Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 80 (1987)

Heft: 2: Beiträge zur Geologie der Nordschweiz : Symposium "Geologie der

Nordschweiz"

Artikel: Biostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze

der Bohrungen Weiach, Beznau, Riniken und Schafisheim

(Nordschweiz)

Autor: Tröster, Joachim

DOI: https://doi.org/10.5169/seals-166005

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eclogae geol. Helv.	Vol. 80	Nr 2	Seiten 431-447	Basel, August 1987
Eclogae geol. Helv.	V 01. 80	181.2	Seiten 431–447	Basel, August 1967

Biostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze der Bohrungen Weiach, Beznau, Riniken und Schafisheim (Nordschweiz)

Von Joachim Tröster¹)

ZUSAMMENFASSUNG

Mit Hilfe von Mikrofossilien, vor allem von Ostrakoden, kann in vier Bohrungen der Nordschweiz das obere Toarcium gegliedert und die Grenze Toarcium/Aalenium charakterisiert werden.

RÉSUMÉ

Des microfossiles, surtout les Ostracodes, permettent de subdiviser le Toarcien supérieur et de caractériser la limite Toarcien/Aalénien de quatre forages de la Suisse septentrionale.

ABSTRACT

Microfossils, mainly ostracodes, allow to subdivide the upper Toarcian and to separate Toarcian from Aalenian strata in four wells from northern Switzerland.

Einleitung

Die vorliegende Untersuchung hatte die stratigraphische Gliederung des Obertoarciums der Bohrungen Weiach, Beznau, Riniken und Schafisheim mit Hilfe von Foraminiferen und Ostrakoden zum Ziel (Fig. 1). Eine genaue Untersuchung der Faunenentwicklung an der Toarcium/Aalenium-Grenze erbrachte den Nachweis für Leitformen in diesem Bereich. Die Gliederung beruht auf insgesamt 55 bearbeiteten Proben. Auf Grund der guten Faunenübereinstimmung liessen sich die vier Bohrungen an die von KNITTER & RIEGRAF (1984) für das Wutachgebiet erarbeitete Zonen- und Subzonengliederung anschliessen.

Vergleiche mit anderen Untersuchungsgebieten werden durch die uneinheitliche Taxonomie der Mikrofossilien, sowie durch die z.T. nicht durch Ammoniten belegte Zonengliederung, sehr erschwert. Es fehlt eine kritische taxonomisch zusammenfassende Arbeit, die jedoch im Rahmen dieser Untersuchung nicht erfolgen kann. So beschränkt sich dieser Bericht auf die Darstellung der aufgefundenen, wichtigeren Mikrofossilien und verzichtet auf überregionale Vergleiche.

¹) Institut und Museum für Geologie und Paläontologie der Universität Tübingen, Sigwartstr. 10, D-7400 Tübingen.

J. Tröster

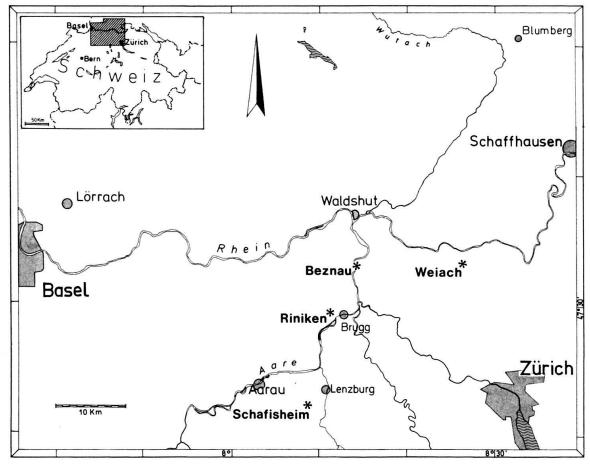


Fig. 1. Lage der untersuchten Bohrungen

Die bis jetzt in dieser Richtung erschienenen neueren Arbeiten sind stratigraphisch zu ungenau und fassen zumeist den hier untersuchten Bereich (Toarcium-Aalenium) zusammen. Hier sind unter anderem die Arbeiten von Brouwer (1969), Copestake (1985) und Exton & Gradstein (1984) zu nennen. So haben die Ergebnisse dieses Berichtes nur für die untersuchten Bohrungen ihre Gültigkeit und müssen bei anderen zu untersuchenden Profilen neu überprüft werden.

Nachfolgend sollen die Besonderheiten der einzelnen Bohrungen kurz erläutert werden. Die Ergebnisse der mikropaläontologischen Untersuchung sind den anschliessenden Figuren zu entnehmen.

Bohrung Weiach (Fig. 3)

Der den Jurensis-Mergeln entsprechende Abschnitt wird mit Hilfe der Ostrakoden-Zonierung von KNITTER & RIEGRAF (1984) aufgegliedert. Allerdings war es nicht möglich, die Zonen I und VIII nach KNITTER (1983) nachzuweisen.

Der oberste Teil der aalensis-Zone konnte mikropaläontologisch nicht belegt werden. Der recht scharfe lithologische Wechsel zwischen den hellgrauen Kalkmergeln der Jurensis-Mergel und den schwarzgrauen Tonen des Opalinus-Tones, der in allen vier untersuchten Bohrungen zu beobachten ist, findet dadurch eine Erklärung. Ob und wie weit diese Schichtlücke in den unteren Dogger reicht, kann nicht entschieden werden.

