Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 70 (1977)

Heft: 2

Artikel: Sedimentation und Paläotektonik in den westlichen Südalpen : zur

triasisch-jurassischen Geschichte des Monte Nudo-Beckens

Autor: Kälin, Otto / Trümpy, Daniel M.

Kapitel: Valmaggiore-Formation

DOI: https://doi.org/10.5169/seals-164624

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

der mergeligen Matrix. Die mehr oder weniger konstante Orientierung der Langachsen der Transportkörper erlaubt eine Hauptbewegungsrichtung zu ermitteln (cf. Voigt 1962), die auf eine Herkunft der Gleitmassen von der Campo dei Fiori-Schwelle (aus SE) schliessen lässt.

Im Dogger nimmt der Einfluss des südöstlichen Liefergebietes allmählich ab. Die monotonen Siltit-Mergel-Alternanzen der jüngeren Valmaggiore-Formation decken den grössten Teil des Sedimentationsraumes ein.

Valmaggiore-Formation

Frühere Beschreibungen

Während Leuzinger (1926, p. 121) westlich des Campo dei Fiori offensichtlich eine Heteropie zwischen den oberliasischen roten Knollenkalken (Ammonitico Rosso) und den Kieselpeliten der basalen Radiolarite vermutete, erwähnt van HOUTEN (1929, p. 23), dass der Ammonitico Rosso nordwestlich des Campo dei Fiori durch die «Fazies der harten Kalke mit weichen, bunten Mergelzwischenlagern» (vermutlich basale Glieder der Valmaggiore-Formation) ersetzt wird. BER-NOULLI (1964, p. 59 und 80) deutete die Resedimente im Liegenden der basalen Radiolarite bei Pozzolo, nordöstlich Gavirate (vgl. Tf. 11, Profil I) als distale Äquivalente der proximalen «Medolo-Fazies» (San Giulio-Serie) am Langensee-Ufer und schloss auf eine Schichtlücke zwischen dem mittleren Lias und dem oberen Dogger. Montanari (1974, p. 95ff.) beschreibt sowohl die Resedimente im Aufschluss nordöstlich Gavirate als auch die lithofaziell identischen Serien in der Valmaggiore (N von Brenta, vgl. Tf. 11, Profil V). Er stellt jedoch die jüngsten Schichten der Valmaggiore-Formation bei Pozzolo, in denen sich nun oberes Toarcian (Erbaense-Zone) nachweisen liess, ins obere Domerian und postuliert für die Resedimente in den beiden Aufschlüssen verschiedene Quellen.

Typlokalität

Valmaggiore (oder Vallone), nördlich Brenta (Varese).

Begrenzung

Die Untergrenze der Formation deckt sich ungefähr mit der Domerian-Toarcian-Grenze. Der Übergang von den hemipelagischen Sedimenten des Domerian in die flyschartig gegliederten der Valmaggiore-Formation erfolgt im allgemeinen graduell. Einzig am Monte Sangiano (vgl. Tf. 11, Profil III) überlagern die Resediment-Zyklen gelbe, sandige oder tonige, glimmerführende Mergel mit «Posidonien», die vermutlich bereits ins Toarcian zu stellen sind («untere Posidonien-Schichten», vgl. u.a. Bernoulli 1972). Im Dach der Formation fällt der durchschnittliche Karbonatgehalt innerhalb einiger Meter von etwa 50% auf maximal 10% ab. Kieselpelite des (?) oberen Dogger-untersten Malm (vgl. Bernoulli 1960, 1964; Pasquarè 1965) leiten die Radiolarit-Sedimentation ein. Einzig bei Pozzolo zeichnet sich im Dach der Formation eine sedimentäre Diskontinuität ab. Vermut-

lich ist dort der gesamte untere und mittlere Dogger in wenigen Metern bunter, sandiger Mergel kondensiert (vgl. Tf. 11, Profil I). Der Kontakt kann aufgrund einer Aufschlusslücke nicht direkt beobachtet werden.

Lithofazies

Die Valmaggiore-Formation umfasst (1) zyklisch gegliederte Intervalle (Folgen mächtiger, vorwiegend kalkiger Turbidite; vgl. Tf. 4, Fig. 2) und (2) Abschnitte, in denen Kalksiltite und hemipelagische Mergel in unregelmässiger Weise alternieren.

