Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 72 (1979)

Heft: 2

Artikel: Eine neue Formel zur Berechnung der Zuströmdauer (Laufzeit) des

Grundwassers zu einem Grundwasser-Pumpwerk

Autor: Wyssling, Lorenz

DOI: https://doi.org/10.5169/seals-164843

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Eine neue Formel zur Berechnung der Zuströmungsdauer (Laufzeit) des Grundwassers zu einem Grundwasser-Pumpwerk

Von Lorenz Wyssling 1)

ZUSAMMENFASSUNG

Es wird eine Formel vorgelegt, welche als mathematisches Hilfsmittel bei der Bemessung von Schutzzonen für Grundwasser-Pumpwerke dienen kann. Sie erlaubt eine direkte Berechnung der Zuströmungsdauer des Grundwassers von einem beliebigen Punkt auf der Strömungsachse bis zu einem in Betrieb befindlichen Grundwasser-Pumpwerk.

1. Allgemeines

Da bei der Bemessung von Schutzzonen um Grundwasser-Pumpwerke die Strömungsdauer innerhalb des Grundwasserleiters von der Zonengrenze bis zur Fassungsstelle eine wichtige Rolle spielt, wurde eine Formel entwickelt, in der diejenigen Grössen einzusetzen sind, welche für die Schutzzonen-Bestimmung ohnehin ermittelt werden müssen. Zum Vergleich wird auch die bekannte Näherungsformel von Landes (1958)²) angeführt und deren Verwendbarkeit besprochen.

Sowohl hier wie bei Landes wurden folgende grundsätzlichen Annahmen gemacht: 1. Die Verhältnisse innerhalb des betrachteten Abschnitts des Grundwasserleiters seien einigermassen homogen. 2. Die im Pumpwerk getätigte Entnahme sei relativ klein im Verhältnis zur Abflussmenge des Grundwasserstroms. 3. Zusätzlich beschränkt man sich auf die Strömungsverhältnisse entlang der Mittelachse der Zu- bzw. Abströmung zum/vom Grundwasser-Pumpwerk.

Die mathematische Herleitung beruht (wie bei Landes) auf einer Überlagerung der parallel verlaufenden, natürlichen Grundwasserströmung mit der zentripetalen, durch das Pumpwerk erzeugten Strömung. Anstelle der Verwendung von vereinfachenden Mittelwerten (Landes) wurde hier jedoch eine Integration³) durchgeführt,

¹⁾ Lohzelgstrasse 5, 8122 Pfaffhausen (Schweiz).

²) TH. LANDES: Beitrag zur Berechnung der engeren Schutzzone von Trinkwasserversorgungsanlagen bei sandigem und kiesigem Untergrund (Bohrtechnik, Brunnenbau, Rohrleitungsbau, 9.Jg., Sept. 1958).

³⁾ Mathematische Mithilfe durch Dr. R.C. Salgó (Wetzikon ZH), welche hier bestens verdankt sei.

und schliesslich wurde die Laufzeit in Funktion der Fließstrecke ermittelt, während Landes das umgekehrte Verhältnis bestimmte.

Zur praktischen Verwendung wurde auch die Formel von Landes bezüglich der einzusetzenden Werte noch etwas umgeformt.

2. Verwendete Grössen und Formeln

a) Gegebene Grössen (hydrologische Kennwerte)

H = Grundwassermächtigkeit, in m

k = Durchlässigkeit des Grundwasserleiters, in m/s

i = natürliches Gefälle des Grundwasserstroms, für Q = 0

 $p = \text{beim Strömungsvorgang wirksame Porosität ("exporosite cinematique")} = \omega$

 $Q = \text{Entnahmemenge im Pumpwerk, in m}^3/\text{s}$

b) Zu berechnende Grössen des Strömungsbildes

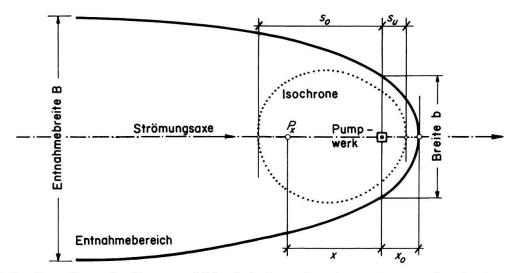
$$B = \frac{Q}{H \cdot k \cdot i} = \text{Entnahmebreite observed}, \text{ in m, bei Entnahme } Q$$

$$b = \frac{B}{2} = \frac{Q}{2H \cdot k \cdot i} = \text{Entnahmebreite auf Fassungshöhe, in m}$$

$$x_0 = \frac{B}{2\pi} = \frac{Q}{2\pi \cdot H \cdot k \cdot i} = \text{Strecke vom Pumpwerk bis zur talseitigen Begrenzung des Entnahmebereichs, in m (nach Smrekr)}$$

$$v_0 = \frac{k \cdot i \cdot 86400}{p}$$
 = natürliche Strömungsgeschwindigkeit des Grundwassers (Abstandgeschwindigkeit), in m/Tag

c) Gesuchte Grössen, für Schutzzonen


Zu Formel (2):

 s_o , s_u =Strecke stromaufwärts bzw. stromabwärts vom Pumpwerk bis zu einem Punkt auf der Strömungsachse mit der gewünschten Laufzeit t, in m