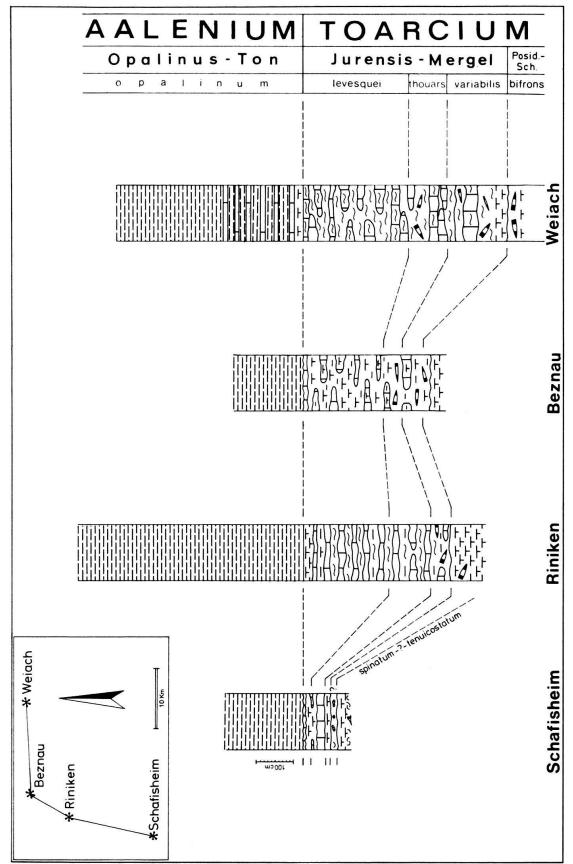


Fig. 2. Mächtigkeitsverhältnisse, Zonengliederung und Toarcium/Aalenium-Grenzziehung in den Bohrungen Weiach, Beznau, Riniken und Schafisheim (Nordschweiz).

J. Tröster

Die mikropaläontologischen Ergebnisse wurden gestützt durch Ammonitenfunde in den Proben (Bestimmung Dr. W. Riegraf, Münster):

Wei. 3: Alocolytoceras sp. cf. A. coarctatum (POMPECKJ) = levesquei/moorei-Subzone Wei. 4 und Wei. 6: Pleydellia subcompta (BRANCO) = aalensis-Subzone

Bohrung Beznau (Fig. 4)

Diese Bohrung ist das einzige Profil, bei dem die unterste Ostrakodenzone (I) nachgewiesen werden konnte. Sie ist an das Auftreten von Kinkelinella (Ektyphocythere) bucki geknüpft.

Die Probe Bez-1 ist auf Grund der Foraminiferenfauna in die fibulatum-Subzone (oberes U.-Toarcium) zu stellen.

Eine weitere Besonderheit stellt das Nicht-Auftreten der Ostrakodenart Aphelocythere ramosa dar. Sie ist für die Ostrakodenzone VII kennzeichnend und wurde bei den angrenzenden Bohrungen Weiach und Riniken sicher nachgewiesen. Ökologische Gründe, wie sie Knitter & Ohmert (1983) für das Fehlen von Aphelocythere ramosa im Profil Schwärze bei Badenweiler (S Freiburg) anführen, kann man hier wohl ausschliessen. Somit fehlt die Ostrakodenzone VII und VIII (mittlere und obere aalensis-Subzone) in diesem Profil. Die Frage, ob die beiden Zonen und eventuell ein Teil des untersten Aalenium in der die Grenze bildenden Kalkmergelbank vorliegen, lässt sich von mikropaläontologischer Seite nicht beantworten.

Bohrung Riniken (Fig. 5)

Die Untergliederung der Jurensis-Mergel schliesst sich eng an diejenige in der Bohrung Weiach an. Auffallend ist die geringe Mächtigkeit des mit der variabilis-Zone korrelierten Abschnittes. Hier ist mit einer teilweisen Kondensation zu rechnen, was auch die in diesem Bereich auftretenden Beleminitenanhäufungen andeuten. Cephalopoden (Bestimmung Dr. W. Riegraf) wurden in folgenden Proben gefunden:

Rin. 3: Dactylotheutis semisulcata (MÜNSTER) = thouarsense-Zone

Rin. 7: Pleydellia sp. cf. P. subcompta (Branco) = aalensis-Subzone

Rin. 8: Leioceras sp. cf. L. opalinum (REINECKE) = opalinum-Subzone.

Bohrung Schafisheim (Fig. 6)

Mit ca. 70 cm sicher nachgewiesenem Obertoarcium ist dies mit Abstand das geringmächtigste Profil dieser Untersuchung. Es treten aber dennoch innerhalb des Profils keine Schichtlücken auf. An der Unter- und Obergrenze sind jedoch grössere Schichtlükken und/oder Kondensationen festzustellen.

Die beiden unteren Mikroproben können auf Grund ihrer Faunenführung nach RIEGRAF (1985) sowohl dem Ober-Pliensbachium als auch dem unteren Unter-Toarcium zugehören. Wahrscheinlicher ist jedoch aus eigener Erfahrung, dass sie in das Ober-Pliensbachium zu stellen sind. Der Kondensationshorizont zwischen den Proben Sha-2 und Sha-3 könnte somit oberstes Pliensbachium bis unterstes Ober-Toarcium repräsentieren.

		B	20	hr	una	\//	=12	ACH			Ver Fo	brei oran	tung ninif	der eren	stra	ıtigr	aphi			htigs kode			C	luantito	itive Verbreit Mikrofossilg	ung ausgo Iruppen	ewählt	ter	Beg	leit- ina
				Sc	hweiz on Zürid	zer J	lura	ì		rassica ensis	ıs fontinensis subcretaceus	p.	ortnamtonensis riebeli tibia	laris hrata iezi	rbignyi lithica	triata a pulchra	-2 cadomensis	praecauomensis kuhni ramosa	cribra losa	<pre>K.) costata K.) fischeri K.) sermoisensis</pre>	here) furcata ea gallemannica	sa ventriosa supratoarcensis tarda	Aggl. Foraminiferen(insg.)	Thurammina jurensis	Kalksch. Foraminiferen (insg.)	des buil		Ostracoda	mmonitennuklei (pyrit.) Gastropoden (pyrit.)	n (pyrit.) menres1
Stufe	Zone	Subzone	Formation	Teufe [m]	Lithologie	Proben Nr.	Ostrakoden- zonierung	Stratigraphiso Kriterien	che	Lagenammina ju Thurammina jur	Kecphax metens Ammobaculites Ammobaculites	Trochammina ss Tritaxis sp.	Ophtalmidium t Ophtalmidium t Nodobacularia	Nodosaria regu Citharina clat Citharina coll	Lenticulina do Marginulina oo	Palmula tenuis Pseudonodosari	Paracypris sp. Cytherelloidea	Aphelocythere Aphelocythere	Cytheropterina Otocythere cal	Kinkelinella (Kinkelinella (KInkelinella (K. (Ektyphocyt Praeschuleride	Praeschuleride Supratoarcina Supratoarcina	Aggl. Foram	Thurammi	Kalksch. F	Jenticulina		Ostr	Ammonitenr Gastropod	Musche
TOARCIUM AALENIUM	variabilis thou.	variabilis th.f.d. lev. [3] aalensis [2] opalinum	Jurensis-Mergel Opalinus-Ton	661.00= 663.50= 665.67= 668.28=		-Wei-10 -Wei-9 -Wei-8 -Wei-6 -Wei-7 -Wei-5 -Wei-4 -Wei-21 -Wei-22 -Wei-23 -Wei-23	II+III 4	The Rippinocytiere bucki ►Cytheropterina cribra ►Cytherelloidea cadomensis ►Praeschuleridea yentriosa ►Aphelocythere kuhni	7 \ \					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	00	00	0		100 E	. 100	100 500 1000	100 500	→ 1605	00 500		

Fig. 3. Mikrobiostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze der Nagra-Bohrung Weiach, Kt. Zürich. (Lithologie nach H.-R. BLÄSI; Ostrakodenzonierung nach KNITTER 1983, 1984).

