Zeitschrift:	Eclogae Geologicae Helvetiae
Herausgeber:	Schweizerische Geologische Gesellschaft
Band:	85 (1992)
Heft:	3: Symposium on Swiss Molasse Basin
Artikel:	Correlative chart of the European Oligocene and Miocene : application to the Swiss Molasse Basin
Autor:	Berger, Jean-Pierre
DOI:	https://doi.org/10.5169/seals-167022

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 20.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Correlative chart of the European Oligocene and Miocene: Application to the Swiss Molasse Basin

By JEAN-PIERRE BERGER¹)

ABSTRACT

Different correlative charts recently published are compared and discussed. Their graphical representation allows a rapid identification of the discrepancies between authors. Furthermore, the different Molasse units (UMM, USM, OMM, OSM) are correlated using this chart, as a synthesis of the biostratigraphic and chronostratigraphic data actually known.

Lastly, a critical analysis of the principal biozonations used in the Oligocene and Miocene is proposed.

RÉSUMÉ

Différentes chartes de corrélations récemment publiées sont comparées et analysées. Elles sont présentées sous forme d'un grand tableau permettant de visualiser graphiquement les divergences essentielles d'un auteur à l'autre. De plus, ce tableau permet, parmi ses applications possibles, le calage des différentes unités de la Molasse (UMM, USM, OMM, OSM) en corrélant les données biostratigraphiques et chronostratigraphiques connues.

Enfin, une analyse critique des principales biozonations généralement utilisées dans l'Oligocène et le Miocène, est proposée.

ZUSAMMENFASSUNG

Verschiedene kürzlich publizierte Korrelationstafeln werden verglichen und analysiert. Sie sind in Form einer grossen Tafel dargestellt, welche die Unterschiede von einem Autor zum anderen sichtbar macht. Des weiteren erlaubt diese Tafel, die verschiedenen Einheiten der Molasse (UMM, USM, OMM, OSM) festzulegen, indem die bekannten biostratigraphischen und chronostratigraphischen Daten korreliert werden.

Zuletzt wird eine kritische Analyse der wichtigsten Biozonierungen vorgeschlagen, die im Oligozän und Miozän gebraucht werden.

1. Introduction

A good appreciation of the time problem is absolutely necessary to present any synthesis about a basin, before interpreting geological data in terms of paleogeography or geodynamics.

Unfortunately, most geologists are discouraged by the extreme specialization of biostratigraphical studies (problems of paleontological nomenclature, definition of zones, unclear correlations, lack of consensus). As a result, they don't integrate the advances in biostratigraphy into their reconstructions or models.

¹) Institut de Géologie, Pérolles, CH-1700 Fribourg

The aim of this paper is to describe advantages and disadvantages of the principal biostratigraphic zonations commonly used in the Molasse Basin (nannofossils, planktonic foraminifera, pectinids, charophytes, mammals, palynomorphs) and to describe their calibration with magnetostratigraphical and geochronological data. Sequence Stratigraphy is not discussed here because no studies have yet been published in the Swiss Molasse Basin.

Moreover, I present a correlation table for the European Oligocene and Miocene, providing the necessary informations to compare the Swiss Molasse Basin with other Tertiary basins in terms of biostratigraphy and geochronology. A first version of this chart has been shown as poster at the IXth Congress Regional Commitee on Mediterranean Neogene Stratigraphy (R.C.M.N.S.) in Barcelona (see Berger et al. 1990).

2. The Correlative Chart: Method of Construction

During the last decades, different stratigraphic charts have been elaborated on by several authors from different schools and countries. The latest and most important ones are, for example, those of Berggren et al. 1985, Barron et al. 1985, Magne et al. 1987, Haq et al. 1987, Harland et al. 1989 and Steininger et al. 1990. The purpose here is not to discuss or criticize these papers, but to compare them and point out some differences. This comparison shows some very important discrepancies between the interpretations of biozone- or stage-boundaries, and their consequences for correlations and paleogeographic studies.

The principal differences may be due to the following reasons:

- 1. The boundaries between biozones may not be synchronous (see for example Dowsett 1989).
- 2. The stratigraphical position of the geological stage boundaries varies according to the different authors.
- 3. The "absolute" ages are theoretically based on radiochronology but are, in actual fact, often a simple extrapolation dependant on paleomagnetism (see Odin 1989).
- 4. The precision of radiochronologic measures may be wanting.
- 5. Taxonomic problems (difficulty or divergence in the determination of fossil markers) could explain some differences in the definition of zonal boundaries.
- 6. Endemism, provincialism, migration and reworking problems could be responsible for differences in the interpretation of boundaries.
- 7. Difficulty of correlation could be due to the rarity of direct correlation between marine and continental biozonations.

As shown in Fig. 1, units and limits plotted on this chart are taken from the publications listed at top of each column.

3. Discussion about the different columns of the Chart

I present here a detailed discussion of the data presented in the correlative chart. Each chapter corresponds to a column. The authors and publications listed in Table 1 are also mentionned at the top of each column of the chart. (Plate 2)

Fig. 1. Construction method of the correlative chart. We reported the data published by the different authors, even directly from numerical data (example: Haq et al. 1987), or indirectly recalculated after the published charts (example Berggren et al. 1985).

3.1. Magnetostratigraphy (Table 2)

Cavelier & Pomerol 1986 are not considered here because of the graphical difficulty of correlating their limits with numerical data.

The data from Harland et al. 1989 (Fig. 7.3) are not reported here. Concerning the Miocene, they are practically identical with those of Berggren et al. 1985. For the Paleogene, they are 0.5 to 1 million year younger than those proposed by Berggren et al. 1985.

3.2. Epoch

- Eocene-Oligocene Boundary
 - a) Age of 36,0 Ma given by the authors.
 - b) No ages.
 - c) Age of 36,6 Ma given by Snelling 1985 p. 264
 - e) No ages.
 - f) $33,71 \pm 0,5$ Ma = 33,2 à 34,2 Ma. Given by the authors.
 - g) Two limits are proposed by the authors (37,2 Ma and 37,6 Ma) but only one with the Lattorfian: 37,6 Ma.
 - h) Two datas proposed by the authors: 33 and 36,5 Ma.

H = Harland et al. 1989 Fig. 1.7: 35,4 Ma given by the authors.

a)	HAQ & al. 1987. According to their table graduated into 200.000 year subdivisions.
b)	STEININGER 1988. Table graduated into 1 million year subdivisions + numerical datas (* in Table 8) given by the author.
c)	BERGGREN, KENT & FLYNN 85
	BERGGREN, KENT & VAN COUVERING 1985
	BERGGREN , KENT , FLYNN & VAN COUVERING 1985
	SNELLING 1985
	Table graduated into 200.000 year subdivisions.
d)	BERGGREN & MILLER 1988. Table graduated into 1 million year subdivisions.
e)	STEININGER, BERNOR & FAHLBUSCH 1990. Table graduated into 200.000 year subdivisions
f)	ODIN 1989,
	ODIN & MONTANARI 1989. Table graduated into 1 million year subdivisions.
g)	MARTINI & al. 1986 . Table graduated into 200.000 year subdivisions.
h)	CAVELIER & POMEROL 1986
i)	VASS & al. 1987 & 1988. Table graduated into 500.000 year subdivisions
D	BOHN-HAVAS & al 1987 According to their fig.2 graduated into 1 million year subdivisions.
k)	DEMARCQ 1990
1)	SPORES & POLLENS in VINKEN 1988
m)	DINOFLAGELLATES in VINKEN 1988
n)	ROEGL , HOCHULI & MUELLER 1979 . Table graduated into 5.000.000 year subdivisions.
0)	POWELL 1986 . Table graduated into 200.000 year subdivisions.
p)	WILLIAMS 1977 presented by WILLIAMS & BUJAK 1985 . Table graduated into 5.000.000 year subdivisions.
9)	RIVELINE 1985 and CAVELIER & POMEROL 1986
r)	BERGER 1986 and 1992 (GEC)
s)	SCHWARTZ 1985 , 1988 , 1989 and pers. comm.
t)	FEJFAR 1988. Table graduated into 1 million year subdivisions
u)	ALBERDI & AGUIRRE 1977. Table graduated into 1 million year subdivision and numerical data given by the authors.
	These numerical measures are noted by * in Table 6 and 7.
v)	TOBIEN 1987 + IN VINKEN 1988
w)	AGUILAR 1981. Table graduated into 500.000 year subdivisions
(x)	IGCP 124 , VINKEN 1988
y)	STEININGER , WESSELY & ROEGL 1987
z)	BALDI 1984 :
I.,	
H=H	AKLAND & al. 1989 Fig. 7.3.

Table 1: Papers discussed on the chart.

- Oligo-Miocene Boundary

- a) Age of 25,2 Ma given by the authors.
- c) Age of 23,7 Ma given by Snelling 1985 p. 264
- b) Age of 23,2 Ma given by the authors.
- e) Age of 23,3 Ma, according to their table graduated into 200.000 year subdivisions
- f), g) No ages.
- h) Age of 23 to 23,5 Ma given by the authors.

H : Harland et al. 1989 Fig. 1.7: 23,3 Ma given by the authors.

- Mio-Pliocene Boundary.

- a) Age of 5,2 Ma given by the authors.
- c) Age of 5,2 Ma according to their table graduated into 200.000 year subdivisions.
- b) Age of 5,4 Ma given by the authors.

e) Age from 5,3 Ma according to their table graduated into 200.000 year subdivisions.

f), g), h) No ages.

H: Harland et al. 1989 Fig. 1.7: 5,2 Ma given by the authors.

3.3. Planktic Foraminifera Zones (Table 3 & 4, Fig. 3)

a), b), c), d), e), g), i) See Table 1. f) Odin 1989: P15/P16 boundary is situated between $36,0 \pm 0,4$ and $36,4 \pm 0,3$ Ma. P16/P17 boundary is dated from $34,6 \pm 0,3$ Ma.

Epochs a b	c 5.3	e	Chronozones	c			
	5,3				a	e	f
4 5,4 5, 5 60 64	50	5,4	C3 C3A	5,3	5,3	5,4	
6 6,8 6,4 7 7,6 8,	, 3,5 6,7) 7,4	6,7 8,3	C4		6,7	6,7	
8 7,8 9,0 9 8,2 10) 7,9 ,5 8,5	8,9 10,5	C4A		7,9	7,9	
9.0 11 11 10,5 12 12 11,8 13 13 12,2 13	.8 8,9 .3 10,5 .2 .5	11,5 12,2 12,9 13,1	C5 C5A C5AA	8,9 11,5 12,9 13.2	8,9 11,8	8,9 11,5	
14 13,7 14 15	.1	13,7	CSAB CSAC CSAD	13,7 14,2	15.0	14.9	
16 17,8 18	2	17,6	CSB CSC CSD	16,2 17,6 18,5	16,2 17,6 18,5	16,2 17,6 18,5	
19,0 20 18 19,4 20 19 20,5 21	0 4 5	19.1 19,4 20,5	C5E C6 C6A	19,3 20,9	19,3 20,9	19, 4 20,9	
20 21,3 22 21 22,2 23 22 23,9 24	5 6 7	20,9 22,4 23,3	С6АА С6В С6С	22,0 22,6 23,3	22,6 23,9	22,6 23,3	
			C7 C7A C8	25,5 26,4 26,9	25,5 26,4 26,9	25,5	
			C9 C10 C11	29,6 31,2 32,3	29,8 31,2 32,3		
			C12 C13 C15	35,3 37,2	35,3 37,1		34,7 35,2

Table 2: Magnetostratigraphy. Numerical data (million years) reported on the chart. The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.1.