 $d = v_0 \cdot t$, wobei t der gewünschten Laufzeit entspricht (v_0 in m/Tag, t in Tagen)

Zu Formel (10):

- t = Laufzeit in Tagen, von einem Punkt P_x auf der Strömungsachse bis zum Pumpwerk
- x = Distanz in m, vom Punkt P_x bis zum Pumpwerk (x ist stromaufwärts des Pumpwerks positiv, stromabwärts desselben negativ einzusetzen)

Graphische Darstellung des Strömungsbildes bei einem Grundwasser-Pumpwerk, mit eingetragenen Bezugsgrössen zu den Formeln (2) und (10).

$$s_{o/u} = \frac{\pm d + \sqrt{d(d + 8x_0)}}{2}$$
 (2) Formel von Landes, umgeformt (Näherungswerte für s_o und s_u)

$$t = \frac{x - x_0 \cdot \ln\left(1 + \frac{x}{x_0}\right)}{v_0}$$
(10) Neue Formel (genauere Werte für t)

3. Praktisches Vorgehen bei der Konstruktion der Schutzzonen

Nachdem die «gegebenen Grössen» 2.a) ermittelt worden sind, berechnet man mit Vorteil zunächst die Grössen 2.b) des Strömungsbildes und entwirft sodann mit deren Benützung und unter Berücksichtigung der natürlichen Strömungsrichtung den einer bestimmten Entnahmemenge Q entsprechenden Entnahmebereich (vgl. Abbildung). Dieser ist unabhängig von der beim Strömungsvorgang wirksamen Porosität p, deren Grösse heute noch etwas umstritten ist. Bei der Berechnung von v_0 spielt p jedoch eine massgebende Rolle; man ist gezwungen, einen empirischen Wert dafür zu wählen (für sandige Kiese etwa zwischen 10 und 20%), sofern v_0 nicht auf direktem Weg (z. B. mit Markierungsversuch) ermittelt werden kann.

Sofern man eine Schutzzone als Isochrone (Linie gleicher Zuströmungsdauer bis zum Pumpwerk) auffasst, können nun die einer gewünschten Laufzeit entsprechenden Strecken s_o und s_u auf der Strömungsachse nach Formel (2) in erster Näherung berechnet werden. Dies führt in Stromaufwärtsrichtung meist zu brauchbaren Resultaten, während stromabwärts – besonders bei grösserem $v_0 - s_u$ grösser als x_0 werden kann, also ausserhalb des Entnahmebereichs fällt, was in Wirklich-

404 L. Wyssling

keit unmöglich ist. Es empfiehlt sich deshalb, die Laufzeiten für die Distanzen s_o und s_u mit Hilfe der Formel (10) zu verifizieren und diese Distanzen nötigenfalls entsprechend anzupassen. Formel (10) eignet sich besonders auch zur direkten Berechnung der Laufzeit von einem beliebigen Punkt P_x auf der Strömungsachse (den man aus praktischen Gründen für die Begrenzung einer Schutzzone wählen möchte, z. B. eine Strasse oder eine bestimmte Distanz) bis zum Pumpwerk. Auf diese Weise kann man auch allein mittels Formel (10) durch «Eingabeln» zum Ziele gelangen.

Sind die gewünschten Punkte auf der Strömungsachse einmal gefunden, so lässt sich die Form der betreffenden Schutzzone durch sinnvolle Anlehnung an den Verlauf der Begrenzung des Entnahmebereichs ohne weitere Berechnungen meist ziemlich gut festhalten. Man wird ohnehin nach allen Seiten eine gewisse Sicherheitsreserve einbauen müssen, da in den meisten Fällen weder die benützten hydrologischen Grundgrössen noch die präzise natürliche Strömungsrichtung bis ins letzte Detail bekannt sind.

Wenn im Gegensatz zu den eingangs aufgeführten einschränkenden Annahmen die Entnahmemenge des Pumpwerks im Verhältnis zur Abflussmenge des genutzten Grundwasserstroms relativ gross ist, muss beachtet werden, dass der wie oben berechnete Entnahmebereich stromabwärts (x_0) zu klein ausfällt und dass die Zuströmungsdauer aus dem Bereich oberhalb der Pumpstelle in Wirklichkeit etwas geringer ist als die rechnerisch ermittelte. In einem solchen Fall müssen die für eine bestimmte Laufzeit dimensionierten Schutzzonen sowohl stromabwärts wie stromaufwärts einen entsprechenden Zuschlag erhalten.

Eine zusätzliche Schutzwirkung ist bekanntermassen dann vorhanden, wenn bedeutende schlecht durchlässige Deckschichten über dem Grundwasserieiter liegen. Die damit verbundene Verlängerung der Laufzeit des Sickerwassers gestattet unter Umständen eine entsprechende Reduktion der Schutzzonen. Dieser Faktor wurde in den obigen Betrachtungen, welche sich *nur* auf die Strömungen innerhalb des Grundwasserleiters beziehen, bewusst nicht berücksichtigt.