		R		runa	n RF		VAU			Verbr For	eitung amini	der s feren	tratig	raphis	ch wic Ostro	htigst akoder			Quan	titative Verbreit Mikrofossi	ung ausgewählter Igruppen		Begleit- fauna
			S	chwe Iton Aar	izer	Jur Sch	a		irassica rensis sis	fontinensis subcretaceus	triebeli tibia ularis	thrata liezi orbignyi	olithica striata enuistriata	-2 cadomensis	kuhni a cribra Llosa	A., costata (K.) fischeri (K.) sermoisensis chere) bucki	there) furcata sa gallemannica sa ventriosa supratoarcensis	Aggl. Foraminiferen(insg.)	Thurammina jurensis	Foraminiferen (insg.)	lina ssp.	Ostracoda	ennuklei (pyrit.) spoden (pyrit.) cheln (pyrit.) dermenreste
Stufe	Zone	Subzone	Teufe [m]	Lithologie	Proben Nr.	Ostrakoden- zonierung	Stratigraphisch Kriterien	e	Lagenammina ju Thurammina ju Reophax metens	Ammobaculites Ammobaculites Tritaxis sp.	Ophthalmidium Nodobacularia Nodosaria regu	Citharina clat Citharina coli Lenticulina de	Marginulina oo Palmula tenuis Palmula cf. te	Paracypris sp. Cytherelloides	Aphelocythere Cytheroptering Otocythere cal	Kinkelinella (Kinkelinella (Kinkelinella (K. (Ektyphocyt	K. (Ektyphocyt Praeschuleride Praeschuleride Supratoarcina	Aggl. Foram	Thuramm	Kalksch, F	Lenticulin	Ostr	Ammoniten Gastropo Musche Echinode
TOARCIUM AALENIUM	variabilisthouars levesquei o palin	Posid-Sch. Jurensis-Mergel Opalinus - Ton	64.00= 65.70= 66.47= 67.18=		Bez-14 Bez-13 Bez-12 Bez-11 Bez-10 Bez-9 Bez-8 Bez-6 Bez-5 Bez-4 Bez-3 Bez-2 Bez-1	VII-VIII V IV III Io-II	 Leniculna roveolata ► Palmula cf. tenuistriata ► Kinkelinella (Ektyphocythere) bucki ► Supratoarcina supratoarcensis ► Supratoarcina cribra ► Coptheropterina cribra ► Copthere callosa ► Praeschuleridea gallemannica ► Praeschuleridea ventriosa 	yther nming met											100	1000	1000	90	

Fig. 4. Mikrobiostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze der Nagra-Bohrung Beznau, Kt. Aargau). (Lithologie nach A. MATTER; Ostrakodenzonierung nach KNITTER 1983, 1984).

Bohrung RINI	KFN		Ve	erbr Ford	eitu ami	ng o	der s	stra	tigr	aphi	sch (wi Osti	cht aka	igs ode	ten n			Q	uant		rofoss	eitung ilgrup	ausg pen	ewähl	lter	fo	gleit- iuna
Schweizer Jur Kanton Aargau/Sch	ra 💮 💮	rassica	fontinensis	subcretaceus p.	northamtonensis	tibia	hrata iezi	rbignyi Iithica	triata a pulchra	-2 cadomensis	praecadomensis kuhni	ramosa cribra	losa (.) costata	(.) fischeri (.) sermoisensis	nere) furcata n gallemannica	n ventriosa supratoarcensis arda		Aggl. Foraminiferen (insg.)	Thurammina jurensis		Foraminiferen (insg.)		מאא מאו		Ostracoda	nuklei (pyrit.)	Muscheln (pyrit.) Echinodermenreste
Stufe Subzone Subzone Subzone Formation Formation Subzone Subzone Subzone Subzone Subzone Subzone	Stratigraphische Kriterien	Lagenammina jure	Keophax merens. Ammobaculites	Ammobaculites : Trochammina ss	Ophthalmidium	Nodobacularia Nodosaria regu	Citharina clath	Lenticulina do	Pseudonodosaria	Paracypris sp.	Aphelocythere	Aphelocythere Cythere Cytheropterina	Vinkelinella (Kinkelinella (Kinkelinella (K	K. (Ektyphocyth	Supratoarcina s Supratoarcina s		Aggl. Foram	- Thurammi	:	Kalksch. Fo (ir		, lenticuling		Ostro	Ammoniten	Muscheln (pyrit.) Echinodermenreste
Rin-13 IV - Rin-16 IV - Rin-17 IV - Rin-16	 ✓ Ektyphocythere bucki I Cytheropterina cribra I Cytheropterina I Cytheropt						0 0 0 0 0 0 0 0 0 0 0				0 0 0 0	000				0000	100) Ex.	100 10	0 500	1000	1639 1704	500	14.77 1511	100 50		

Fig. 5. Mikrobiostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze der Nagra-Bohrung Riniken, Kt. Aargau. (Lithologie nach H.-R. Bläst; Ostrakodenzonierung nach Knitter 1983, 1984).