			Plankti	c Foramiı	nifera Zo	nes			
N	a	c	b	g	i	d	e	f	f
N19 N18	5,0	5,0	5,0				5.2		
N17 N16 N15	7,1 9,7	7,1 10,2	7,1 10,8				8,9 11,0		
N14 N13	10,2 11,0 12,0	10,5 11,3 11,6	12,0 13,0 13,6				11,9 12,1 12,8		
N12 N11 N10	13,2 13,9	12,9 13,9	14,5 15,0				13,7 14,0		
N9 N8	14,9 15,2 16,6	14,9 15,2 16,6	15,8 16,0 17,0		15,5 16,2 17,5		14,7 15,2 16,6		
N7 N6 N5	17,8 18,9	17,6 19,0	18,7 19,8				17,7 18,1		
N4	22,8 25,2	21,8 24,5	22,0 24,5	24,2		N4b 23,3 N4a 23,9	22,0		
P21	28,0	28,2				28,3 P21b 30,0 P21a			
P19/20	31,7	31,6		31,6 P20 32,8 P19 33,9		31,7 32,9 34.0			
P18 P17 P16	36,0 37,2	36,3 37,2		37,2 39,5		37,2		34,6 ±0,3	33,7±0,5 34,3±0,5
P15								36,0 ± 0,4	35,6±0,5

Table 3: Planktic foraminifera zones. Numerical data (million years) reported on the chart. The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.3.

Odin & Montanari 1989: P18/P17 boundary is dated from 33.7 ± 0.5 Ma. Other data are according to their table graduated into 1 million year subdivisions.

Cavelier & Pomerol 1986 were not considered for the same reasons as in chapter 3.1. The data from Harland et al. 1989 are not reported here because of the impossibility of correlating their zonation (cf. their Fig. 3.13) with the numerical ages. Only a few boundaries could be included in the present chart:

 N17/N18 boundary:
 5,2 Ma

 N 9/N10 boundary:
 14,2 Ma

 N 7/N 8 boundary:
 16,3 Ma

 P19/P20 boundary:
 29,3 Ma

Fig. 2. Planktic Foraminifera in the Swiss Molasse

Comments on the biostratigraphic interest of planktic foraminifera in the Molasse (Fig. 2):

Blow's zonation of 1969, with P- (for Paleogene) and N- (for Neogene) zones, is frequently used in the European Tertiary. These zones follow a first attempt published by Banner & Blow 1965. Also in 1969 Berggren published a zonation with N and P zones attributed to "Berggren & Blow unpublished" (cf. Berggren 1969 table 1). A synthesis was later published by Berggren in 1972, and was subsequently adopted in publications. Recently, Berggren & Miller 1988 resynthesized the situation for the Paleogene.

Another zonation was elaborated on by Bolli and collegues, using a taxon-denomination for the zones. This led to the paper published by Bolli & Saunders 1985.

Two other important zonations were published in 1985 by Iaccarino, (concerning the mediterranean Miocene and Pliocene) and in 1988 by Spiegler et al. 1988 (North european Tertiary).

A comparison of these different zonations is presented in Table 4.

BLOW 1969	BERGGREN & MILLER 1988	BOLLI & SAUNDERS 1985		ACCARINO 1985	SPIEGLER , GRAMANN & VON DANIELS 1988	
N 8		P.glomerosa		P.glomerosa	NPF 13	
N 7		G.insueta		Gs.trilobus		
N 6		C.stainforthi	hiscensi nilis	Gs.altiaperturus/	NPF 12	
N 5		C.dissimilis	cens del C.dissin	C.dissimilis		
NA	N4 <u>b</u> a	Gs.primordius	े पुरुष Gq.dehiscens dehiscens उ			
	P 22	G.kugleri				
P 22 (= N 3)	1 22	G.ciperoensis ciperoensis				
P 21 (= N 2)	P21a	G.opima opima			NPF 9	
P 20 (= N 1)	(C (= N 1) P 20 P 19 G.ampliapertura				NPF 8	
P 18	P 18	Cassigerinella chipolensis/ Pseudohastigerina micra				

Table 4: Comparison of planktic foraminifera zonations.

Discussion about the application of Blow's zonation in the European Oligo-Miocene:

a) P18, P19 and P20 (= N1)

Important divergences concerning the taxonomy and the stratigraphical repartition of markers (*Globigerina tapuriensis*, *G. sellii*, *Cassigerinella chipolensis*, *Chilogümbelina cubensis*, *Pseudohastigerina spp.*) yielded problems in the distinction, and consequently the calibration of the zone. The new P18-zone proposed by Berggren & Miller 1988 corresponds to P18 + P19 of Blow 1969. Consequently, P19 of Berggren & Miller 1988 = lower part of P20 of Blow 1969; and P20 of Berggren & Miller = upper part of P20 of Blow.

b) P22 (= N3)

General remarks: the principal discrepancies concerning this interval are essentially due to the different appreciations of the stratigraphic repartition of *Globigerinoides* primordius.

c) N4 to N6

Bizon (in Bizon & Mueller 1979) notes that Blow's zonation could be the base of the tertiary mediterranean biozonation but that some adaptations (due to the poor faunas) are necessary, especially in the Early Miocene (problems with *Globigerinoides primordius-altiaperturus-trilobus*, absence of *Gt. kugleri*). This is confirmed by Iaccarino 1985 whose "Gq. dehiscens/C. sissimilis"-zone corresponds to N4, N5 and N6 (see Table 4).

d) N7

The principal problems concerning this zone are due to taxonomic and stratigraphic discussions about the succession "*bisphaericus-sicanus-glomerosa*" (cf. explanation and details in Bolli & Saunders 1985, Iaccarino 1985, Jenkins et al. 1981).

3.4. Calcareous Nannofossil Zones (Table 5, Fig. 3)

- a), c), e), g),
- f) Odin 1989, Odin & Montanari 1989.
- NP18/NP19 from 36,0 \pm 0,4 to 36,4 \pm Ma, and NP20/NP21 from 34,6 \pm 0,3 to 34,3 \pm 0,3 Ma.

 i) Vass et al. 1987, according to their table graduated into 500.000 year subdivisions, the age of 15,5 Ma (NN5/NN6 boundary) given by Vass et al. 1988.

	Calcareous Nannofossil Zones					
NN/NP	а	c	e	g	i	f
NN12	50	5 4	5.2		5.2	
NN11	5,2	5,6	5,2		5,2	
NN10	8,2	8,3	8,2		8,8	
NN9	9,0	8,9	11,2			
NINIR	10,0	10,0	11,9			
ININO	10,5	10,9	12,3		13,2	
NN7	11,7	13,1	12,8			
NN6	13.2	14.4	14.0		15.5	
NN5	14.0	16.0	14 5		14 5	
NN4	10,0	10,2	10,5		C,01	
NN3	17,7	17,4	17,6		18,5	
NN2	18,8	18,9	18,1		19,2	
NINII	20,8	23,2	23,0		22,0	
	25,0	23,7	23,9		23,0	
NP25	28,5	28,1				
NP24	30.5	30.4		31.6		
NP23	24.9	24.4		24.0		
NP22	34,0	34,0		34,0		c -
NP21	35,5	35,1		35,2		
NP20	36,5	36,9		37,6		34,0-34,9
NP19	0 0 0	07.0		40.0		25 4 24 5
	38,0	37,8		42,0		35,6-36,7

Table 5: Calcareous nannofossil zones. Numerical data (million years) reported on the chart. The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.4.

Fig. 3. Calcareous Nannofossils in the Swiss Molasse

Cavelier & Pomerol 1986 were not considered for the same reason as in chapter 3.1.

The data from Harland et al. 1989 were not reported here because of the impossibility of correlating their zonation (cf. their Fig. 3.13) with the numerical ages. Only one boundary could be included in this chart: the boundary between NP (Nannoplankton Paleogene) 25 and NN (Nannoplankton Neogene) 1 is dated as 23,3 Ma.

Comments on the biostratigraphic interest of calcareous nannofossils in the Molasse:

The biozonation of Martini 1971 (NP- and NN-zones based on FAD (First appearance datum), on LAD (Last appearance datum) and on acme-zones) is generally used in the European Tertiary, even if the zonation of Bukry 1973 (revised in Bukry 1975 and codified by Okada & Bukry 1980 with CP Coccoliths Paleogene and CN Coccoliths Neogene zones) could be more precise in open marine sediments. Elsewhere, Mueller (1979) pointed out the absence, in the mediterranean area, of many markers.

The calcareous nannofossils could be very useful for biostratigraphic purposes, but, unfortunately, they could be easily reworked. The reworked material is one of the principal disadvantages for the correlation of the biostratigraphic units based on calcareous nannoplankton. Discussion about the application of Martini's zonation in the European Oligo-Miocene:

a) NP19/20

Several publications (Martini 1976, Perch-Nielsen 1985) demonstrate the necessity to combine NP19 and NP20 into a NP19/20 Zone.

b) NP21, NP22 and NP23

Perch-Nielsen 1985 pointed out the impossibility of distinguishing NP21 if the sample contains reworked material from the Eocene. Cavelier (1972, 1975, 1979) demonstrated the diachroneity of this zone compared with the Planktic Foraminifera zones. Moreover, it is very important to recall that the definitions of NP21, 22 and 23 are essentially based on LAD. Consequently it is dangerous to distinguish these zones in clastic sediments such as the Molasse.

e) NN1

Mueller (1979) notes that NN1 is based, in the mediterranean area, on the absence of the small forms of *Helicosphaera ampliaperta* because the marker *D. druggii* does not exist in this region. This makes the boundaries between NP25, NN1 and NN2 impossible to define.

3.5. Pectinids (Fig. 4)

j)	Bohn-Havas et al. 1987. According	to their	fig. 2 graduated into 1 million year subdivisions.
	Chlamys rotundata/Chlamys gigas		NN1/NN2 boundary, 22,0 Ma
	C. gigas/Chlamys palmata		in NN2, 21,0 Ma
	C. palmata/Chlamys albina		N6/N7 boundary 18,7 Ma
	Chl. submalviae/Pecten expansio	r	in NN4, Ottn./Karp. boundary 18,0 Ma
	Chl. albina/Flabellipecten besseri		in NN5, Karp./Baden. boundary, 16,3 Ma
	Chl. elegans/Pecten adunctus		NN5/NN6 boundary, 15 Ma
	Top F. besseri		top NN7, 13,8 Ma
k)	Demarcq 1990		
	PN0/PN1 =	base N	4, 24 Ma
	PN1/PN2 =	in N4,	22 Ma
	PN2/PN3 =	base N	5, 20,6 Ma
	PN3a/PN3b =	N7/N8	, 17,5 Ma
	PN3 b/PN4 =	in N8,	16,5 Ma
	PN4/PN5a =	N9/N1	0, 15 Ma
	PN5a/PN5b =	in the S	Serravallian, top of Badenian.
	PN5b/PN6 =	N14/N	15 boundary, 10,5 Ma
	PN6/PN7 =	base N	17, 6,4 Ma
	PN7/PN8 = 1	Mio-Pl	iocene boundary, 5,2 Ma

The numerical data are given by Demarcq.