1a) Herauswitternde Bänke (fein)arenitischer bis grobsiltiger Grainstones (im folgenden als «Kalkarenite» bezeichnet) prägen die Morphologie des Geländes. Angewitterte Schichtköpfe offenbaren eine reiche bankinterne Gliederung. Die sedimentären Strukturen sind im einzelnen kennzeichnend für Ablagerungen von Suspensionsströmen. Ihre vertikale Abfolge kann dagegen erheblich von der üblichen Bouma-Sequenz abweichen. Bankunterflächen zeigen keine orientierten Marken, sie sind lediglich schwach gewellt. Bankoberflächen können diese Deformationen nachzeichnen. In mächtigeren Bänken wird das Relief der Unterfläche durch disharmonische bankinterne Strukturen überprägt. Die Kalkarenite sind oben scharf (? erosiver Kontakt) gegen die massigen Siltite (1b) begrenzt.

Unreine, braungraue bis honiggelbe Hornsteine (Quarz mit minimal 10% karbonatischen Einschlüssen) treten als breite Bänder bzw. linsen- bis nierenförmige Körper bevorzugt in den basalen, parallel-laminierten Intervallen auf. Oft verlaufen ihre Konturen parallel zu den Sedimentstrukturen (vgl. Tf. 4, Fig. 3) und zeichnen syngenetische Deformationen nach. Isolierte Linsen und Schnüre schliessen sich häufig vertikal zu unregelmässigen Gebilden mit reliktisch erhaltenen Ablagerungsstrukturen zusammen.

Im Dünnschliff erweist sich die Lamination als eine Abfolge gradierter Feinschichten (i.a. 1-3 mm). Die Partikel-Durchmesser variieren zwischen 0,1 und 0,02 mm. Die (fein)arenitische Fraktion ist mit Ausnahme einzelner kryptobis mikrokristalliner, tonreicher Kalklutit-Aggregate vollständig (mikro)sparitisch rekristallisiert. Neben den primär karbonatischen Komponenten treten zu maximal 10-15% randlich korrodierte, meist vollständig kalzifizierte Spongiennadel-Fragmente und Radiolarien auf. Relativ selten sind Schalenfragmente pelagischer Bivalven. In den feinkörnigen Partien der Laminae dominieren kryptokristalline, pelletähnliche Kalklutit-Aggregate (Durchmesser 0,02-0,04 mm). Aufgrund ihrer dunklen Pigmentierung (Tonminerale, framboidaler Pyrit) heben sie sich deutlich vom mikrosparitischen Zement ab.

Silifizierungen (kieselige Zementierung und schliesslich «replacement») scheinen im Porenraum der (fein)arenitischen, basalen Intervalle der Mikrogradierungen einzusetzen. Der Karbonatgehalt beträgt in hornsteinfreien Partien zwischen 80 und 90%.

Folgende bankinternen sedimentären Strukturen wurden beobachtet:

— Parallel-Laminationen (B- bzw. D-Intervall der Bouma-Sequenz) wurden bereits als Folgen gradierter Feinschichten beschrieben. Parallel-laminierte Intervalle sind häufig penekontemporär deformiert.

- Abweichend von der typischen Bouma-Sequenz treten, an die parallel-laminierten Intervalle gebunden, leicht asymmetrische transversale Feinrippeln (Wellenlängen um 0,5 cm, Amplituden ca. 1 mm) auf (vgl. Hubert 1967). Die Gabelung der Kämme (unter Winkeln von 5-10°) deutet auf eine Interferenz zweier Rippelmuster.
- Schrägschichtungs-Einheiten sind i.a. geringmächtig (<2 cm), ihre Gestalt ist variabel: Von den offenbar im Verband (durch «loading») deformierten Schrägschichtungs-Folgen lässt sich eine syngenetisch (s. str.) deformierte Schrägschichtung aufgrund der ungleichen Krümmung und inkonstanten Mächtigkeit der einzelnen Schrägschichtungs-Blätter unterscheiden (nach KUENEN 1953 sind Rippeln dieses Typs und Konvolution genetisch verknüpft: «ripple load convolution»; vgl. Tf. 6, Fig. 1).</p>
- Komplexe bankinterne Strukturen resultieren aus der Überlagerung von Konvolution und Belastungsdeformation («loading» kann gewisse Konvolutionstypen auslösen, andere nachträglich akzentuieren bzw. modifizieren; vgl. Dzulynski & Smith 1963, Dzulynski & Walton 1965). Die grossen Amplituden (zwischen 5 und 30 cm) sprechen für dichte Suspensionsströme und/oder eine geringe Konsolidierung des liegenden Sediments. Bedeutsam erscheint, dass in vielen Fällen eine mehr oder weniger konstante Vergenz dieser Strukturen vorliegt, die möglicherweise Rückschlüsse auf die Transportrichtung zulässt (vgl. Dzulynski & Smith 1963, Füchtbauer & Müller 1970).
- Die spärlichen orientierten Marken «longitudinal ridges» und «frondescent marks» - dürfen ebenfalls als polare Strukturelemente gewertet werden (vgl. Dzulynski & Walton 1965).
- 1b) Die Kalkarenite werden stets von massigen, muschelig brechenden, dunkelgrauen mergeligen Kalksiltiten (E-Intervall der Bouma-Sequenz) überlagert. Das Sediment ist auffallend gleichkörnig; vereinzelte Radiolarien und Spongiennadel-Fragmente stellen im allgemeinen die einzigen (fein)arenitischen Komponenten dar, akzessorisch können dazu terrigener Quarz und Feldspat treten. Der Erhaltungszustand der Biogene variiert: Gewöhnlich sind die Opalskelett-Fragmente durch granularen Mikrosparit oder drusigen Sparit ersetzt, seltener vollständig pyritisiert (vgl. Tf. 6, Fig. 2). Die Siltite sind lokal kieselig zementiert. Der Grenzbereich zu den hangenden Mergeln ist ab und zu bioturbiert, der Kontakt jedoch im allgemeinen scharf.