F	30	-h	rur	ng S0	`H	ΔF	ISH	4FIM	1		Ver F	brei orai	tung	de fere	r str	atig	raph	isch	n wi Ost	chti raka	gste den	n		G	luantito	ative Verbre Mikrofoss	ıtung a ilgrupp	iusgewäh en	ilter		gleit- una	sonst.
			S	chweiz on Aarg	zer	Ju	ra	· – · · · ·	•	rassica	is Continensis	subcretaceus J.	orthamtonensis iebeli	aris nrata seri	-bignyi ima	iriata a	. ďs	cadomensis	praecauomensis kuhni cribra	losa (,) costata	<pre>(.) fischeri (.) sermoisensis</pre>	a ventriosa supratoarcensis	tarda	Aggl. Foraminiferen (insg.)	Thurammina jurensis	Foraminiferen (insg.)		ina ssp.	Ostracoda	onitennuklei (pyrit.) stropoden (pyrit.)	theln (pyrit.) dermenreste	Ooide
Stufe	Zone	Formation	Teufe [m]	Lithologie	Proben Nr.	Ostrakoden- zonierung		tigraphisch Kriterien	ne	Lagenammina jur Thurammina jure	Reophax metensi Ammobaculites I	Trochammina ssp.	Ophtalmidium no Ophtalmidium tr	Nodosaria regul Citharina clath	Lenticulina dor Marginulina pri	Palmula tenuist Lingulina tener	Ogmoconcha sp.	Cytherelloidea	Aphelocythere A	Otocythere call Kinkelinella (P	Kinkelinella (Kinkelinella (Praeschuleride	Praeschulerides Supratoarcina	Supratoarcina t	Aggl. Foram	Thurammi	Kalksch. Fo		Lenticulina	Ostro	Ammonitennuklei Gastropoden (p	Muscheln (pyrit. Echinodermenres	0
PLIENSBACH / TO A A L E N I U M	spinatum/ ়ামু thou. lev. o p a l i n u m	Amalteenton/? JurM. Opalinus-Ton	1078.00= 1079.00= 1079.95= 1080.05= 1080.21= 1081.00= 1081.15=	T	- Sha-8 - Sha-7 - Sha-6 - Sha-5 - Sha-4 - Sha-3 - Sha-2 - Sha-1	VI 2-VIII - VI - IV - III II	 ★ Marginulina prima ★ Lingulina tenera ★ Ogmoconcha sp. ★ Ogmoconchella sp. 	 ★ Cytheropterina cribra ★ Otocythere callosa ★ Kinkelinella (K.) fischeri ★ Cytherelloidea cadomensis 	. 0	• 0	o o o		0	000000000000000000000000000000000000000		o o o o ig (6-	000	o o o o o o o	0	0 0 0 0	0 0 0 0	000	0,	00 _E x.	20	1000		1000	20			•

Fig. 6. Mikrobiostratigraphie des Obertoarcium und der Toarcium/Aalenium-Grenze in der Nagra-Bohrung Schafisheim, Kt. Aargau. (Lithologie nach H.-R. Bläsi; Ostrakodenzonierung nach Knitter 1983, 1984).

Im Hangenden können die Ostrakodenzonen VII und VIII mikropaläontologisch nicht belegt werden. Hier muss mit einer Schichtlücke und/oder Kondensation eines grossen Teils der levesquei-Zone gerechnet werden. Inwieweit noch Teile der opalinum-Zone betroffen sind lässt sich nicht abschätzen.

Die Probe Sha-7, die knapp über der angenommenen Grenze entnommen wurde, zeigt wie Sha-8 noch starke Aufarbeitung. In den Mikroproben finden sich auch eine grössere Anzahl von Ooiden.

In diesem Profil, bei dem die Ostrakoden mengenmässig sehr zurücktreten, lässt sich Aphelocythere kuhni erst aber der Probe Sha-9 nachweisen. Berücksichtigt man aber, dass diese Art nie häufig auftritt, so kann man in dieser Bohrung auf Grund der kleinen zu gewinnenden Probenmenge den Leitwert dieser Form schlecht in Frage stellen.

Das Toarcium der Bohrung Schafisheim lässt sich somit nur mit Hilfe der Foraminiferen gegen das Aalenium abgrenzen. Hier kann man mit dem Erstauftreten von Lagenammina jurassica und Reophax metensis, sowie der starken Zunahme des Sandschaleranteils, eine Grenzziehung vornehmen.

Wichtigste Resultate

- 1. Bei allen untersuchten Bohrungen fehlt in der levesquei-Zone ein Teil der Ostrakodenabfolge.
 - Aus diesem Grunde wird die in den untersuchten vier Bohrungen klare Grenzziehung zwischen Toarcium und Aalenium in anderen, vollständigeren Profilen wohl undeutlicher sein.
- Trotz starken Unterschieden in den Mächtigkeiten lassen sich in allen vier Bohrungen die in S-Deutschland, besonders im Wutach-Gebiet, mit Ammoniten-Zonen geeichten Ostrakoden-Zonen erkennen. Die Begrenzung des Obertoarcium kann damit genauer erfasst werden.
- 3. Aphelocythere kuhni setzt in allen vier Bohrungen erst ab dem unteren Aalenium ein. Sie ist die beste Leitform unter den Ostrakoden für diesen Bereich.
- 4. *Paracypris* sp. 2 setzt zwar ebenfalls im gleichen Bereich ein, tritt aber nicht immer ab der Untergrenze des Aalenium auf.
- 5. Lagenammina jurassica, Reophax metensis und verschiedene Trochammina-Arten sind durch ihr Einsetzen ab dem unteren Aalenium bei den Foraminiferen die wichtigsten Leitformen für die Festlegung der Toarcium/Aalenium-Grenze.
- 6. Der deutlich grössere Anteil von agglutinierenden Foraminiferen an der Gesamtfauna des unteren Aalenium ist ein weiteres gutes Kriterium für dessen Abtrennung vom oberen Toarcium in der Nordschweiz und Südwest-Deutschland.