We do not consider here the zonation of Hinsch et al. in Vinken 1988 (BM1 to BM22) because the majority of their taxa are unknown in Central and Southern-Europe. This zonation is not applicable to the Molasse basin.

Comments on the biostratigraphic interest of pectinids in the Molasse

As shown in Fig. 4, the main problems concerning the application of Pectinids to Molasse stratigraphy is their dependance on facies. In the Swiss Molasse, they could only be used in the upper part of the OMM ("Helvetian").

Fig. 4. Pectinids in the Swiss Molasse

3.6. Palynozones (Fig. 5)

l)	Spores & H	Pollen
	Paleogene	subgroup IGCP 124, in Vinken 1988, Fig. 144 and 267
		SP5/SP6: 33 to 36 Ma
		SP6/SP7: in the Latdorfian
		SP7/SP8: 26 to 29 Ma
		Numerical data given by Vinken Fig. 267.
	Neogene:	Brelie, Meyer, Schuler & Zagwijn in Vinken 1988, Fig. 160
	C C	SP8a/SP8b: top NP25
		SP8 b/SP9a: just below NN4
		SP9a/SP9b: end of NN4
		SP9b/SP9c: in the Late Miocene
		SP9c/SP10a: in the Late Miocene or Pliocene
		Indirect correlations adapted from Fig. 160 of Brelie et al.

m) Dinoflagellates

Subgroup IGCP 124 in Vinken 1988 p. 165. Numerical data given in Fig. 267.

D12/D13: 33 to 36 Ma D13/D14: In the Latdorfian D14/D15: top Rupelian, 26 to 29 Ma D15/D16: 22,5 to 24 Ma D16/D17: 16,3 Ma D17/D18: in the Serravallian. D18/D19: slightly older than 10,5 Ma D19/D20: top Tortonian Top D20: 5,3 Ma

n) Spores & Pollen

Roegl, Hochuli & Mueller 1979

According to their table graduated into 5.000.000 year subdivisions.

Pg18/Pg19	= NP20/NP21, 37,5 Ma
Pg19/Pg20a	= in NP22, 35,5 Ma
Pg20a/Pg20b	= NP23/NP24, 32 Ma
Pg20 b/Ng.I	= In NP24, 28,5 Ma
NgI/NgII	= NP25/NN1, 24 Ma
NgII/Ottnang Flora	= NN2/NN3, 19,5 Ma
Top Ottnang flora:	15 Ma

o) Dinoflagellates

Powell 1986, According to his table graduated into 200.000 year subdivisions.

LAN1A/LAN1B	= 24,8 Ma
LAN1B/LAN2A	= 23,8 Ma
LAN2A/LAN2B	= 23,6 Ma
LAN2B/LAN3A	= 23,3 Ma
LAN3A/LAN3B	= 22,4 Ma
LAN3B/LAN3C	= 22,0 Ma
LAN3C/LAN4A	= 18,0 Ma
LAN4A/LAN4B	= between 16 and 17,7 Ma
LAN4B/LAN5A	= 15,5 Ma
LAN5A/LAN5B	= 15,1 Ma
LAN5B/LAN6A	= 14,3 Ma
LAN6A/LAN6B	= 13,5 Ma
LAN6B/LAN7A	= 13,0 Ma
LAN7A/LAN7B	= 12,7 Ma
LAN7B/LAN8A	= 12,3 Ma
LAN8A/LAN8B	= 11.9 Ma

- b) Dinoflagellates (angulosa to partispinatum zones). Cavelier & Pomerol 1986 The boundaries proposed by the authors result from compilation of palynozone positions according to the NP zones and to radiometric data. Thus, the graphic representation (in my chart) shows very diachronous boundaries.
- p) Dinoflagellates

Williams 1977 presented by Williams & Bujak 1985According to their table graduated each 5.000.000 yearsAreosph. diktyopus/Defl. heterophlycta37 MaD. heter./Cordosph. Funiculatum33 MaC. funic./ Cordosph. cantharellum24 MaC. cant./Lejeunec. fallax17 MaL. fall./Hystrichosphaeropsis obscura12,5 MaH. obsc./Achomosphaera ramulifera5 Ma

The zonation of Manum et al. 1989 and the "Dinoflagellate horizon" from Stover (in Haq et al. 1987) are not considered here because they are too incomplete and not precisely correlated.

Comments on the biostratigraphic interest of palynomorphs in the Molasse

The principal disadvantage in applying palynomorphs to Molasse stratigraphy is the preservation problem (oxydation!). Concerning the pollens, a general remark could be

made: they reflect climatic changes more than evolutionnary levels. Thus, they could be essentially used from an ecostratigraphic point of view (see Fig. 5).

3.7. Charophytes (Fig. 6)

q) Riveline 1985 and Cavelier & Pomerol 1986

Modified and correlated with the mammal zones proposed by Schmidt-Kittler 1987 Vasiformis-Tuberculata/Vectensis **MP18/MP19** Vectensis/Pinguis MP20/MP21 Pinguis/Major MP21/22 Major/Microcera MP23/MP24 Microcera/Ungeri: between MP26 and MP24 Ungeri/Notata MP29/MP30 Notata/Nitida MP30/MN1 Nitida/Berdotensis MN1/MN2

r) Berger 1986 and 1992 (European Group of Charophytologists)

Correlated with the Swiss Mammal Levels. Berdotensis/Ginsburgi Nitida/Berdotensis Notata/Nitida Ungeri/Notata

Vully 1/Brüttelen 2 Boudry 2/Fornant 11 Küttigen/Brochene Fluh Rickenbach

Fig. 5. Palynomorphs in the Swiss Molasse

Fig. 6. Charophytes in the Swiss Molasse

	Microcera/Ungeri	Wynau 1
	Major/Microcera	Bumbach
	Tuberculata/Major	before La Combe-Lovagny
s)	Schwartz 1985, 1988, 1989 and pers. comm.	
	Modified by adaptation to the Riveline-zones and	correlated with calcareous nannofossil zones.
	Paulhiac	= Nitida + Berdotensis
	Marseille/St. André	= NP25 = Notata + Ungeri
	Fontainebleau/St. Vincent	= NP23 + NP24 = Microcera + ??Major pars
	Bembridge sup.	= Major + ?Pinguis

Comments on the biostratigraphic interest of charophytes in the Molasse

The biostratigraphic usefullness of the tertiary charophytes was demonstrated firstly by Grambast (1962, 1964, 1972) then by Feist-Castel (Castel 1968, Feist 1977) and finally by Riveline (1985) who published a general biozonation for the Paleogene and Early Miocene. The application of charophytes to the Molasse basin has been principally studied and published by Kissling 1974 and Berger (1983, 1986, 1992). The great advantage of these fossils is their abundance in the non-marine sediments. The principal disadvantage results from the difficulty to distinguish charophyte-zones later than the "Ginsburgi-zone" (Middle Miocene). Discussion about the application of the charophyte zonation in the European Oligo-Miocene:

- a) The first problem is a taxonomic one: the intraspecific variability could be very important and could produce several "artificial" taxa. Unfortunately, the inverse phenomenon occurs also: form convergences are frequent in charophytes. Consequently, a lot of species (recent anf fossil) are impossible to distinguish as regards their gyrogonites.
- b) Some markers are difficult to determine: for example the distinction between *Chara* microcera and *Chara notata*, both zonal -markers, is not always clear.
- c) Endemism and migration are also to be noted: the genus *Gyrogona*, for example, very useful for the Paleogene zones, seems to be confined to Western Europe. However, this remark is perhaps due only to the density of sampling.
- d) Some markers are very rare, as Rantzieniella nitida.
- e) The zonation is very useful in the Paleogene but no so in the Neogene: only 2 zones, corresponding to the Early Miocene have been established by Riveline 1985. A third zone was recently proposed by Berger (1992), which corresponds probably to the mammal zones NM3 to NM9. For the Late Miocene to the Recent, it is, at this stage, impossible to distinguish marker-taxa to continue the biozonation.

3.8-3.9 European mammal zones and "Swiss Mammal Levels". (Table 6 and Fig. 7)

European mammal Zones:

c)	Berggren 19	85 (MN1	-MN14). Table	e graduated into 1 million year subdivisions				
f)	Cavelier & F	lier & Pomerol 1986 column 13, modified using the zones of Schmidt-Kittler 1987 (MP21-MN1)						
b), i	(), i), u), e) : see Table 1							
v)	Tobien 1987	and in V	inken 1988 (M)	P zones, correlated with nannofossil zones)				
		MP30, 29,	28, 27, 26, 25	= NP25				
]	MP24, 23		= NP24				
	1	MP22		= NP23				
]	MP21		= NP22				
	1	MP20		= base NP21				
]	MP19, 18		= NP20				
w)	Aguilar 1981	1, accordin	ng to his table	graduated into 500.00 year subdivisions				
		A1/A2:	24,2 Ma					
		A2/A3:	23,7 Ma					
		A3/A4:	23,4 Ma					
		A4/A5:	22,8 Ma					
		A5/B:	22,4 Ma					
]	B/C1:	17,5 Ma					
		C1/C2:	16,2 Ma					
		C2/C3:	15,6 Ma					
		C3/C4:	15,2 Ma					
		C4/C5:	13,5 Ma					
		C5/D1:	12,4 Ma					
]	D1/D2:	10,2 Ma					
	1	D2/D3:	8,4 Ma					
	1	D3/D4:	7,5 Ma					
	J	D4/E1:	6,5 Ma					
	1	E1/E2:	6,2 Ma					
	1	E2/E3:	5,9 Ma					
	10	Top E3:	5,4 Ma					

European Mammal Zones										
	с	h	b	t	u	e				
	5,2		5,4	5,2		4,8				
l	7,0		7,0	5,9	6,9*	6,0				
	8,5			7,2	9,2*	7,4				
	9,5		9,0	9,0	9,75*	9,0				
	11,0		10,6	10,0		10,6				
	12,5		11,8	11,0	11,5* or 12,5*	11,5				
	13,5			12,5		13,0				
	14			14	14,6*	14,0				
	15,5		15,5	15,8		15-16,0				
	17		17	17		17,0				
					16,8					
	19		18,5	19		17,9				
	21		22,5	22		22,0				
						23,0				
	23			24	22	24,8				
		23,5		25						
		~25		25,5						
				26,5						
		~28		27						
		~29		27,6						
				28.5						
		20		20,0						
		~30		29,2		w.				
		~31		31,5						
		~32		33						
		~34		34,5						
		~36,5		36						
		accuse 🖌 🗖 10		37.5						
				0,,0						

Table 6: European mammal zones. Numerical data (million years) reported on the chart (only c, h, b, t, u and e). The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.8.

Fig. 7. Mammals in the Swiss Molasse

Swiss mammal Levels:

Compilation after Engesser & Mayo 1987, Engesser et al. 1981, Engesser 1987 a, and 1990 a & b. These levels are correlated with the MN and MP zones.

Comments on the biostratigraphic interest of mammals in the Molasse

Following the pionneering studies of Stehlin (1909, 1934) and Hürzeler (1945), the first european mammal biozonation was published by Thaler (1965, 1972). A few years later, a consensus for a Neogene Mammal zonation was presented by Mein (1975, 1979) who proposed the MN-zones. Recently, the Paleogene zonation with MP-zones (Mammal Paleogene zones) was published by Schmidt-Kittler 1987. The very high resolution (the finest one in the tertiary biostratigraphy) is its great advantage. The principal disadvantage is the difficulty of discovering several mammal-rich levels in the same profile (see discussion below).