4. Herleitung der Formeln (2) und (10)

a) Formel (2) (Näherungsformel)

In der Formel von Landes, welche lautet:

$$s_{o/u} = \frac{1}{2} \left(\pm v_0 \cdot t + \sqrt{(v_0 \cdot t)^2 + 110000 \frac{Q \cdot t}{H \cdot p}} \right), \tag{1}$$

wurde der Ausdruck $(v_0 \cdot t)$ durch d ersetzt und ferner die Grösse $x_0 = \frac{Q}{2\pi H k i}$ mit entsprechender Korrektur des numerischen Faktors eingeführt. Es folgt:

$$s_{o/u} = \frac{1}{2} \left(\pm d + \sqrt{d^2 + d \cdot 8 x_0} \right) = s_{o/u} = \frac{\pm d + \sqrt{d(d + 8 x_0)}}{2}.$$
 (2)

b) Formel (10) (neue Formel)

Man geht von der Überlegung aus, dass die Strömungsgeschwindigkeit auf der Mittelachse als Überlagerung der konstanten natürlichen Strömung v_0 und der durch die Entnahme erzeugten Strömung

$$v_e = \frac{Q}{2\pi \cdot x \cdot H \cdot p} \tag{3}$$

zustande kommt. Also

$$v = v_0 + \frac{Q}{2\pi \cdot x \cdot H \cdot p},\tag{4}$$

wobei x die Distanz bis zum Pumpwerk bedeutet.

Da
$$v = \frac{dx}{dt}$$
, ist $\int dt = t = \int \frac{dx}{v}$. (5)

Dies auf (4) angewendet, ergibt
$$t = \int \frac{dx}{v_0 + \frac{c}{x}}$$
, (6) für $c = \frac{Q}{2\pi \cdot H \cdot p}$.

Durch Integration und einige Umformungen erhält man:

$$t / = \frac{x}{v_0} - \frac{1}{v_0^2} \cdot \frac{Q}{2\pi \cdot H \cdot p} \cdot \ln\left(1 + \frac{v_0 \cdot x \cdot 2\pi \cdot H \cdot p}{Q}\right). \tag{7}$$

Da
$$\frac{Q}{2\pi \cdot H \cdot p} = x_0 \cdot v_0 \tag{8}$$

geschrieben werden kann, ergibt eine weitere Umformung schliesslich

$$t = \underbrace{\frac{x}{v_0} - \frac{x_0}{v_0} \cdot \ln\left(1 + \frac{x}{x_0}\right)}_{(b)} \tag{9}$$

oder einfacher geschrieben

$$t = \frac{x - x_0 \cdot \ln\left(1 + \frac{x}{x_0}\right)}{v_0}$$
 (10)

Grenzwerte

In Formel (9) entspricht der Ausdruck (a) der Laufzeit bei natürlicher Strömung, also abgestelltem Pumpwerk. Der Ausdruck (b) ist das infolge Entnahme im Pumpwerk notwendige Korrekturglied. Im Bereich stromaufwärts des Pumpwerks bewirkt diese Korrektur eine Verkürzung der Laufzeit t, stromabwärts eine Verlängerung

derselben. Letzteres ist in Übereinstimmung mit den tatsächlichen Verhältnissen nur bis zum Grenzwert $(-)x = x_0$ möglich, wo $t = \infty$ wird.

Bei sehr kleinem bis verschwindendem v_0 , d.h. bei praktisch fehlender natürlicher Grundwasserströmung, tendiert $v_0 \rightarrow 0$ und $x_0 \rightarrow \infty$, die Berechnung von t mittels Formel (10) wird ebenfalls unmöglich. In diesem Fall benützt man die Formeln

$$t = \frac{x^2 \pi \cdot H \cdot p}{Q \cdot 86400} \quad (11) \quad \text{und} \quad x = \sqrt{\frac{t \cdot Q \cdot 86400}{\pi \cdot H \cdot p}} \quad , \quad (12)$$

welche die Laufzeit bzw. den Radius x für die rein zentripetale Strömung bei laufendem Pumpwerk ergeben.

Bei der Herleitung der Formel (10) wurden die eingangs erwähnten vereinfachenden hydrogeologischen Annahmen getroffen. In mathematischer Hinsicht wurde lediglich der Umstand vernachlässigt, dass in Fassungsnähe der Wert H zufolge Senktrichterbildung örtlich reduziert wird, wodurch die Grundwasserströmung dort noch eine gewisse zusätzliche Beschleunigung erfährt. Bei der Betrachtung der für Schutzzonen in Frage kommenden grösseren Laufzeiten fällt diese Abweichung allerdings praktisch nicht ins Gewicht.

Schliesslich kann aus keiner Formel mehr herausgeholt werden, als dasjenige, was durch die Aussagekraft der verwendeten Grundlagen hineingebracht worden ist.