassic. Times of increased hydrothermal input of CO; lead to high-
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Fig. 13. Flow chart illustrating the links between carbon and silica cycles during the Middle-Late Jurassic, ac-
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ditions like those prior to the endogenic perturbation. The time axis is from top to bottom without scale. Fur-
ther explanations in the text (carbon cycle modified after F6llmi et al. 1994).

er atmospheric CO; concentrations (greenhouse climate). Intensified continental weath-
ering, which occurred during times of warm-humid climate, caused highest nutrient mo-
bilisation, resulting in increased primary bioproductivity. The increased primary biopro-
ductivity may have resulted both in high organic carbon burial (recorded in coeval carbo-
nates by elevated 8'*C-values) and in high biosiliceous productivity and preservation.
The preservation after deposition of biosiliceous sediments was also enhanced by the
high input of silica into the ocean system by continental weathering and hydrothermal ac-
tivity (Ellis & Baumgartner 1995). The increased nutrient and silica input resulted, there-
fore, in high organic carbon and high silica burial. In a steady-state ocean an increase in
overall silica input must result in an increase of overall silica burial. The areas and the
rates of silica burial will, however, be controlled by local, regional and global factors,
such as basin configuration and paleocirculation patterns. We stress that high silica burial
is the combined result of biological silica fixation, silica input to the water column and
preservation on the seafloor and during diagenesis. Increased productivity tends to in-
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crease silica preservation on the seafloor, if the recycling within the ocean is kept con-
stant. Alternatively, increased overall silica input may have enhanced silica preservation
on the seafloor by reducing the oceanic recycling without necessary changes in productiv-
ity.

Efficient burial of organic carbon and silica may occur in similar overall paleoceano-
graphic conditions. Sluggish deep-water circulation and density stratification may have
favoured both bottom-water anoxia and saturation in dissolved silica, leading to low C
and Si recycling (Siever 1957, 1962; Lewin 1961; Kennet 1982; Koutsoukos & Hart 1990).

In marginal seas surrounded by carbonate platforms, like the Mesozoic Mediterrane-
an Tethys, radiolarite sedimentation competed with the input of periplatform ooze and
turbidites (Baumgartner 1987, 1990). Highly siliceous sedimentation took place whenever
the production of platform carbonate was subdued or ceased, either by platform drown-
ing or emergence, or by eutrophication. Evidences for platform eutrophication are the
dominance of crinoid-bryozoan over coral-ooid facies on platform and in resediments,
and the abundant sponge spicules in all marginal siliceous sediments. Eutrophication acts
both for plankton and benthos in favour of silica secreting organisms and against photo-
synthetic carbonate secreting communities (Morris 1980; Kennett 1982; Kitchell 1983;
Hallock et al. 1988).

Both the Bajocian and the Callovian-Oxfordian are times of peak expansion of sili-
ceous sedimentation in Tethys and elsewhere that can be reasonably explained by a sce-
nario of general eutrophication in a greenhouse climate with concomitant 8C-shifts. Ju-
rassic radiolarites are therefore a “paleoclimatic phenomena” deposited in suitable areas
sheltered from terrestrial or periplatform input, possibly related to intensified green-
house episodes.
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Plate 1. Detailed log of the Colle Bertone section including age, lithology, sample levels, biostratigraphic data, visible chert percentages and stable-isotope stratigraphy.
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Plate 2. Detailed log of the Terminilletto section including age, lithology, sample levels, biostratigraphic data, visible chert and stable-isot i
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