Discussion about the application of the mammal zonation in the European Oligo-Miocene:

Firstly, I must emphasize that the european mammal zonation is principally based on the synchroneity of the evolution-level of the different taxa. Because of the difficulty of finding several mammal localities in the same profile, the zonation is based on taxa occuring at different sites (sometimes separated by distances of more than 100 km). This situation presents the problems:

- 1. The "reference levels" are not always representative of all paleogeographic provinces: several reference levels chosen in Spain, for example, do not share one common taxon with faunas of the same age found in Central Europe.
- 2. Several very rich faunas are found in karstic deposits, with a high probability of faunal mixing (reworking).

A possibility of avoiding these problems is to create local biozonations, correlated then lithostratigraphically and later to MN or MP zones. The "Swiss mammal levels" represent one of these local biozonations. They are based on localities correlated with a fine lithostratigraphy and sometimes with several rich horizons in the same profile (Findreuse, Fornant, Talent).

3.10 Mammalian Stages (Table 7)

u), c), b), t): see Table 1.

3.11. Mediterranean Stages (Table 8)

```
a), c), b), e) See Table 1.
```

```
g) Martini et al. 1986. Table graduated into 200.000 year subdivisions.
Rupelian/Latdorfian 34 Ma
Latdorfian/Priabonian 37,6 Ma
x) IGCP 124: Neogene after Berggren, Kent & Van Couvering 1985.
Paleogene dated after Odin:
Chattian/Aquitanian: 23 + 1 - 0,5 = 22,5 to 24 Ma
Rupelian/Chattian: 27 + 2 - 1 = 26 to 29 Ma
```

Mammalian Stages											
Stages	u	c	e	t							
Headonian/Suevian Suevian/Agenian Agenian/Orleanian Orleanian/Astaracian Astaracian/Vallesian Vallesian/ Early Turolian Early Turol./Late Turol. Late Turolian/ Ruscinian	21,5 15,3 11,5* or 12,5* 9,75* 6,8	21 15,5 12,5 9,5	22,0 15-16 11,5 9,0	36 25 22 15,8 11,0 9,0							
(Montpellierian in FEJFAR)	5,2	5,2	4,8	5,2							

Table 7: Mammalian stages. Numerical data (million years) reported on the chart. The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.10.

Mediterrannean Stages											
STAGES	a	с	b	e	н						
ZANCLEAN	5.2	5.2	E 44	4.9	5.2						
MESSINIAN	5,2	5,2	5,4*	4,0	5,2						
TODTONUAN	6,3	6,5	6,8	6,4	6,7						
TORTONIAN	10.2	10.5	11.8*	11,5	10,4						
SERRAVALIAN	15,2	13,0-15,2	16,0	14,7<	14,2						
LANGHIAN	16.2	16.2	16.8*	16.5	16.3						
BURDIGALIAN	20.0	21.8	22,4	22,0	21,5						
AQUITANIAN											
CHATTIAN	25,2	23,6	23,2*	23,3	23,3						
	30,0	30,0			29,3						
RUPELIAN PRIABONIAN	36,0	36,6			35,4						

Table 8: Mediterranean stages. Numerical data (million years) reported on the chart (only a, c, b, e and H). The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.11.

h)	Cavelier &	Pomerol 1986:	
		Latdorfian = end of Priabonian	
		Priabonian/Stampian boundary:	from 33 to 36,5 Ma
		Stampien/Chattian boundary:	30 Ma
		Top of Chattian:	23 to 23,5 Ma
H:	Harland et	al. 1989 Fig. 1.7: Numerical data	given by the authors.

3.12 Position of Stratotypes

- a), h) See Table 1
- c) Berggren, Kent & Flynn fig. 5 p. 162, Fig. 6 p. 171 Berggren, Kent & Van Couvering 1985 Fig. 2 p. 217
- g) Martini et al. 1986, Table 1 p. 39

3.13. Paratethys Stages (Table 9)

b), i), t), e),

- y) Steininger, Wessely & Roegl 1987, numerical data given by the authors: 16,3 Ma for the Badenian/Karpathian boundary 30,0 Ma for the Egerian/Rupelian boundary 36,6 Ma for the base of the Latdorfian
- z) Baldi 1984: Kiscellian/Priabonian boundary:36-36,5 Ma Kiscellian/Egerian boundary:~29 Ma

Paratethys Stages									
Ъ	i	t	e						
5,8	5,6	5,8	5,3						
8,8	8,7 à 7.0	8,6	6,5 - 7,9						
11,6	11,5	11,5	11,6						
13,8	13,6	14,0	12,8						
16.8	165	16.5	16.5						
10,0	10,5	10,5	10,5						
17,5	17,5	17,5	17,2						
19,0	19,0	19,0	18,1						
22,4	22,0	22,0	22,0						
		20							
		27 5							
	Parateth b 5,8 8,8 11,6 13,8 16,8 17,5 19,0 22,4	Paratethys Stagebi5,85,68,88,7 à 7.011,611,513,813,616,816,517,517,519,019,022,422,0	Paratetbys Stagesbit5,85,65,88,88,7 à 7.08,611,611,511,513,813,614,016,816,516,517,517,517,519,019,019,022,422,022,0537,5						

Table 9: Paratethys stages. Numerical data (million years) reported on the chart (only b, i, t and e). The letters (a, b, ...) correspond to the authors listed in the chart (see Table 1) and discussed in chapter 3.13.

3.14. Groups omitted from the Chart (Table 10)

Benthic forams, Ostracods, Otolithes

I don't consider benthic foraminifera, ostracod and otolithe zonations in this chart for the following reasons:

- benthic foraminifera: no true zonation has been proposed in the Tethys or Paratethys (see Magné 1978, Wenger 1987).
- ostracods: in the Tethys-Paratethys area, the zonations elaborated by Carbonnel 1970 and Carbonnel & Jiricek 1977 are too imprecise for my purpose.
- zonations have been published by Graham & von Daniels in Vinken 1988 (benthic forams), Keen (1977 & 1978) and Uffenorde (1981, 1986) compiled by Gramann in Vinken 1988 (ostracods, with K- and U-zones) and Gaemers in Vinken 1988 (otolithes), but they are not applicable outside of the North European region.

A tentative application has been proposed by von Daniels et al. 1985 concerning the correlation of the Uvigerina-zones from North Germany and the Paratethys. Table 10 presents a correlation of the different ostracod zonations.

Radiolarians and Diatoms

Because of their absence in the perialpine basins, radiolarians and diatoms are not included in this chart.

	KEEN 1977,1978	UFFENORDE 1981,1986	CARBONNEL 1970	CARBONNEL & JIRICEK 1977
			BIOŻONE D Elofsonella amberii BIOŻONE C Rhodanicites tripartita	Datum à Cyprideis Datum à Carinocythereis
ENE		ZONE U 3	BIOZONE B	SUPERZONE
NOC		ZONE U 2	Neomonoceratina helvetica	Neomonoceratine helvetica
2			BIOZONE A	SUPERZONE
		ZONE U 1	Loxoconcha linearis linearis	Hemicyprideis dacica grekoffi
Ш				SUPERZONE
IGOCEN	ZONE K 13			Hemicyprideis helvelica
0	ZONE K 12			

Table 10: Ostracod zonations of the European Oligocene and Miocene.

Phytostratigraphy

Phytozones have been created for example by Mai 1967 ("Florenzonen") or Gregor 1982. Although they could be useful, especially in non-marine sediments, their correlation with other biozonations or radiometric ages are not clear enough to integrate them in this chart. Furthermore, these zonations are clearly dependent on climatic conditions which reduce the possibility of long distance correlation.

4. Biostratigraphy of the Swiss Molasse

Biostratigraphic results concerning the Swiss Molasse are presented in Plate 1. This Figure shows an application of the correlative chart to the Molasse Basin. Biostratigraphic indicators are plotted on the right hand side of the figure. Their respective positions are correlated across the chart. Thus, we have a biostratigraphic base to correlate the different lithostratigraphic units (UMM, USM, OMM, OSM). Complete informations concerning the stratigraphy in the Molasse Basin have been published by Habicht 1987.

The results presented in the Plate 1 necessitate the following comments:

4.1. UMM = Untere Meeresmolasse = Lower Marine Molasse

The base of the UMM is very diachronous between the Jura mountains and the subalpine area. The biostratigraphic correlations (see localities 19-21, 45-46 and 57-63) clearly show the interfingering and the respective position of the base of UMM and USM.

The top of the UMM is also very diachronous. The UMM-regression is:

- younger in the Jura than in the subalpine area.
- in the subalpine area it is younger in the Eastern part (locality 61) than in the Western part (loc. 55-56).

The Rupelian age classically attributed to the UMM is incorrect. A part of this unit (especially in the Jura mountains) can be attributed to the Chattian.

4.2. USM = Untere Süsswassermolasse = Lower Freshwater Molasse

USM is generally subdivided into a lower part ("Chattian") and an upper part ("Aquitanian"). These chronostratigraphic terms are practical, but imprecise: as shown in Plate 1, a part of the USM is surely of Rupelian age, and another part could probably be attributed to the Burdigalian.

Consequently, the terms "Chattian" or "Aquitanian" should be used, in the Molasse, only as "local units", and should be written with quotation marks, to avoid confusion with the chronostratigraphy. Otherwise, the top of the Subalpine Molasse (in Switzerland) seems to be not younger than Aquitanian.

4.3. OMM = Obere Meeresmolasse = Upper Marine Molasse

The transgression of the OMM is relatively well dated by mammals on the "Molasse du Plateau". In the Jura Mountains, the diachroneity of the OMM-base is only deduced from indirect correlations and from geological patterns.

The subdivision of the OMM into a lower "Burdigalian" and an upper "Helvetian" part was generally proposed. As demonstrated by several recent studies (Schoepfer 1989, Schoepfer & Berger 1989, Keller 1989), the major part of the Upper Marine Molasse should be attributed to the Burdigalian. The "Helvetian" corresponds to a Middle to Late Burdigalian (ante- N7). Only the top of the OMM in the distal area (Jura mountains) belongs perhaps to the Langhian.

4.4. OSM = Obere Süsswassermolasse = Upper Freshwater Molasse

The regression of the OMM was surely not synchronous because of the occurrence of depocenter migration and variable relief created by alluvial fans. In the different regions, the OMM-OSM boundary could be dated between nannofossil zones NN3 to NN5 and mammal zones MN3 to MN5.

The OSM should be attributed to a Badenian-Sarmatian or Langhian-Serravallian age. Thus, the term "Tortonian" to indicate the Upper Freshwater Molasse should be definitively eliminated. Biostratigraphically, only the mammals could be useful to subdivide the OSM, which could be dated from the MN5 to MN6-?7 in the "Molasse du Plateau" and from MN5 to MN8 in the Jura mountains.

Along with biostratigraphic data, volcanic sediments (bentonites) of the OSM yielded radiometric ages (Plate 1 No 22, according to Fischer 1988, Fischer, Oberli & Meyer 1989):

14,4 Ma: bentonite of Mollen15,2 Ma: bentonite of Erlenbach15,4 Ma: bentonite of Wüsttobel

4.5. The End of the OSM-Sedimentation and the "Pliocene"

The top of the OSM is marked by:

- an erosion boundary, covered in parts by quaternary to recent sediments.
- a discordance covered by tertiary conglomerates, sands and gravels ("Graviers du Bois de Raube", "Hipparionsande", "Vogesenschotter"). These layers are dated from NM9 in one locality (Charmoilles). Recent studies (Engesser, Kälin under research) confirm the Middle to Late Miocene age of these sediments.