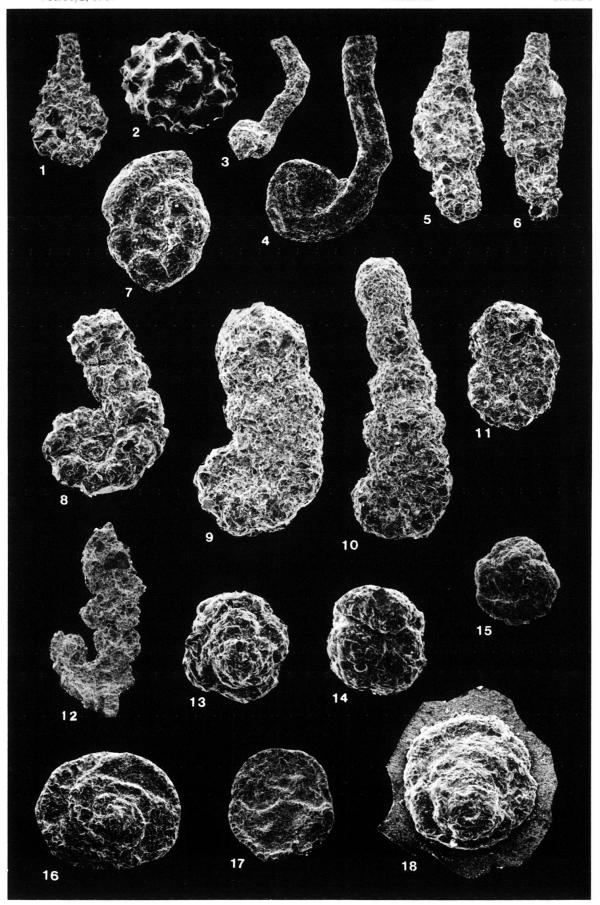
Verdankungen

Ich danke der Nagra, besonders Herrn Dr. M. Thury und Herrn Prof. Dr. A. Matter für den Auftrag für diese Untersuchung und die Erlaubnis zur Publikation der Resultate. Herr Dr. W. Riegraf, Herr Dr. H.-R. Bläsi und Herr Prof. Dr. H.P. Luterbacher unterstützten meine Arbeit in mancher Weise. Herr Dipl. Geol. H.-D. Bergner fertigte die Zeichnungen, Herr H. Hüttenmann die Aufnahmen mit dem Rasterelektronenmikroskop an.

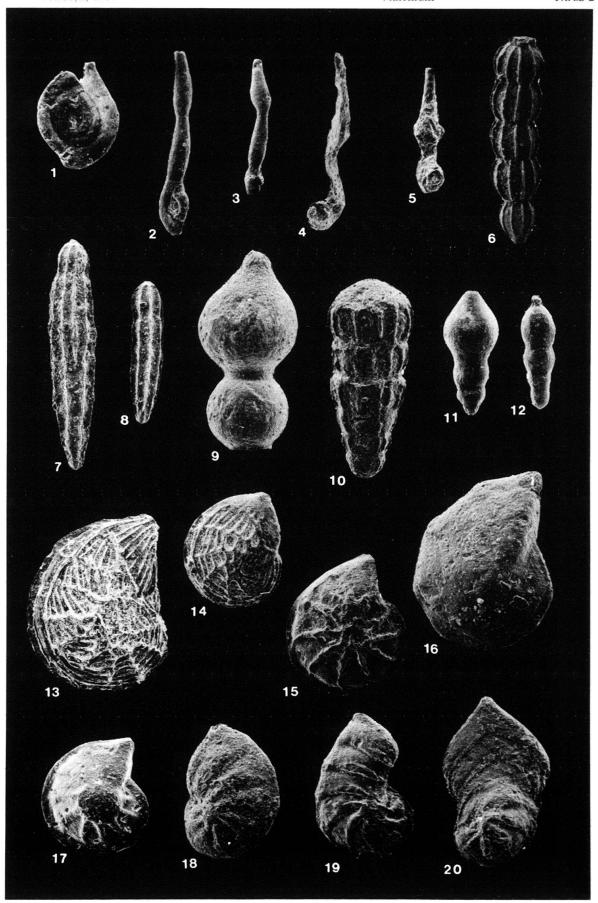
LITERATURVERZEICHNIS

(ausführliche Bibliographie vor allem in RIEGRAF 1985)

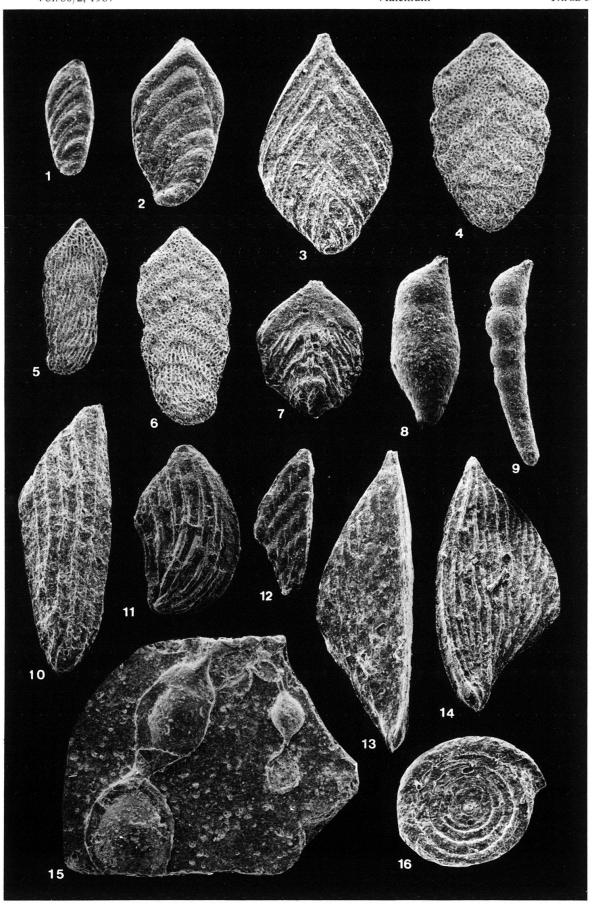
- BATE, R. H. & COLEMAN, B. E. (1975): Upper Lias Ostracoda from Rutland and Huntingdonshire. Bull. geol. Surv. Great Britain 55, 1–42.
- Brouwer, J. (1969): Foraminiferal assemblages from the Lias of North-Western Europe. Verh. k. nederl. Akad. Wetensch., Abt. Natkd. (1) 25, 1–48.
- COPESTAKE, P. (1985): Foraminiferal Biostratigraphy in the Lower Jurassic. In: Michelsen, O. & Zeiss, A. (Eds.): International Symposium on Jurassic Stratigraphy, Vol. 1, Geological Survey of Denmark: 192–206.
- EXTON, J. & GRADSTEIN, F. M. (1984): Early Jurassic stratigraphy and micropaleontology of the Grand Banks and Portugal. In: Westermann, G. E. G. (ed.): Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geol. Assoc. Canada, Spec. Paper 27, 13–30.
- JORDAN, P. (1983): Zur Stratigraphie des Lias zwischen Unterem Hauenstein und Schinznach (Solothurner und Aargauer Faltenjura). Eclogae geol. Helv. 76, 355–376.
- KNITTER, H. (1983): Biostratigraphische Untersuchungen mit Ostracoden im Toarcien Süddeutschlands. Facies 8, 213–262.
- KNITTER, H. & OHMERT, W. (1983): Das Toarcium an der Schwärze bei Badenweiler (Oberrheingebiet S Freiburg).