Der Karbonatgehalt schwankt zwischen 50 und 60%.

1c) Schiefrig spaltende oder blättrige, graugrüne bis olive und fleckig braunrot/ockerfarbene Mergel, hemipelagische Mudstones bis Wackestones (F-Intervall
der Bouma-Sequenz), beschliessen die Zyklen. Neben 15-20% radialstruierten
Chalcedon-Sphärolithen oder durch drusigen Sparit ersetzten Biogen-Relikten mit
geopetalen Pyrit-Limonit-Einlagerungen (Spongien-Nadeln, Radiolarien) tritt, lagig eingeregelt und meist von einem breiten limonitisch imprägnierten Rand
gesäumt, organischer Detritus auf.

Der detritische Quarz und Feldspat erscheint im Gegensatz zu den korrodierten oder völlig kalzifizierten Kieselskeletten unversehrt. Hellglimmer sind schichtparallel orientiert.

Nicht selten treten in den Mergeln dünnschalige, konzentrisch berippte Bivalven, «Posidonien», auf.

Der durchschnittliche Karbonatgehalt beträgt 45%.

- 2a) Graue oder graugrüne Kalksiltite (? distale Turbidite): Die Packungsdichte und der Erhaltungszustand der zu mehr als 50% vertretenen kryptokristallinen siltigen Lutit-Aggregate (0,01-0,02 mm) variieren im mm- bis cm-Bereich. Die pelletähnlichen Aggregate bilden gewöhnlich ein tragendes Gerüst, das sich deutlich von der mikrosparitisch rekristallisierten Grundmasse abhebt. Aus einer fortschreitenden Auflösung ihrer Konturen (Zerfall der siltigen Aggregate infolge Wasseraufnahme und/oder repetierter Umlagerung) kann schliesslich ein homogener Mudstone resultieren. Die feine, helle Streifung der Siltite ist durch lagige Anreicherungen von (fein)arenitischem biogenem Detritus (Muschelschill, kalzifizierte Spongienskleren-Fragmente) bedingt. Die Bänke sind im Dach lokal bioturbiert: die dunkelgraue Sprenkelung Querschnitte verzweigter Chondrites-Gangsysteme unterscheidet sich texturell vom übrigen Sediment. In den linsig ausgezogenen (kompaktierten) Gängen sind kalzifizierte Skleren, Radiolarien-Relikte und organisches Material angereichert.
- 2b) In den feinflaserigen Kalksiltiten führte Bioturbation zu einer weitgehenden Umstrukturierung des Sedimentärgefüges (mottled structure). Nur spärliche Relikte deuten auf eine ursprüngliche horizontale Feinschichtung. Im Gegensatz zu den scharf begrenzten Chondrites-Bauten bestehen zwischen den unterschiedlich texturierten Bereichen dieser Lithofazies kontinuierliche Übergänge. Unter den Komponenten dominieren wiederum siltige Lutit-Aggregate (>50%). An den 10-20% arenitischen Biogenen sind zu variablen Anteilen Fragmente pelagischer Bivalven, Spongien-Nadeln und Radiolarien beteiligt; in vielen Fällen gestatten in kalzifizierten Relikten Spuren ursprünglicher Intern-Strukturen eine Unterscheidung der beiden Opalskelett-Bildner. Terrigener silikatischer Detritus tritt zurück (1-3%).