Thus, no Pliocene sediments are known in the north of the Swiss Alps.

5. Conclusions

The correlation chart presented here reflects the "state of the art" in 1990. Progress in biostratigraphy is very rapid and at the time of publication of this paper, new charts are probably being created. It is hoped that the future results will lead to a uniformity of the boundaries.

ACKNOWLEDGEMENTS

I thank my collegues V. Barbin, T. Bolliger, B. Engesser, B. Keller and especially M. Weidmann for stimulating discussions during the development of the chart and of the manuscript. Financial support for this research was provided by the Swiss National Science Foundation, project 20-28951.90. I am grateful to K. von Salis-Perch Nielsen and B. Keller for reviewing the text, to Joseph Plunkett for reading the English version, to Meinrad Thalmann for the German abstract, and to Françoise Mauroux for the references.

REFERENCES

- AGUILAR, J. P. 1981: Evolution des rongeurs miocènes et paléogéographie de la Méditerranée occidentale. Thèse Univ. Languedoc, Montpellier.
- ALBERDI, M. T. & AGUIRE, E. (Eds) 1977: Round table on mastostratigraphy of the W-Mediterranean Neogene. Trab. sobre Neogeno-Quaternaria (Madrid) 7.
- ANGELILLO, V. 1987: Les grès et marnes à gypse du bassin genevois. Dipl. Univ. Genève (inédit).
- BALDI, T. 1984: The terminal Eocene and early Oligocene events in Hungary and the separation of an anoxic, cold Paratethys. Eclogae geol. Helv. 77, 1–27.
- BANNER, F. T. & BLOW, W. H. 1965: Progress in the planktonic foraminiferal biostratigraphy of the Neogene. Nature 208, 1164-1166.
- BARRON, J. A., KELLER, G. & DUNN, A. 1985: A multiple microfossil biochronology for the Miocene. In: The Miocene Ocean: Paleoceanography and biogeography (Ed. by KENNET, J. P.). Mem. Geol. Soc. Amer. 163, 21-36.
- BEAUMONT, G DE, DE CHAMBRIER, A. & WEIDMANN, M. 1984: Présence d'*Eucricetodon* (Rodentia) dans la molasse marine du synclinal de Tavannes (Jura bernois). Bull. Soc. vaud. Sci. nat. 77, 73–78.
- BEAUMONT, G DE & WEIDMANN, M. 1981: Un crâne de *Plesictis* (mammifère, carnivore) dans la molasse subalpine oligocène fribourgeoise, Suisse. Bull. Soc. vaud. Sci. nat. 75, 249-256.
- BERGER, J. P. 1983: Charophytes de l' "Aquitanien" de Suisse occidentale. Essai de taxonomie et biostratigraphie. Geobios 16, 5-37.
- 1985: La transgression de la Molasse marine supérieure (OMM) en Suisse occidentale. Münchn. geowiss.
 Abh. A, 5, 1-207.
- 1986: Biozonation préliminaire des charophytes oligocènes de Suisse occidentale. Eclogae geol. Helv. 79, 897-912.
- (Coord.) 1992: Biostratigraphical correlations between European charophytes and mammals from the Paleocene to Middle Miocene: First results. In: Palaeovegetational development of Europe. Proc. Paneuropean Paleobot. Conf. Wien (à paraître).

- BERGER, J. P., ENGESSER, B., BARBIN, V., BOLLIGER, T., KELLER, B. & WEIDMANN, M. 1990: Correlative chart of the European Oligo-Miocene and stratigraphic position of the Swiss Molasse. In: Global events and Neogene evolution of the Mediterranean. Abstr. IXth Congr. Reg. Comm. Mediterr. Neog. Strat., Barcelona, 19-24.11.1990, 59-60.
- BERGGREN, W. A. 1969: Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleontology 15, 351-365.
- 1972: A Cenozoic time-scale: some inplications for regional geology and paleobiogeography. Lethaia 5, 195-216.
- BERGGREN, W. A., KENT, D. V. & FLYNN, J. J. 1985: Jurassic-Paleogene. Part 2: Paleogene geochronology and chronostratigraphy. In: The chronology of the geological record (Ed. by Snelling, N. J.). Mem. geol. Soc. London 10, Blackwell, 141-195.
- BERGGREN, W. S., KENT, D. V. & VAN COUVERING, J. 1985: The Neogene. Part 2: Neogene geochronology and chronostratigraphy. In: The chronology of the geological record (Ed. by SNELLING, N. J.). Mem. geol. Soc. London 10, Blackwell, 211-260.
- BERGGREN, W. A., KENT, D. V., FLYNN, J. J. & VAN COUVERING, J. 1985: Cenozoic geochronology. Bull. geol. Soc. Amer. 96, 1407–1418.
- BERGGREN, W. A. & MILLER, K. G. 1988: Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology 34, 362-380.
- BERGGREN, W. A. & VAN COUVERING, J. A. 1974: The late Neogen biostratigraphy, geochronology, and paleoclimatology of the last 15 millions years in marine and continental sequences. Paleogeogr. Palaeoclimatol. Palaeoecol. 16, 1-216.
- BERLI, S. 1985: Geologische Untersuchungen der Sommersberg-Zone (Kt. Appenzell-Aussenrhoden und St. Gallen). Ber. St. gall. natwiss. Ges. 82, 112–145.
- BIZON, G. & MÜLLER, C. 1979: Report of the working group on micropaleontology. Ann. Géol. Pays Helléniques, I.h.s., fasc. III, VIIth int. Cong. Med. Neogene; Athènes, 1335–1364.
- BLAU, R. V. 1966: Molasse und Flysch im östlichen Gurnigelgebiet. Beitr. geol. Karte Schweiz, N. F. 125.
- BLOW, W. H. 1969: Late middle Eocene to recent planktonic biostratigraphy. Proc. 1st int. Conf. on Planktonic Microfossils, Genève (1967) 1, 199-422.
- BOHN-HAVAS, M., BALDI, T., KOKAY, J. & HALMAI, J. 1987: Pectinid assemblage zones of the Miocene in Hungary. Ann. Inst. Geol. Publ. Hung. (Budapest) LXX, 441-446.
- BOLLI, H. M. & SAUNDERS, J. B. 1985: Oligocene to Holocene low latitude planktic foraminifera. In: Plankton stratigraphy (Ed. by BOLLI, H. M., SAUNDERS, J. B. & PERCH-NIELSEN, K.). Cambridge University Press, 155-262.
- BOLLIGER, T. & EBERHARD, M. 1989: Neue Floren- und Faunenfunde aus der Oberen Süsswassermolasse des Hörnligebietes (Ostschweiz). Vjschr. natf. Ges. Zürich 134, 109–133.
- BOLLIGER, T., GATTI, H. & HANTKE, R. 1988: Zur Geologie und Paläontologie des Zürcher Oberlandes. Vjschr. natf. Ges. Zürich 133, 1-24.
- BÜRGISSER, H. M., FURRER, H. & HÜNERMANN, K. A. 1983: Stratigraphie und Säugetierfaunen der mittelmiozänen Fossilfundstellen Hüllistein und Martinsbrünneli (Obere Süsswassermolasse, Nordostschweiz). Eclogae geol. Helv. 76. 733-762.
- BURBANK, D., ENGESSER, B., MATTER, A. & WEIDMANN, M. 1992: Magnetostratigraphic chronology, mammalian faunas, and stratigraphic evolution of the Lower Freshwater Molasse, Haute-Savoie, France. Eclogae geol. Helv. 85, 399-431.
- BUKRY, D. 1973: Phytoplankton stratigraphy, Deep Sea Drilling Project, Leg 20, Western Pacific Ocean. Init. Rep. DSDP 20, 307-317.
- 1975: Coccolith and silicoflagellate stratigraphy, Northern pacific Ocean, Deep Sea Drilling Project, Leg. 32. Init. Rep. DSDP 32, 677-701.
- CARBONNEL, G. 1970: Les ostracodes du Miocène rhodanien. Thèse Univ. Lyon, no d'ordre 654.
- CARBONNEL, G. & JIRICEK, R. 1977: Super-zones et datums à ostracodes dans le Néogène de la Téthys (bassin du Rhône) et de la Paratéthys. Newsl. Stratigr. 6, 23–29.
- CASTEL, M. 1968: Zones de charophytes pour l'Oligocène d'Europe occidentale. C. R. somm. Soc. géol. France 4, 121-122.
- CAVELIER, C. 1972: L'âge Priabonien supérieur de la zone à Ericsonia subdisticha (nannoplancton) en Italie et l'attribution des Latdorfschichten allemands à l'Eocène supérieur. Bull. Bur. Rech. géol. min. 4, 15-24.
- 1975: Le diachronisme de la zone à Ericsonia subdisticha (nannoplancton) et la position de la limite eocène/Oligocène en Europe et en Amérique du Nord. Bull. Bur. Rech. géol. min. 4 3, 201-225.

- 1979: La limite Eocène-Oligocène en Europe occidentale. Mém. Sci. géol. (Strasbourg) 54.

CAVELIER, C. & POMEROL, C. 1986: Stratigraphy of the Paleogene. Bull. Soc. géol. France (8), 22, 255-265.