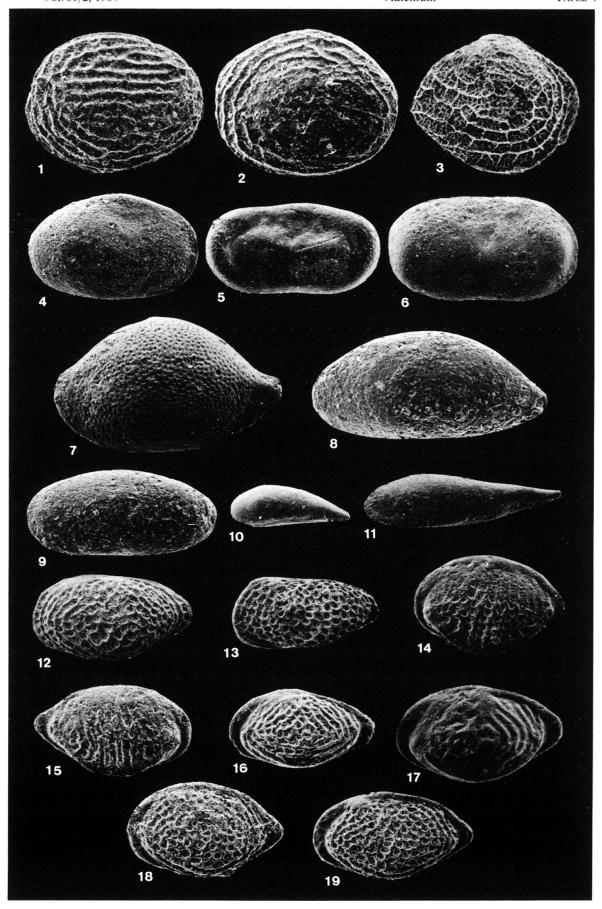

 Jh. geol. Landesamt Baden-Württemberg 25, 233–281.
- KNITTER, H. & RIEGRAF, W. (1984): Biostratigraphie (Cephalopoden, Ostracoden, des Oberen Toarcium von Blumberg-Achdorf/Wutach und Weilheim/Teck (Baden-Württemberg). Jh. geol. Landesamt Baden-Württemberg 26, 57–97.
- RIEGRAF, W. (1985): Mikrofauna, Biostratigraphie und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tübinger mikropaläont. Mitt. 3, 1–233.

Manuskript eingegangen am 2. Februar 1987 Revision angenommen am 17. März 1987


Tafeln 1-5

J. Tröster


Fig. 1:	Lagenammina jurassica (BARNARD, 1959): × 50, Probe Rin-11, Neg. Nr.: 19824 GPIT
Fig. 2:	Thurammina jurensis (Franke, 1936): × 100, Probe Rin-7, Neg. Nr.: 19824 GPIT
Fig. 3:	Tolypammina sp.: × 50, Probe Rin-12, Neg. Nr.: 20 365 GPIT
Fig. 4:	Tolypammina sp.: × 50, Probe Bez-11, Neg. Nr.: 23 833 GPIT
Fig. 5:	Reophax metensis Franke, 1936: × 50, Probe Rin-10, Neg. Nr.: 19823 GPIT
Fig. 6:	Reophax metensis Franke, 1936: × 50, Probe Rin-9, Neg. Nr.: 21 396 GPIT
Fig. 7:	Haplophragmoides kingakensis Tappan, 1955: × 100, Probe Wei-8, Neg. Nr.: 21 380 GPIT
Fig. 8:	Ammobaculites fontinensis (Terquem, 1870): × 50, Probe Rin-10, Neg. Nr.: 19819 GPIT
Fig. 9:	Ammobaculites subcretaceus Cushman & Alexander, 1930: × 50, Probe Rin-10, Neg. Nr.: 19820 GPIT
Fig. 10:	Ammobaculites subcretaceus Cushman & Alexander, 1930: × 50, Probe Rin-10, Neg. Nr.: 19818 GPIT
Fig. 11:	Ammobaculites subcretaceus Cushman & Alexander, 1930: × 50, (juvenil), Probe Rin-11, Neg. Nr.: 19822 GPIT
Fig. 12:	Subbdelloidina scorpionis (d'Orbigny, 1850): × 50, Probe Rin-7, Neg. Nr.: 20 357 GPIT
Fig. 13:	Trochammina topagorukensis Tappan, 1955: × 100, Probe Wei-10, Neg. Nr.: 21 383 GPIT
Fig. 14:	Trochammina topagorukensis TAPPAN, 1955: × 100, Probe Wei-10, Neg. Nr.: 21 384 GPIT
Fig. 15:	Trochammina sablei TAPPAN, 1955: × 100, Probe Rin-11, Neg. Nr.: 21 387 GPIT
Fig. 16:	Tritaxis sp.: × 50, Probe Rin-9, Neg. Nr.: 19830 GPIT
Fig. 17:	Tritaxis sp.: × 50, Probe Rin-8, Neg. Nr.: 21 395 GPIT
Fig. 18:	Tritaxis sp.: × 100, Probe Bez-4, Neg. Nr.: 23 838 GPIT