In den jüngeren Gliedern der Formation, gekennzeichnet durch eine zunehmend intensivere Rotfärbung (Fe-Hydroxide; feindispers intergranular oder in den siltigen Lutit-Aggregaten angereichert), gewinnen kieselig erhaltene Radiolarien (hauptsächlich Spumellarien) an Bedeutung. Langfaserige Chalcedon-Fächer füllen vom Rand her sprossend ihre Zentralkapseln.

- 2c) Hemipelagische Mergel bzw. Mergelkalke: Sie sind mikrofaziell mit der bereits beschriebenen Lithofazies 1c identisch («Posidonien» treten nicht durchgehend auf).
- 2d) Volumenmässig wenig bedeutend sind geringmächtige (im allgemeinen nur einige Zentimeter) gradierte Kalkturbidite (arenitische bis siltige Packstones). Kennzeichnend für Intervalle, in denen vermehrt gradierte Resedimente auftreten, ist eine diskrete Bänderung, ein kurzperiodisches Alternieren farblich schwach differenzierter Bänke, das in deutlichem Kontrast zu den graduellen Farbänderungen einer kontinuierlichen (hemi)pelagischen Sedimentation steht.

In den (fein)arenitischen basalen Intervallen dominieren kalzifizierte Spongien-Nadeln (10-20%), Schalenfragmente (bis 10%), dunkelpigmentierte (Tonminerale, Pyrit-Framboide) kryptokristalline Pelletoide (10-25%) und helle Mikritpartikel, deren Konturen, durch Kornwachstum verwischt, sich im mikrosparitischen Rekristallisations-Gefüge der Grundmasse auflösen. Stengelige und plattige Komponenten (Schichtsilikate, Biogene) sind lagig eingeregelt. Der Anteil an terrigenen silikatischen Komponenten nimmt gegen die hangenden Radiolarite merklich ab. Die siltigen Intervalle der gradierten Schichten zeichnen sich durch eine homogenere Zusammensetzung aus; pelletoide Aggregate herrschen vor.

In multiplen Gradierungen nimmt die Korngrösse der jeweils gröbsten Fraktion einer gradierten Einheit nach oben allmählich ab (vgl. Tf. 6, Fig. 3). Der Pelitanteil wächst kontinuierlich, ein Wackestone leitet in einen homogenen Mudstone mit Chondriten über.

Eine Beanspruchung der Unterlage äussert sich nicht selten in Differentialbewegungen zwischen kleinsten Gefügeelementen (Phacoidisierung im mm- bis cm-Bereich) oder Konvolutionen. Bankgrenzen stellen häufig Erosionskontakte dar.

Sedimentation

Die flyschartig gegliederte Valmaggiore-Formation enthält im Gegensatz zu der mittelliasischen San Giulio-Serie nur feinkörnige Resedimente. Dennoch bestehen verschiedene Anhaltspunkte, die wiederum auf Liefergebiete im Westen und Südwesten, im Bereich der Gozzano-Schwelle, schliessen lassen:

In den Kalkareniten (Lithofazies 1a) nimmt die durchschnittliche Korngrösse von Westen (Monte Sangiano) nach Osten (Aufschlüsse im Nordschenkel der Valcuvia-Synklinale) merklich ab. Die Orientierung der spärlichen polaren (bankinternen) Sedimentstrukturen und der nach Osten deutlich wachsende prozentuale Anteil an hemipelagischen Sedimenten (Lithofazies 1c) sind mit der beobachteten Proximal-Distal-Gradierung vereinbar. Die seitliche Ersetzung der flyschartigen Sedimente durch die oben beschriebene mergelige Ammonitico Rosso-Fazies (mit grundlegend verschieden zusammengesetzten Resedimenten) schliesst Liefergebiete im Osten bzw. Südosten aus (vgl. Tf. 11).

