Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 69 (1976)

Heft: 3

Artikel: Les otolithes des Téléostéens néogènes de Trinidad

Autor: Nolf, Dirk

Kapitel: Systematique

DOI: https://doi.org/10.5169/seals-164534

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dans la Figure 5 nous indiquons sur une otolithe utriculaire gauche de *Arius spixii* les éléments morphologiques auxquels se réfèrent les termes utilisées dans la partie descriptive.

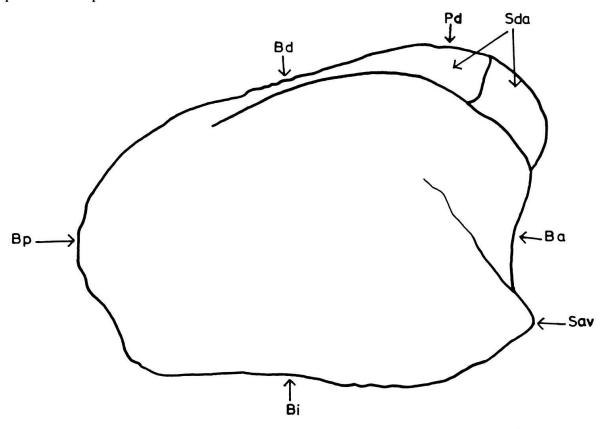


Fig. 5. Dénominations provisoires des éléments morphologiques des otolithes utriculaires chez un Ariidé. Ba: bord antérieur. Bd: bord dorsal. Bi: bord inférieur. Bp: bord postérieur. Pd: protubérance dorsale. Sav: saillie antéro-ventrale. Sda: sillon dorso-antérieur.

Systématique

La classification adoptée est celle de Greenwood, Rosen, Weitzman & Myers (1966), tenant compte des modifications apportées par Rosen & Patterson (1969), Nelson (1970), Rosen & Greenwood (1970), Roberts (1973), Rosen (1973), Taverne (1974) et Weitzman (1974). Lors des discussions sur l'affinité des espèces fossiles en question, nous ferons à maintes reprises des comparaisons entre la faune fossile et celle vivant actuellement sur le plateau continental des côtes brésiliennes et vénézuéliennes, ainsi que dans la mer des Caraïbes. Nos connaissances de ces faunes sont basées essentiellement sur les travaux suivants: Jordan & Evermann (1896-1900), Jordan, Evermann & Clark (1930), Cervignon (1966), Böhlke & Chaplin (1968), Mago-Leccia (1970), Roux (1973) et Whitehead (1973).

Pour les espèces de position systématique incertaine, nous avons utilisé le mot «genus» suivi du nom du groupe au génitif pluriel, suivi à son tour du nom du groupe espèce, tel que proposé par RICHTER (1948, p. 136, Espèces sans genre). Si une affinité avec une genre défini est probable sans être pour autant certaine, nous

avons écrit «genus aff. ...» suivi du nom du groupe espèce. Voici, par exemple, la manière dont une espèce hypothétique, circularis, peut être désignée, suivant la précision de nos connaissances sur sa position systématique: Albula circularis, «genus aff. Albula» circularis, «genus Albulidarum» circularis, «genus Albuloideorum» circularis, genus Elopiformorum circularis, etc.

Ordre Clupeiformes

Famille *Engraulidae* (Pl. X, Fig. 1)

Genre Anchoa Jordan & Evermann, 1927

Espèce-type: Engraulis compressus GIRARD, 1858.

Il existe actuellement sur les côtes vénézuéliennes au moins 8 espèces d'Anchoa dont les otolithes nous sont inconnues. Parmi le matériel fossile, nous avons pu reconnaître au moins deux espèces différentes, qui, de toute évidence, ne peuvent être déterminées spécifiquement. A l'appui de notre détermination générique, nous figurons ici les otolithes des espèces actuelles Anchoa hepseta (LINNAEUS, 1758) (Pl. I, Fig. 1) et A. mitchilli (VALENCIENNES, 1848) (Pl. I, Fig. 5)

Anchoa sp. I (Pl. I, Fig. 6-9)

Matériel et localités. – 17 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R. 25954; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillons K. 10842, K. 12042, K. 12046, K. 12049, K. 12050, K. 12054; Formation de Springvale: point 1 (sondage ABM5), échantillon à 609 ft; Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon no. 675.