Fig. 1:	Neg. Nr.: 21 381 GPIT WOOD & BARNARD, 1947: × 50, Probe Wei-10,
Fig. 2:	Ophthalmidium triebeli (Franke, 1936): × 50, Probe Rin-8, Neg. Nr.: 20361 GPIT
Fig. 3:	Ophthalmidium triebeli (Franke, 1936): × 50, Probe Rin-9, Neg. Nr.: 19841 GPIT
Fig. 4:	Nodobacularia tibia (Jones & Parker): × 50, Probe Rin-1, Neg. Nr.: 20162 GPIT
Fig. 5:	Nodobacularia tibia (Jones & Parker): × 50, Probe Rin-10, Neg. Nr.: 19839 GPIT
Fig. 6:	Nodosaria fontinensis Текqueм, 1870: × 100, Probe Rin-8, Neg. Nr.: 20 367 GPIT
Fig. 7:	Nodosaria obscura REUSS, 1845–1846: × 50, Probe Wei-2, Neg. Nr.: 20 385 GPIT
Fig. 8:	Nodosaria obscura REUSS, 1845–1846, juvenil: × 50, Probe Rin-8, Neg. Nr.: 20 362 GPIT
Fig. 9:	Nodosaria regularis Terquem, 1862: × 50, Probe Rin-7, Neg. Nr.: 20 356 GPIT
Fig. 10:	Pseudonodosaria pulchra (Franke, 1936): × 50, Probe Wei-12, Neg. Nr.: 20376 GPIT
Fig. 11:	Pseudonodosaria vulgata (BORNEMANN, 1854): × 50, Probe Rin-8, Neg. Nr.: 19833 GPIT
Fig. 12:	Pseudonodosaria vulgata (BORNEMANN, 1854): × 50, Probe Rin-10, Neg. Nr.: 19835 GPIT
Fig. 13:	Lenticulina dorbignyi (ROEMER, 1839), Form A,: × 50, Probe Rin-9, Neg. Nr.: 20131 GPIT
Fig. 14:	Lenticulina dorbignyi (ROEMER, 1839), Form B,: × 50, Probe Rin-7, Neg. Nr.: 20132 GPIT
Fig. 15:	Lenticulina foveolata (Franke, 1936): × 50, Probe Bez-1, Neg. Nr.: 23817 GPIT
Fig. 16:	Lenticulina polygonata (Franke, 1936): × 50, Probe Wei-5, Neg. Nr.: 20387 GPIT
Fig. 17:	Lenticulina subalata (REUSS, 1854): × 50, Probe Rin-12, Neg. Nr.: 20133 GPIT
Fig. 18:	Lenticulina varians (BORNEMANN, 1854): × 50, Probe Wei-2, Neg. Nr.: 20 383 GPIT
Fig. 19:	Lenticulina varians (BORNEMANN, 1854): × 50, Probe Wei-1, Neg. Nr.: 21 378 GPIT
Fig. 20:	Lenticulina varians (BORNEMANN, 1854): × 50, Probe Wei-1, Neg. Nr.: 20382 GPIT

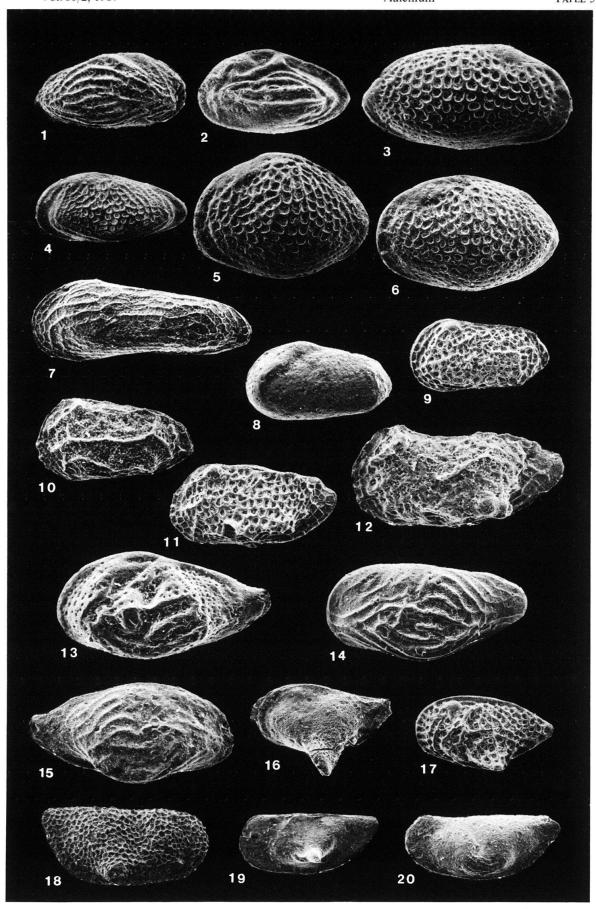

Fig. 1:	Palmula cordiformis (TERQUEM, 1863): × 50, Probe Rin-9, Neg. Nr.: 19843 GPT1
Fig. 2:	Palmula cordiformis-deslongchampsi-Übergangsform: \times 50, Probe Wei-12, Neg. Nr.: 20379 GPIT
Fig. 3:	Palmula deslongchampsi (TERQUEM, 1863): × 50, Probe Rin-6, Neg. Nr.: 20138 GPIT
Fig.4:	Palmula tenuistriata (Franke, 1936): × 50, Probe Rin-3, Neg. Nr.: 20350 GPIT
Fig. 5:	Palmula tenuistriata (Franke, 1936): × 50, Probe Rin-8, Neg. Nr.: 20363 GPIT
Fig. 6:	Palmula tenuistriata (Franke, 1936): × 50, Probe Rin-3, Neg. Nr.: 20351 GPIT
Fig.7:	Palmula cf. tenuistriata (Franke, 1936): × 50, Probe Bez-1, Neg. Nr.: 23818 GPIT
Fig.8:	Marginulina breviformis (Terquem & Berthelin, 1875): \times 50, Probe Wei-12, Neg. Nr.: 23810 GPIT
Fig.9:	Marginulina oolithica (Terquem, 1870): × 50, Probe Wei-12, Neg. Nr.: 20 377 GPIT
Fig. 10:	Citharina clathrata (Terquem, 1863): × 50, Probe Wei-2, Neg. Nr.: 20384 GPIT
Fig. 11:	Citharina clathrata (Terquem, 1863): × 50, Probe Wei-2, Neg. Nr.: 20386 GPIT
Fig. 12:	Citharina colliezi (Текqueм, 1866): × 50, Probe Rin-9, Neg. Nr.: 20130 GPIT
Fig. 13:	Citharina colliezi (Текqueм, 1866): × 50, Probe Rin-2, Neg. Nr.: 20166 GPIT
Fig. 14:	Citharina infraopalina Brand, 1962: × 50, Probe Bez-4, Neg. Nr.: 23837 GPIT
Fig. 15:	Bullopora rostrata Quenstedt, 1857: × 50, Probe Rin-7, Neg. Nr.: 20 358 GPIT
Fig. 16:	Spirillina oolithica (SCHWAGER, 1867): × 100, Probe Rin-10, Neg. Nr.: 19838 GPIT