Die isolierten Aufschlüsse südlich der Valcuvia lassen sich kaum korrelieren, und eine entsprechende Polarität kann nicht ohne weiteres nachgewiesen werden. Weder im Gebiet südlich Arolo (Monvalle) noch nördlich Besozzo (Tf. 11, Profil II) ist die Gesamtmächtigkeit der Valmaggiore-Formation bekannt. Wie am Monte Sangiano (Profil III) reicht die zyklisch gegliederte Fazies 1 jedoch in beiden Aufschlüssen bis 20-30 m unter die basalen Radiolarite. Bei Pozzolo, nördlich Gavirate (Tf. 11, Profil I), schalten sich in die basalen Glieder der Valmaggiore-Formation noch Rutschungskonglomerate ein, die von der Campo dei Fiori-Schwelle stammen (vgl. p. 315). Die jüngste konglomeratische Einschaltung führt im Dach aufgearbeitete Pelit-Fetzen (Lithofazies 1b) des liegenden Turbidits (vgl. Tf. 5, Fig. 2). Alle übrigen Gerölle und die Matrix unterscheiden sich (mikro)faziell jedoch deutlich von den Resedimenten der Valmaggiore-Formation. Wir schliessen daraus, dass die Rutschungskonglomerate nicht eine proximale (kanalisierte) Fazies der Valmaggiore-Formation darstellen, sondern mit den feinkörnigen Resedimenten interferieren. Die bereits erwähnte Kondensation der mitteljurassischen Ablagerungen erklärt die reduzierte Mächtigkeit der Formation im Gebiet von Gavirate und lässt zudem eine bedeutende Materialzufuhr von Osten unwahrscheinlich erscheinen. Die Mächtigkeiten der Kalkturbidite der Fazies 1 variieren beträchtlich (i.a. zwischen 0,75 und 2 m; maximale Mächtigkeit um 4 m). Zwischen Korngrösse und Bankmächtigkeit besteht keine Beziehung, und die Mächtigkeit der Pelite variiert nicht proportional zu der der liegenden Kalkarenite. Die massigen dunkelgrauen Pelite sind, fast ausnahmslos, etwas geringmächtiger als die Kalkarenite. Die Kontakte sowohl im Dach der Kalkarenite als auch der Pelite sind durchwegs scharf. Die hemipelagischen Mergel (F-Intervall der Bouma-Sequenz) sind daher jeweils ohne Schwierigkeiten gegen das liegende E-Intervall abzugrenzen (vgl. Tf. 4, Fig. 2).

Der geringe ABC-Index (Proximalitäts-Index, cf. Walker 1967) steht im Widerspruch zu der grossen Mächtigkeit der vollständigen Zyklen. Auf Unregelmässigkeiten in der vertikalen Abfolge der B-, C- und D-Intervalle innerhalb der Kalkarenite wurde bereits hingewiesen; das A-Intervall fehlt stets. Obwohl die Aufschlussverhältnisse nicht erlauben, die Geometrie einzelner Zyklen im Detail zu studieren, fällt dennoch auf, dass die Mächtigkeit der Bänke in der Transportrichtung offenbar nicht kontinuierlich abnimmt.

Die angeführten Merkmale lassen darauf schliessen, dass sich die mächtigen Zyklen aus der Fracht mehrerer, dicht aufeinander folgender Suspensionsströme zusammensetzen (amalgamierte Turbidite). Die einzelnen Ströme vermochten offenbar mindestens das Pelit-Intervall des jeweils jüngsten, bereits abgelagerten Bouma-Zyklus zu erodieren. Im wenig konsolidierten liegenden Sediment mochten sie ausserdem sedimentäre Deformationen auslösen oder bereits angelegte Strukturen akzentuieren (vgl. Dzulynski & Walton 1965, Dzulynski & Radomski 1966). Der komplexe Aufbau der Kalkarenit-Bänke fände damit eine plausible Erklärung.

An der Basis und im Dach der zyklisch gegliederten Abschnitte der Formation (Fazies 1) lockert sich die Folge der amalgamierten Bänke; in die mächtigen hemipelagischen Mergel schalten sich geringmächtige (nicht zusammengesetzte) Turbidite, ab und zu laminierte Kalksiltite (? «contourites», cf. BOUMA 1973; vgl. Tf. 4, Fig. 4) ein. Systematische vertikale Mächtigkeitsänderungen («thickening-upwards-» oder «thinning-upwards-sequences», vgl. u.a. MUTTI & RICCI-LUCCHI 1972) wurden jedoch weder an den Übergängen in die Siltit-Mergel-Alternanzen der monotonen Beckenfazies 2 noch innerhalb der zyklisch gegliederten Intervalle der Formation beobachtet.

Die mächtigen Resedimente der Fazies *I*, die im oberen Lias weite Teile des westlichen Monte Nudo-Beckens bedeckten (vgl. Fig. 4), dokumentieren vermutlich eine Reaktivierung des Bruchsystems im Gebiete des unteren Langensees. Erneute, stärkere tektonische Bewegungen mochten im Bereiche der Hochzone von Gozzano wiederholt zur Remobilisierung grosser, feinkörniger Sedimentmassen geführt haben.

Zur paläotektonischen Entwicklung der Westlombardei - eine Zusammenfassung

Die sedimentäre Entwicklung der Westlombardei wurde – deutlich nachweisbar vom Rhät an – von synsedimentärer Dehnungstektonik kontrolliert.

Die grundlegenden Arbeiten von Bernoulli (1964) und Castellarin (1972) vermochten den Einfluss etwa N-S-streichender Abschiebungssysteme (Luganer