- CHAROLLAIS, J., GINET, C., HUGUENEY, M. & MÜLLER, J. P. 1981: Sur la présence de dents de mammifères à la base et dans la partie supérieure de la Molasse Rouge du Plateau des Bornes (Haute-Savoie, France). Eclogae geol. Helv. 74, 37-51.
- CHAROLLAIS, J., HOCHULI, P., OERTLI, H., PERCH-NIELSEN, K., TOUMARKINE, M., RÖGL, F. & RAIRIS, J. L. 1980: Les marnes à foraminifères et les schister à Meletta des chaînes subalpines septentrionales, Haute-Savoie. Eclogae geol. Helv. 73, 9-70.
- DANIELS, C. H. VON, CICHA, I. & SPIEGLER, D. 1985: Correlation of Neogene regional stages between the Boreal Tertiary of NW Germany and the Paratethys using Uvigerina (Foram). Abstr. VIIIth Reg. Comm. Mediterr. Neog. Strat. Cong. Budapest, 163-165.
- DEMARCQ, G. 1900: Pectinidés néogènes: proposition d'échelle biostratigraphique pour la Méditerranée. Geobios 23, 149-159.
- Dowsett, H. J. 1989: Application of the graphic correlations method to Pliocene marine sequences. Marine Micropaleont. 14, 3-32.
- ENGESSER, B. 1972: Die obermiozäne Säugetierfauna von Anwil (Baselland). Tätber. natf. ges. Basel 18, 37-363.
- 1987: New Eomyidae, Dipodidae and Cricetidae (Rodentia, Mammalia) of the Lower Freshwater Molasse of Switzerland and Savoy. Eclogae geol. Helv. 80, 943-994.
- 1990a: A preliminary mammal zonation of the upper marine Molasse of Switzerland. In: European Neogene mammal chronology (Ed. by LINDSAY, E. H. et al.). Plenum Press, New York, 177-180.
- 1990b: Die Eomyidae (Rodentia, Mammalia) der Molasse der Schweiz und Savoyens. Systematik und Biostratigraphie. Mém. suisses Paléont. 112.
- ENGESSER, B., MATTER, A. & WEIDMANN, M. 1981: Stratigraphie und Säugetierfaunen des mittleren Miozän von Vermes (Kt. Jura). Eclogae geol. Helv. 74, 893–952.
- ENGESSER, M. & MAYO, N. A. 1987: A biozonation of the Lower Freshwater Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil mammals. Münchn. geowiss. Abh. (A), 10, 67-84.
- ENGESSER, B., MAYO, N. A. & WEIDMANN, M. 1984: Nouveaux gisements de mammifères dans la molasse subalpine vaudoise et fribourgeoise. Mém. suisses de paléontol. 107.
- FASEL, J. M. 1986: Sédimentologie de la Molasse d'eau douce subalpine entre le Léman et la Gruyère. Thèse Univ. Fribourg, no 907.
- FEIST-CASTEL, M. 1977: Etude floristique et biostratigraphique des Charophytes dans les séries du Paléogène de Provence. Geol. Mediterr. 4, 109-138.
- FEJFAR, O. 1988: Tableau stratigraphique de l'Eocène supérieur au Pléistocène. Symp. de Günzburg (non publié).
- FISCHER, H. 1988: Isotopengeochemische Untersuchungen und Datierungen an Mineralien und Fossilien aus Sedimentgesteinen. 1. Glaukonite aus dem Jura, der Molasse und dem Helvetikum (K-Ar, Rb-Sr). 2. ⁸⁷Sr/⁸⁶-Isotopenstratigraphie an marinen und limnischen Mikro- und Makrofossilien. 3. Primärenmineralien aus tertiären Bentoniten und Tuffen (U-Pb, K-Ar). PhD-thesis ETH-Zürich, No. 8733.
- FISCHER, H. OBERLI, F. & MEIER, M. 1989: Zircon dating of Oligocene and Miocene bentonites by the U-Pb method (OS 14-09). Terra Abstr. EUG V, 1, 419.
- FREI, H. P. 1979: Stratigraphische Untersuchungen in der subalpinen Molasse der Nordost-Schweiz zwischen Wägitaler Aa und Urnäsch. Mitt. Geol. Inst. ETH-Zürich, N. F., 233.
- GRAMBAST, L. 1962: Sur l'intérêt stratigraphique des charophytes fossiles: exemple d'application au Tertiaire parisien. C. R. somm. Soc. géol. France 7, 207–209.
- 1964: Indications fournies par les Charophytes pour la stratigraphie du Paléogène. Mém. Bull. Rech. géol. min. 28, 1009-1011.
- 1972: Principes de l'utilisation des Charophytes. Application au Paléogène d'Europe occidentale. Bull. Rech. géol. min. 77, 319-328.
- GREGOR, H. J. 1982: Die jungtertiären Floren Süddeutschlands. Paläokarpologie, Phytostratigraphie, Paläoökologie, Paläoklimatologie. F. Enke Verlag.
- HABICHT J. K. A. 1987: Lexique stratigraphique internaional. Vol 1. Fasc. 7b: Plateau Suisse (Molasse). Commission Géologique Suisse et Service Hydrologique et Geologique National. Birkhäuser, Basel.
- HAQ, B. U., HARDENBOL, J. & VAIL, P. R. 1987: Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167.
- HARDENBOL, J. & BERGGREN, W. A. 1978: A new Paleogene numerical time scale. In: Contribution to the geologic time scale (Ed. by COHEE, G. V., GLAESSNER, M. F. & HEDBERG, H. D.). Amer. Assoc. Petroleum Geol.; Stud. Geol. 6, 213.

- HARLAND, W. B., ARMSTRONG, R. L., COX, A. V., CRAIG, L. E., SMITH, A. G. & SMITH, D. G. 1989: A geologic time scale 1989. Cambridge Univ. Press, Cambridge, Port Chester.
- HOCHULI, P. A. 1982: Organische Mikrofossilien aus Proben der Molasse von Vorarlberg und Teilen des schweizerischen Mittellands. In: Nouveaux résultats biostratigraphiques dans le bassin molassique depuis le Vorarlberg jusqu'en Haute-Savoie (Ed. by JUNG, P.). Doc. Lab. Géol. Fac. Sci. Lyon, H. S. 7, 39–45.
- HÜRZELER, J. 1945: Säugetierpaläontologische Bemerkungen zur Abgrenzung und Unterteilung des Aquitanien. Eclogae geol. Helv. 38, 655-661.
- HUGUENEY, M., BERGER, J. P. & WEIDMANN, M. 1987: Présence de mammifères oligocènes dans la parastratotype de l'Aquitanien. Bull. Soc. fribourg. Sci. nat. 76, 129–135.
- HUMMEL, K. L. 1914: Die Tektonik des Elsgaues (Berner Tafeljura). Ber. natf. Ges. Freiburg i. Breisgau 22, 1-82.
- IACCARINO, S. 1985: Mediterranean Miocene and Pliocene planktic foraminifera. In: Plankton stratigraphy (Ed. by BOLLI, H. M., SAUNDERS, J. B. & PERCH-NIELSEN, K.) Cambridge Univ. Press, 283-314.
- JENKINS, D. G., SAUNDERS, J. B. & CIFELLI, R. 1981: The relationship of *Globigeroides bisphaericus* Todd 1954 to *Praeorbulina sicana* (De Stefani) 1952). J. foram. Res. 11. 262-267.
- KEEN, M. C. 1977: Cenozoic ostracoda-North Atlantic. In: Stratigraphic micropaleontology of Atlantic basin and borderlands (Ed. by SWAIN, F. M). Amsterdam, 467–493.
- 1978: The Tertiary-Paleogene. In: Stratigraphical index of British ostracoda (Ed. by BATE, R. & ROBINSON, E.) Geol. J. (Liverpool), spec. issue 8, 385-350.
- KELLER, B. 1989: Fazies und Stratigraphie der Oberen Meeresmolasse zwischen Napf und Bodensee. PhD-thesis Univ. Bern.
- KISSLING, D. 1974: L'Oligocène de l'extrémité occidentale du bassin molassique suisse. Stratigraphie et aperçu molassique. Thèse Univ. Genève 1648.
- LATELTIN, O. 1988: Les dépôts turbiditiques oligocènes d'avant-pays entre Annecy (Haute-Savoie) et le Sanetsch (Suisse). Thèse Univ. Fribourg 949.
- LATELTIN, O. & MÜLLER, D. 1987: Evolution paléogéographique du bassin des grès de Taveyannaz dans les Aravis (Haute-Savoie) à la fin du Paléogène. Eclogae geol. Helv. 80, 127–140.
- MAGNE, J. 1978: Etude microstratigraphique sur le Néogène de la Méditerranée nord-occidentale. Ed. Lab. Géol. méditerr. Toulouse.
- MAGNE, J., GOURINARD, Y. & WALLEY, M. J. 1987: Comparaison des étages du Miocène inférieur définis par stratotypes ou par zones paléontologiques. Strata (1), 3, 95-107.
- MAI, D. H. 1967: Die Florenzonen, der Florenwechsel und die Vorstellung über den Klimaablauf im Jungtertiär der DDR. Abh. Zentralinst. Geol. (Berlin) 10, 55-91.
- MANUM, S. B., BOULTER, M. C., GUNNARSDOTTIE, H., RANGNES, K. & SCHOLZE, A. 1989: Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104). In: Proceedings of Ocean Drilling Progam, Scientific Results (Ed. by EIDHOLM, THIEDE, J., TAYLOR, E. et al.) Texas A. & M. University 104, 611-661.
- MARTINI, E. 1971: Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. IInd Plankt. Conf. Roma 2, 739-785.
- 1976: Cretaceous to Recent calcareous nannoplankton from the central Pacific Ocean (DSDP leg 38). Init. Rep. Deep Sea Drill. Proj. 33, 383-423.
- MARTINI, E., FAHLBUSCH, V. & HAGN, H. 1986: The Eocene/Oligocene boundary and Latdorfian (Lower oligocene). Newsl. Stratigr. 17, 37-43.
- MAYO, N. A. 1980: Die Archaeomyiinae Lavocat 1952 (Rodentia, Mammalia) von Oensingen und Mümliswil (Oberoligozän) im Zusammenhang mit der stratigraphischen Einstufung dieser beiden Fundstellen. Eclogae geol. Helv. 73, 1095-1107.
- MEIN, P. 1975: Résultats du groupe de travail des vertébrés. In: Report on activity of the Reg. Comm. Mediterr. Neog. Stratigr. working group (1971-1975). Bratislava, 78-81.
- 1979: Rapport d'activité du groupe de travail des vertébrés: mise à jour de la biostratigraphie du Néogène basée sur les mammifères. Ann. géol. Pays hellén. III, 1367-1372.
- MOJON, P. O., ENGESSER, B., BERGER, J. P., BUCHER, H. & WEIDMANN, M. 1985: Sur l'âge de la Molasse d'eau douce inférieure de Boudry, Neuchâtel. Eclogae geol. Helv. 78, 631-667.
- MÜLLER, C. 1979: Nannoplankton. In: Report of the working group on micropalaeontoly (Ed. by BIZON, G. & MÜLLER, C.). Ann. Géol. Pays. Hellen., h.s. III, VIIth int. Cong. Med. Neogene, Athènes, 1335–1364.

- 1981: Calcareous nannoplankton and silicoflagellates. G. Geol. (2). XLIV/I-II, 33-35.

MUMENTHALER, T., PETERS, T. & WEIDMANN, M. 1981: Niveau de bentonite dans la Molasse grise de Lausanne (USM-"Aquitanien"). Eclogae geol. Helv. 74, 639–650.