Fig. 1:	Polycope discus Fischer, 1961: × 100, Probe Wei-2, Neg. Nr.: 21 373 GPIT
Fig. 2:	Polycope pelta Fischer, 1961: × 100, Probe Rin-11, Neg. Nr.:19816 GPIT
Fig. 3:	Pokornyopsis tenuireticulata Herrig, 1981: × 100, Probe Rin-9, Neg. Nr.: 19801 GPIT
Fig.4:	Cytherella toarcensis Bizon, 1960: × 50, Probe Wei-2, Neg. Nr.: 20368 GPIT
Fig. 5:	Cytherelloidea cadomensis Bizon, 1960: × 50, Probe Rin-6, Neg. Nr.: 19806 GPIT
Fig. 6:	Cytherelloidea praecadomensis Knitter, 1984: × 50, Probe Rin-1, Neg. Nr.: 20364 GPIT
Fig. 7:	Bairdia ohmerti Knitter, 1984: × 50, Probe Rin-3, Neg. Nr.: 19815 GPIT
Fig. 8:	Bairdia sp. Knitter, 1983: × 50, Probe Rin-3, Neg. Nr.: 20142 GPIT
Fig. 9:	Bythocypris dorisae Knitter, 1984: × 50, Probe Rin-3, Neg. Nr.: 20149 GPIT
Fig. 10:	Paracypris sp. 1: × 100, Probe Rin-12, Neg. Nr.: 20160 GPIT
Fig. 11:	Paracypris sp. 2: × 50, Probe Rin-10, Neg. Nr.: 19802 GPIT
Fig. 12:	Supratoarcina supratoarcensis Knitter, 1984: × 50, Probe Wei-2, Neg. Nr.: 21 365 GPIT
Fig. 13:	Supratoarcina tarda Knitter, 1984: × 50, Probe Rin-3, Neg. Nr.: 19814 GPIT
Fig. 14:	Kinkelinella (K.) costata Knitter, 1983: × 50, Probe Rin-3, Neg. Nr.:21391 GPIT
Fig. 15:	Kinkelinella (K.) costata Knitter, 1983: × 50, Probe Rin-3, Neg. Nr.: 20143 GPIT
Fig. 16:	Kinkelinella (K.) fischeri MALZ, 1966: × 50, Probe Rin-3, Neg. Nr.: 20147 GPIT
Fig. 17:	Kinkelinella (K.) fischeri MALZ, 1966: × 50, Probe Rin-3, Neg. Nr.: 20156 GPIT
Fig. 18:	Kinkelinella (K.) sermoisensis (Apostolescu, 1959): × 50, Neg. Nr.: 20146 GPIT
Fig. 19:	Kinkelinella (K.) sermoisensis (Apostolescu, 1959): × 50, Neg. Nr.: 20144 GPIT

Fig. 1:	K. (Ektyphocythere) bucki (Bizon, 1960): × 50, Probe Bez-2, Neg. Nr.: 23821 GPIT
Fig. 2:	K. (Ektyphocythere) furcata (Wienholz, 1967): × 50, Probe Wei-3, Neg. Nr.:21362 GPIT
Fig. 3:	Praeschuleridea angulata (PLUMHOFF, 1963): × 50, Probe Bez-11, Neg. Nr.: 23832 GPIT
Fig. 4:	Praeschuleridea aspera Knitter, 1983: × 50, Probe Wei-4, Neg. Nr.: 23809 GPIT
Fig. 5:	Praeschuleridea gallemannica MALZ, 1966: × 50, Probe Rin-6, Neg. Nr.: 19804 GPIT
Fig. 6:	Praeschuleridea ventriosa (Plumhoff, 1963): × 50, Probe Rin-6, Neg. Nr.: 19805 GPIT
Fig. 7:	Aaleniella reticulata Knitter, 1983: × 100, Probe Rin-9, Neg. Nr.: 19800 GPIT
Fig. 8:	Aphelocythere kuhni Triebel & Klingler, 1959: × 50, Probe Rin-9, Neg. Nr.: 19797 GPIT
Fig. 9:	Aphelocythere ramosa Fischer, 1961: × 50, Probe Rin-5, Neg. Nr.: 20155 GPIT
Fig. 10:	Acrocythere michelseni FINGER, 1975: × 100, Probe Rin-6, Neg. Nr.: 19810 GPIT
Fig. 11:	Wellandia faveolata Bate & Coleman, 1975: × 100, Probe Wei-10, Neg. Nr.: 21 382 GPIT
Fig. 12:	Eucytherura angulocostata Knitter, 1983: × 100, Probe Wei-12, Neg. Nr.: 20 374 GPIT
Fig. 13:	Otocythere callosa Triebel & Klingler, 1959: × 100, Probe Rin-9, Neg. Nr.: 19798 GPIT
Fig. 14:	Cytheropteron (Infracytheropteron) groissi Knitter, 1984: × 100, Probe Bez-6, Neg. Nr.: 23 828 GPIT
Fig. 15:	Cytheropteron (1.) supraliassicum (Herrig, 1981): × 100, Probe Bez-3, Neg. Nr.: 23 825 GPIT
Fig. 16:	Cytheropterina alafastigata (FISCHER, 1962): × 50, Probe Rin-4, Neg. Nr.: 20153 GPIT
Fig. 17:	Cytheropterina cribra (FISCHER, 1962): × 50, Probe Rin-5, Neg. Nr.: 19813 GPIT
Fig. 18:	Monoceratina scrobiculata Triebel & Bartenstein, 1938: \times 50, Probe Wei-4, Neg. Nr.: 23 805 GPIT
Fig. 19:	Monoceratina stimulea (SCHWAGER, 1866): × 50, Probe Bez-13, Neg. Nr.: 23 822 GPIT
Fig. 20:	Monoceratina ungulina Triebel & Bartenstein, 1938: × 50, Probe Wei-12, Neg. Nr.: 23811 GPIT

