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646 I. Jarvis et al.

Mineralogy

Phosphorite is defined as a marine sedimentary rock with >18% P2O5 (Slansky 1979,

1989), so by definition, phosphate minerals are its major constituents. In practice, franco-

lite, a carbonate-fluorapatite with >1% F and appreciable amounts of CO2 (Sandell et al.

1939; McConnell 1973), is essentially the only phosphate mineral occurring in phosphorites

unaltered by metamorphism or weathering.
Francolites are structurally and chemically complex (Grüner & McConnell 1937;

Borneman-Starinkevich & Belov 1940, 1953; Altschuler et al. 1952; Smith & Lehr 1966;

Lehr et al. 1968; McClellan & Lehr 1969; McArthur 1978a, 1985, 1990; McClellan 1980;

Kolodny 1981; Nathan 1984; McClellan & Van Kauwenbergh 1990). The group may be

represented by the general formula: Caio_a-bNaaMgb(P04)6-x(C03)x-y z(C03 ¦ F)y(S04)zF2.
However, other substitutions (Tab. 1) occur in all of the apatite sites (the two Ca sites,
the PO4 site and the F site). Not all substituents have the same valency as the original ion

(e.g. Na+ substituting for Ca2+; CO32- or SO42" for PO43"), and coupled substitutions (e.g.

NaC03~ for CaP04~ or CO3 • F3_ for PO43') are generally proposed to maintain charge
balance. Calcium deficiency has also been suggested (Gulbrandsen et al. 1966; Bonel et
al. 1973) as an additional means of accomplishing the balance of charge. The substitution
of CO32" in apatites and the replacement of F by hydroxyl ions has been discussed by
Vignoles et al. (1982). McArthur (1990) speculated that francolite may form with a

Na/OH ratio of 1, with V2 of the OH being replaced by H2O, and suggested that in un-
weathered francolites half of the F~ atoms in the structural site are replaced by OH".
High F contents are then caused by different degrees of coupled substitution of CO3 • F3"

for PO43-. However, such a high level of hydroxyl substitution has yet to be proven
analytically. Finally, there are other substitutions which do not change the charge balance,
such as Mg2+ and Sr2+ for Ca2+, which nevertheless have considerable crystallographic
and geochemical importance.

Minerals such as quartz (e.g. North Carolina, Florida phosphorites of the SE United
States) and calcite (Tethyan deposits of North Africa) are major components in most
phosphorite deposits. Silica also commonly occurs as opal-CT and chalcedony, forming

Tab. 1. Possible substitutions in the francolite structure

Constituent ion Substituting ion

Ca2+ Na+, K+, Ag+
Mg2+, Sr2*, Ba2+, Cd2+, Mn2+, Zn2+

Bi3+, Sc3+, Y3+, REE3+
U4+

PO43- CO32-, SO42-, Cr042-
CO3 • F3", CO3 • OH3-, ASO43-, VO43-
SÌO44-

F- OH", CL, Br-
o2-

REE rare-earth elements; compositionally significant substitutions are indicated in bold
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porcelanites and cherts which together with organic matter and phosphorite, constitute
the so-called P-C-Si trilogy (Bentor 1980). Many other phases occur in phosphorites, notably

dolomite, glauconite, sulphides (pyrite), sulphates (gypsum), clinoptilolite, clay
minerals (illite, kaolinite, palygorskite, smectites) and organic matter. Clearly, the proportions,

distributions, grain sizes and textural characteristics of such accessory phases have

important implications for the extraction and beneficiation of a deposit.

Chemistry

Francolite chemistry may be affected by a number of factors, including: (1) kinetic effects
due to the rate of formation; (2) thermodynamic factors; (3) precipitation from solutions
of different composition due to secular variation in seawater or evolving porewater
chemistry; (4) mechanism of formation, such as differences resulting from precipitation
directly from solution or via dissolution and replacement of a pre-existing mineral (most
commonly calcite), or bacterially mediated versus 'inorganic' precipitation; (5)
post-precipitation burial diagenetic or metamorphic alteration; (6) weathering. The relative
importance of these factors is still not well-constrained, but their significance will become

apparent in the ensuing discussion.
Over the last decade, new information concerning the geochemical processes which

lead to francolite precipitation and the formation of phosphorites has been derived from
three main sources: (1) pore-water and solid-phase geochemical studies of sediments
from modern phosphogenic areas, particularly the Mexican, Peru and East Australian
shelves (Froelich et al. 1983; Jahnke et al. 1983; Glenn et al. 1988, 1994a; Van Cappellen
& Berner 1988; Glenn 1990a; Heggie et al. 1990; O'Brien et al. 1990); (2) oxygen, carbon
and sulphur stable-isotope studies of modern and ancient phosphorites (see Kolodny &
Luz 1992a for a recent review); (3) geochemical and mineralogical data, and modelling of
inorganic and bacterially-mediated apatite precipitation under experimental conditions
(Lucas & Prévôt 1981, 1984, 1985; Jahnke 1984; Prévôt & Lucas 1986; Van Cappellen &
Berner 1988,1991; Prévôt et al. 1989).

Major elements

The major-element geochemistry of unaltered francolites display surprisingly little variation;

unweathered Cenozoic francolites (McArthur 1978a, 1980, 1985, pers. comm. 1994)
contain 32% P2O5, 52% CaO, 4% F, and typically include (%): 1.2 ± 0.2 Na; 0.25 ± 0.02 Sr;
0.36 ± 0.03 Mg; 6.3 ± 0.3 C02; 2.7 ± 0.3 S04. In general, the level of substitution shown
by the mineral decreases progressively with increasing age, burial diagenesis and/or
weathering, which promote a transition towards unsubstituted fluorapatite
[Caio(P04)óF2] compositions. With the onset of greenschist facies metamorphism,
hydroxyfluorapatites may develop (Da Rocha Araujo et al. 1992; Girard et al. 1993).
Subsequently, under extreme weathering conditions, Fe- and Al-phosphate minerals such

as crandallite, millisite, wavellite and strengite commonly form (Zanin 1968; Altschuler
1973; Lucas et al. 1980; Schwab & Oliveira 1981; Flicoteaux 1982; Flicoteaux & Lucas
1984; Bonnot-Courtois & Flicoteaux 1989).

The major-element chemistry of phosphorites reflects both the composition of franco-
lite and that of accessory minerals. Consequently, SÌO2 for example, is highest in quartz-
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