- ODIN, G. S. 1989: Ages radiométriques récemment obtenus dans la séquence stratigraphique paléogène. Bull. Soc. géol. France (8), V, 145–152.
- ODIN, G. S. & MONTANARI, A. 1989: Age radiométrique et stratotype de la limite Eocene-Oligocène. C. R. Acad. Sci. (Paris) 309, II, 1939–1945.
- OKADA, H. & BUKRY, D. 1980: Supplementary modification and introduction of code number to the low-latitude coccoliths biostratigraphic zonation (Bukry, 1973, 1975). Marine Micropaleont. 5, 321-325.
- PERCH-NIELSEN, K. 1985: Cenozoic calcareous nannofossils. In: Plankton stratigraphy (Ed. by Bolli, H. M., SAUNDERS, J. B. & PERCH-NIELSEN, K.). Cambridge Univ. Press, 427–455.
- POWELL, A. J. (1986): A dinoflagellate cyst biozonation for the late Oligocene to middle Miocene succession of the Langhe region, Northwest Italy. Amer. Assoc. Sedim. Petrologists Contr. ser., no 17, 105-127.
- RANGHEARD, Y., DEMARCQ, G., MÜLLER, C., POIGNANT, A. & PHARISAT, A. 1990: Données nouvelles sur le Burdigalien du Jura interne: paléobiologie, biostratigraphie et évolution structurale. Bull. Soc. géol. France (8), VI, 479-486.
- RIVELINE, J. 1985: Les charophytes du Paléogène et du Miocène inférieur d'Europe occidentale. Cah. Micropaléont. 1-225.
- RÖGL, F., HOCHULI, F. & MÜLLER, C. 1979: Oligocene-early stratigraphic correlations in the Molasse basin of Austria. Ann. géol. Pays hellén. H.S. 3, 1045–1049.
- SCHAUB, S. 1925: Die hamsterartigen Nagetiere des Tertiärs und ihre lebenden Verwandten. Abh. schweiz. paläont. Ges. 45, 1–110 (1921–25).
- SCHERER, F. 1966: Geologisch-paläontologische Untersuchungen im Flysch und in der Molasse zwischen Thunersee und Eriz. Matér. Carte géol. Suisse 127, n.s.
- SCHMIDT-KITTLER, N. (ED.) 1987: International Symposium on mammalian biostratigraphy and paleoecology of the European Paleogene, Mainz, February, 18th-21st 1987. Münchn. geowiss. Abh. (A), 10, 1-312.
- SCHOEPFER, P. 1989: Sédimentologie et stratigraphie de la Molasse Marine supérieure (OMM) entre le Gibloux et l'Aar (Suisse). Thèse Univ. Fribourg.
- SCHOEPFER, P. & BERGER, J. P. 1989: "Burdigalian" and "Helvetian" in Western Switzerland. Geol. carpathica 40, 17-21.
- SCHWARZ, J. 1985: Revision der Charophyten-Flora der Süsswasserschichten und des Kalktertiärs im Mainzer Becken (Ober-Olizän-Unter-Miozän). Mainzer geowiss. Mitt. 14, 7–98.
- 1988: Revision der Charophyten-Floren des "Prä-Aquitaniens" (Unter- bis Oberoligozän) im Mainzer Becken. Paläontographica (B), 210, 151-191.
- 1989: Nannoplankton-Säugetiere-Stratotypen im Oligozän. Comm. écrite non publié, 6.2.1989.
- SNELLING, N. J. 1985: An interim time-scale. In: The chronology of the geological record (Ed. by SNELLING, N. J.). Mem. geol. Soc. (London) 10, Blackwell, 261–265.
- SPIEGLER, D., GRAMMANN, F. & DANIELS, C. H. VON 1988: Planktonic foraminifera: the description of the interregional zonation (NPF-zones). In: The northwest European Tertiary basin. Results of the IGCP Project no 124 (Ed. by VINKEN, R.). Geol. Jb. (A), 100, 152-161.
- STEHLIN, H. G. 1909: Remarques sur les faunules de mammifères de couches éocènes et oligocènes du bassin de Paris. Bull. Soc. géol. France (9), 4, 488-520.
- STEHLIN, H. G. & SCHAUB, S. 1951: Die Trigonodontie des Simplicidentalen Nager. Mém. suisse Paléont. 67, 1-385.
- STEININGER, F. 1988: Vom Zerfall der Tethys zu Mediterran und Paratethys im Neogen. Tagungsh. 67. Jvers. schweiz. Paläont. Ges. 27–29.5.88, 84–88.
- STEININGER, F., BERNOR, R. & FAHLBUSCH, V. 1990: European Neogene marine/continental chronologic correlation. In: European Neogene mammal chronology (Ed. by LINDSAY, E. et al.), Plenum Press, New York, 15-46.

STEININGER, F., WESSELLY, G., RÖGL, F. & WAGNER, L. 1987: Tertiary sedimentary history and tectonic evolution of the eastern alpine foredeep. G. Geol. 48, 285-297.

- THALER, L. 1965: Une échelle de zones biochronologiques pour les mammifères au Tertiaire d'Europe. C. R. Soc. géol. France, fasc. 4, 118.
- 1972: Datation, zonation et mammifères. Mém. Bur. Rech. géol. min. 77, 411-424.
- TOBIEN, H. 1971: Oeningien. In: Stratotypes of Mediterranean Neogene stages. G. Geol. (2), XXXVII/II, 135-146.
- 1987: The position of the "Grande Coupure" in the Paleogene of the upper Rhine Graben and the Mainz Basin. Münchn. geowiss. Abh. (A), 10, 197-202.

- 1988: Einige Daten zur Systematik und Biostratigraphie der Rodentier und Lagomorphen (Mammalia) aus dem Kalktertiär des Mainzer Beckens (Oberoligozän-Untermiozän). Geol. Jb. (A), 110, 345-358.
- UFFENORDE, H. 1981: Ostracoden aus dem Oberoligozän und Miozän des Unteren Elbe-Gebietes (Niedersachsen und Hamburg, NW deutsches Tertiärbecken). Paläontographica (A), 172, 103–198.
- 1986: Stratigraphical and paleoecological aspects of Upper Oligocene and Miocene ostracoda of Lower Saxony. In: Nordwestdeutschland im Tertiär (Ed. by TOBIEN, H.) Beitr. reg. geol. Erde 18 (Berlin), 422–436.
- VASS, D., KOVAC, M., KONECNY, V. & LEXA, J. 1988: Molasse basins and volcanic activity in west Carpathian Neogene. Its evolution and geodynamic character. Geol. carpathica 39, 539-561.
- VASS, D., REPCOK, I., BALOGH, K. & HALMAI, J. 1987: Revised radiometric time-scale for the central Paratethyan Neogene. Ann. Inst. Geol. Publ. Hung. LXX, 423-434.
- VINKEN, R. (ED.) 1988: The northwest European Tertiary basin. Results of the IGCP Project no 124. Geol. Jb. (A), 100.
- WEIDMANN, M. 1984: Le Sidérolithique et la molasse basale d'Orbe (VD). Bull. Soc. vaud. Sci. nat. 77, 135–141.
 1986: Quelques observations nouvelles sur la molasse du Jura. Bull. Soc. neuchâtel. Sci. nat. 109, 153–159.
- WEIDMANN, M., HOMEWOOD, P. & FASEL, J. M. 1982: Sur les terrains subalpins et le wildflysch entre Bulle et Montreux. Bull. Soc. vaud. Sci. nat. 76, 151-183.
- WENGER, W. F. 1987: Die Foraminiferen des Miozäns der bayerischen Molasse und ihre stratigraphische sowie paläogeographische Auswertung. Abh. bayer. Staatssamml. Paläont. hist. Geol. 16, 173-340.
- WILLIAMS, G. L. & BUJAK, J. P. 1985: Mesozoic and Cenozoic dinoflagellate. In: Plankton stratigraphy (Ed. by BOLLI, H. & SAUNDERS, J. B. & PERCH-NIELSEN, K.) Cambridge Univ. Press, 847–964.

Manuscript received 9 March 1992 Revision accepted 19 June 1992 •

A: Mesozoic & Siderolithic

Localities

Ages, Biozones & References

1.	Charmoilles	Mammal level Charmoilles (Hummel 1914, Engesser 1990)
2.	Vermes 2	Mammal level Vermes 2 (Engesser, Matter & Weidmann 1981)
3.	Anwil and Mt. Chaibeux	Mammal level Anwil (Engesser 1972, 1990)
4.	Le Locle	Mammal level Anwil (Engesser 1990, Weidmann, Engesser, Berger unpubl.)
5.	Vermes 1	Mammal level Vermes 1 (Engesser, Matter & Weidmann 1981)
6.	Eplatures	Charophyte-zone Ginsburgi (Weidmann, Berger unpubl.)
7.	Ponts de Martel	Nannozone NN 5 (Weidmann, Berger, unpubl.)
8.	La Pesse, Les Verrieres, etc.	Nannozone NN4 (Rangheard et al. 1991)
9.	Tavannes	Mamal level Bierkeller (De Beaumont de Chambrier & Weidmann 1984, Engesser 1990)
10.	Motier	Charophyte zone Nitida or Berdotensis (Weidmann & Berger unpubl.)
11.	La Chaux	Mammal level La Chaux (Schaub 1925, Stehlin & Schaub 1950, Engesser 1990)
12.	Brochene Fluh	Mammal levels Brochene Fluh 53 and Küttigen (Engesser 1990) Charophyte zone Notata (Berger 1986 + unpubl.)
13.	Rochefort	Mammal level Rickenbach or Küttigen (Weidmann 1986) Charophyte zone Notata (Berger 1986, Weidmann 1986)
14	Savagnier	Charophyte zone Ungeri or Notata (Weidmann & Berger unnubl.)
15	Saicourt	Charophyte zone Ungeri or Notata (Weidmann & Berger unpubl.)
16	Reconvilliers	Charophyte zone Ungeri or Notata (Weidmann & Berger unpubl.)
17.	Mümliswil	Mammal level Mümliswil (Mayo 1980, Engesser & Mayo 1987)
		Charophyte zone Major or Microcera (Berger 1986)
18.	Courgenay, top	Nannozone NP25 (Weidmann & Berger unpubl.)
19.	Courgenay (Middle) and Birse	Nannozone NP23 and NP24 (Weidmann & Berger unpubl.,
	o , (, ,) , (,) , (de Kaenel unpubl.)
20.	Dornachbrugg	Mammal level Balm (Engesser & Mayo 1987)
21.	La Scheulte and Delémont 1	Charophyte zone Tuberculata (Weidmann & Berger unpubl.)
22 a	, b, c. Bentonites of the OSM	14,4 m.a., 15,2 and 15,4 m.a. (Fischer 1988)
23.	Top OSM East Switzerland	MN 6-?7 (Bolliger, Gatti & Hantke 1988, Bolliger & Eberhardt 1989, Berli 1985)
24.	Rümikon and Oeschgraben	Mammal level Rümikon (Engesser 1990)
25.	Pulverhüsli, Hüllistein, etc.	Mammal level Vermes 1 (Bürgisser, Furrer & Hünermann 1983, Engesser 1990)
26.	Hirschthal	Mammal level Hirschthal (Engesser 1990)
27.	Pectinids of StGall. Formation	Pecten zone PN 3, EggenburgOttnangian Fauna
		(This study, after Demarcq 1990 and Keller 1989)
28	-29. Strontium analyses	
	St. Gall. Formation	18 m.a. and 19 m.a. (Fischer 1988, Keller 1989)
30.	Hintersteinbruch	Mammal level Hintersteinbruch (Keller 1989, Engesser 1990)
31.	Bierkeller	Mammal level Bierkeller (Engesser 1990)
32.	"Helvetian" Belpberg and Gibloux	Pecten zone PN 3 (This study, after Demarcq 1990 and Schoepfer 1989)
		Nannozone NN 3 (Schoepfer 1989)
		Planktonic Zone N6 (Schoepfer & Berger 1989)
33.	Brüttelen	Mammal level Brüttelen 2 (Berger 1985, Engesser 1990)
34.	Vully	Mamal level Vully 1 (Huerzeler 1945, Ramseyer 1952,
		Engesser & Mayo 1987)
		Charophyte zone? Berdotensis (Berger 1983, 1986)
35.	Mèbre 698, Mauguettaz, Cheyres	Mammal level La Chaux (Berger 1985, Engesser 1990) Charophyte zone Berdotensis (Berger 1983 + unpubl.)

36	Ruchwil	Planktonic Foram, zone N 5 (Berger 1985)
37	Augine	Planktonic Foram, zone N 5 (Berger 1985)
47.	, rugine	Mammal level La Chaux or Vully 1 (Berger 1985)
		Charophyte zone Berdotensis (Berger 1983, 1985 + unpubl.)
38	Bois Genoud	Mammal level Fornant 11 (Mummenthaler, Peters & Weidmann
50.	bols ochoud	1981)
		Charophyte zone? Berdotensis (Mumm et al. 1981, Berger 1983)
39	Brove 555	Mammal level La Chaux (Berger 1985)
40	Findreuse and Fornant	Position according to the ages of Mammal levels (Burbanks et al.
		1992)
41.	Findreuse and Fornant	Position according to paleomagnetic datas. (Burbanks et al. 1992)
42.	Wynau	Mammal level Wynau 1 (Engesser 1990)
43.	Oensingen	Mammal level Oensingen (Mayo 1980, Engesser & Mayo 1987)
44.	Talent Profil	Mammal levels from Grenchen 1 to Brüttelen 1 (Engesser,
		Hurzeler & Mayo 1987, Weidmann unpubl.)
45.	Balm	Mammal level Balm (Engesser & Mayo 1987)
46.	Orbe	Charophyte zone Tuberculata (Weidmann 1984, Berger 1986)
47.	Seligraben	Mammal level Fornant 11 (Blau 1966, Engesser 1990)
48.	Prässerenbach and Waldenburg	Mammal level Boudry 2 (Engesser 1990)
49.	Gérignoz	Mammal level Brochene Fluh 53 (De Beaumont & Weidmann
		1981, Engesser 1990)
		Charophyte zone Notata (De Beaumont & Weidmann 1981,
		Berger 1986)
50.	Top "Molasse à Charbon"	Mammal level Küttigen (Engesser, Mayo & Weidmann 1984)
		Charophyte zone Notata (Fasel 1986, Berger 1986)
51.	Schwendibach	Mammal level Oensingen (Engesser & Mayo 1987)
52.	Bumbach	Mammal level Bumbach (Engesser & Mayo 1987)
		Charophyte zone Major or Microcera (Berger 1986)
53.	Foron	Mammal zones MP 23-24 (Charollais, Ginet, Hugueney & Muller
		1981, Engesser & Mayo 1987)
54.	Lovagny and La Combe	Mammal level Lovagny (Engesser & Mayo 1987, Engesser 1990)
		Charophyte zone Major or Microcera (Berger 1986)
55.	Ruisseau de Ruz	Charophyte zone Major or Microcera (Berger 1986)
56.	Vaulruz	Mammal zone MP22 ("Villebramar") (Weidmann,
		Homewood & Fasel 1982)
57.	"Val d'Illiez Formation"	Planktonic zone P18 to P20 (Weidmann, Homewood & Fasel
		1982)
		NP21-23 (Berger unpubl.)
50		Dinoflagellate Gochti-zone (Powell & Berger unpubl.)
58.	lop "Marnes a Forams.", Aravis	Planktonic zone P18 to P19 (Lateltin & Mueller 1987)
59.	Mar. Forams/ laveyannaz bound.	Nannozone NP21 (Lateltin & Mueller 1987)
60.	Hellschwandbach, "subalp. Flysch"	Dinoflagellate zone Defl. heterophlycta (Hochuli 1982)
61.	Marnes a Forams. & Schistes a Melle	ta", Bornes Massiv
		Palynozone P19 to P20a, and Dell. heterophlycta-zone.
		Charalleia Hashuli Ostili et al. 1020
62	Crisicarmanael from Crisicar	Dirad W constitution (Headwill 1980)
02.	Grisigermergel from Grisigen	Dinoli, w. gochti zone (Hochuli 1982)
03.	Grisigermergel from Rietbad	Nannozone NP 24 (Frei 1979).

ASSE SUBALPINE ATEAU" MOLASSE
$ \begin{array}{c} $

CORRELATIVE CHART OF THE EUROPEAN OLIGOCENE & MIOCENE

JEAN-PIERRE BERGER

	a) HAQ & al. 1 b) STEININGE c) BERGGREN BERGGREN BERGGREN SNELLING d) BERGGREN e) STEININGE	G 1985	 ODIN 1989, ODIN & MONTANARI 1989 MARTINI & al. 1986 ACAVELIER & POMEROL 1986 VASS & al. 1987 & 1988 BOHN-HAVAS & al. 1987 DEMARCQ 1990 SPORES & POLLENS in VINKEN 1988 DEMARCQ 1990 				m) DINOFLAGELLATES in VINKEN 1988 n) ROEGL, HOCHULI & MUELLER 1979. o) FOWELL 1986 p) WILLIAMS (1977 presented by WILLIAMS & BUJAK 1985 q) RIVELINE 1985 and CAVELIER & FOMEROL 1986 r) BERGER 1986 and 1992 (GEC) s) SCHWARTZ 1985, 1989, 1989 and pers. comm.				t) u) v) & BUJAK 1985 w) OL 1986 x) y) mm. z)	t) FEJFAR 1998 u) ALBERDI & AGUIRRE 1977 v) TOBIEN 1997 + IN VINKEN 1998 w) AGUILAR 1981 x) IGCP 124, VINKEN 1988 y) STEININCER, WESSELY & ROEGL 1997 2) BALDI 1984 :					
	MAGNETO -	ЕРОСН	PLANKTON FORAMINI	VIC IFERA	CALCAR. NANNOPL.	PECTI- NIDS	PALY	NO -	CHARO- PHYTES	EUROPE MAMMA ZONES	AN L	SWISS MAMMAL	MAMMALIAN	MEDITERRANEAN	POSITION OF	PARATETHYS	
Ma	e C3-C7 & 4-23 £ C13-C16	e: Late OligPliocene g: EocOlig. Boundary	b: Na-N19 g i: N7-N10 d e: N4-N19 f	c P16-P21 1: P17-N45 1: P15-P18	e: NP25-NN12 g: NP19-NP21 i: NP25-NN12 f: NP18-NP21	LOINES	o: Neog h: Paleo	ene (LAN gene		c MNI-MP h: MP21-M e: MN zone v: MP zone	N14 IN1 es es			c: Chattian-Zanclean g: Priabonian -Rupelian e: Chattian-Zanclean x: Rupelian-Chattian		e: Egerian-Dacian y: Priabonian-Egerian	Ma
	ab dai 1	acbgfh	acgo	diff	a c g f	jk	Im	nhF	qris	hb t u	vw	ENGESSER 1990 ENG.& MAYO 198	ucet	a c ^D gl ^e xh	acgh	b i t y :	z
-5	4 4 C 3	PLIOCENE	N 19	N19 N18	NN 12	P N	SP			MN 14	14		RUSCINIAN		Lanciae.	DACIAN	- 5-
Ł	5 5 C 5					PN	10 a			MN 13	13 E3		Late	MESSINIAN			
F	6 6 ³⁴ 3A 6		N 17	N17	MN 11	-	20	actiele			12 D				ª ă IIIII	PONTIAN /	-
F	7 7 c C							dinium		MN 12			TURO				
F	9 9 C C -		N 16		NN 10	PN 6	D	Dansili			11 D		Early	TORTONIAN	Tortonia		
F	91	-		-	NN9 NN		SP 19	bscura			D						
-10	11 C 1		N15	N16	NNB 10		-	ropsis c		MN 10	-' 10 ²				╞╧╗╴╌┥	PANNONIAN	-10-
F	12 10 10	•	N 14		NIN7			sosphae			9 D	CHARMOILLES	VALLESIAN				-
F	13 11 C 1		N 10 N	N15	NIN 9 NIN 8	PN 5b	9c D	LAN C AIB		MN 8	1	VERMES 2					
F	14 12 C 12	LU L	14	N13	6 NN 7		18	ANT	lino		c	ANWIL	ASTARACIAN	SERRAVALIAN	vellien	SARMATIAN	
È		Z	N 11 13 N	N12 N1	NN 6 ^{,7}	e PN	D	ANG		MN 7	7				Serie		
-15	15 AD		N 10 12 N 11	N 10	NIN	Fiabellipe	96 17	5 B C		MN 6	6 4			H	8		15
E	C 58		N 10		NN 5 6			ysta fal		1	C3	RUMKON			nahian Man	BADEMAN	-
F	16 0 50	-	NS	NB	<u> </u>	auiqle s	H	AN 4 Lejeunc		MIN 5 46	5 C	VERMES 1					
F		Σ	N7	N7		Chiamy Chiamy		E .		4a	4	HIRSCHTHAL				KARPATHIAN	
F	C 5D		N 6	NG	NN 3	manada	Sa D	-Bian F	RGI	MPI 4		WATTWIL		BURDIGALIAN		OTTNANGIAN	
F	17 C 5E			N5	3	<u>स</u> PN ड ड 3a	1.6	"Ottna	GINSBU			HINTERSTEINBRUCI	R		digehen		-
-26	19 - C 6 15					s submain	SP	C L		D MN 3	3	DIERKELLER	.		Bur		20-
F	20 19 20		N 5		NIN 2		Bb	aeridiur	 Si					gr.	Burd	EGGENBURGIAN	
F	21 20 21					Chi 919		LAN LAN	DOTENS			BRUTTELEN 2		H			
F	22 21 C 68 22		t	N4	1 1	PN	/	Neogen A B Cc		MN 2	MN 2b A5	VULLY-1	B		Aquitanan		-
E			N4 a	-	NN 1	Chlamys	/	ABA	NITIDA		A4 A3	FORNANT-11	AGENIAN				-
F	23 ²² C 6C					PN	D	- 00	474	MP MN 1	OE dw A1	ROCHENE FLUH -5:			5 I.		
-25	1			ł	_	ľ	5a 15	ALAN	- TON	· · · · · · · · · · · · · · · · · · ·	MP 29	BIOWENDAOU				EGERIAN	25
F	C 7	ш	P 22		NP 25			lone			MP 28	FORNANT-6	N	٨	Neochalt		
F	Ca	Z					1 1	ogene	UNGEF	MP 28	MP 27	FORNANT-7 BONINGEN AARWANGEN-1	ARVER		atten		
F		ш О	- <u> </u>	_			11	dophora	RAI-	/ 26	MP 26 MP	WYNAU-1 MUMLISWIL- HARDE			Centreer		-
F	C 9	0	b	, [1		m partis Chlamy	ICROC	MP 25_	MP	BUMBACH-1		. /	fochatile		-
-30		5	P 21	-	NP 24		7 D	pleridiu mlandia	 	'	24	GRENCHEN-1	SUEVIAN	<			30-
-	C 10	_	а	ŀ			14	Chiro Chiro Sum-Sa		MP 24	MP 23			5			
E	C 11			-			1	Pale disper	((MP 23		LOVAGNY		Å	el	L L L L L L L L L L L L L L L L L L L	
-		0	P 20		NP 23	4	SP D	Conde	MAJO	``	MP 22				Rupelia	RUPELIAN	
F	C 12 C	Δ	19/20 P 19	18	NP		6 13	Chirop	D, I	MP 22		BALM		/ /	an & Stern Properte		7
F	13			P 17	21		11	Paleog.	S I	·, `\	MP 21			/ /	Rupeli. Pian		
-35	15	H	P 18	P 16	NP 22 19 /20		i /]	Sonna B	PINGUI	MP 21		-		н 🚦 / //	E S		35
F	C 13			NL	NP 21	5	SP D	pulosa	NE A T		MP 20			╶┐│┞╿╿│	aldorfian		1 1
F			P 17	P 15		ſ	5 12	PalZ(isselovia irata ang D	UPERZG	MP 20	MP 19	NORMONT	HEADONIAN		Priaboni Ponisin Ponisin	PRIABONIAN	
[C 15	EOCENE	P 16 P 17		18			18 K	5 2	19	MP 18	- ENTREROCHES		PRIABONIAN	Pris		

Plate 2. Correlative Chart of the European Oligocene and Miocene

H = Epochs- and Mediterrannean Stages boundaries proposed by HARLAND & al. 1989