Anchoa sp. II (Pl. I, Fig. 2-4)

Matériel et localités. - 4 otolithes. Formation de Brasso: point 13 (rivière Los Atajos), échantillon K. 11035; Formation de Springvale: point 18 (Melajo), échantillon K.R. 11862; Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon no. 675.

Genre Cetengraulis Gunther, 1868

Espèce-type: Engraulis edentulus CUVIER, 1829.

Cetengraulis sp. (Pl. I, Fig. 11-12)

Matériel et localités. - 9 otolithes. Formation de Brasso: point 7 (rivière Crespo), échantillon K.R. 9247; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillons K. 10842, K. 12041, K. 12047, K. 12054.

Quelques otolithes un peu érodées ressemblent assez bien à celles de l'espèce actuelle vénézuélienne Cetengraulis edentulus (CUVIER, 1829) (Pl. I, Fig. 10). Nous n'osons cependant pas les attribuer à cette espèce, vu leur état de conservation et vu notre ignorance de la variabilité des otolithes de l'espèce actuelle.

Super-Famille *Perigasteroidae* (Pl. X, Fig. 2)

Famille Perigasteridae

Genre Ilisha RICHARDSON, 1846

Espèce-type: Ilisha abnormalis GRAY, 1846 = Alosa elongata BENNETT, 1830.

Ilisha sp. (Pl. I, Fig. 14)

Matériel et localités. – 7 otolithes, Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 10 (rivière Ganteaume), échantillon K.R.9244; point 13 (rivière Los Atajos), échantillon K.11035; point 28 (rivière Tamanaquito), échantillon K.6666.

Quelques otolithes courtes et hautes, de contour anguleux, ressemblent quelque peu à celles de l'espèce actuelle africaine *Ilisha africana* (BLOCH, 1795) (Pl. I, Fig. 13). Malheureusement, les otolithes de l'espèce actuelle sud-américaine *Ilisha amazonica* (de MIRANDA-RIBEIRO, 1923) nous sont inconnues et nous ne pouvons donc pas juger s'il s'agit d'une nouvelle espèce fossile.

Famille *Clupeidae* (Pl. X, Fig. 3)

Genre Ophistonema GILL, 1861

Espèce-type: Clupanodon thrissa LACEPEDE, 1803 (non Clupea thrissa OSBECK, 1765) = Megalops oglina LE SUEUR, 1817.

Ophistonema aff. oglinum (LE SUEUR, 1817)
(Pl. I, Fig. 16)

Matériel et localité. - 1 otolithe. Formation de Brasso: point 28 (rivière Tamanoquito), échantillon K. 6666.

Une petite otolithe malheureusement très érodée et incomplète ressemble beaucoup à celles de l'espèce actuelle vénézuélienne *Ophistonema oglinum* (Pl. I, Fig. 15). Son état de conservation ne permet cependant pas de conclure en toute certitude.

Les otolithes d'*Ophistonema* se distinguent assez bien de celles des autres genres de Clupeidés vénézuéliens par leur portion postérieure à contour très rectangulaire.

Ordre Anguilliformes

Famille Muraenesocidae (Pl. X, Fig. 4)

Muraenesocidae ind.

(Pl. II, Fig. 1)

L'échantillon no 675, provenant de Point Courbaril (Formation de Morne l'Enfer) nous a livré une otolithe très érodée, qui pourrait appartenir à la famille des Muraenesocidae. Elle se caractérise par sa forme très allongée et par un angle postdorsal très marqué.

Famille *Congridae* (Pl. X, Fig. 5)

Genre Ariosoma Swainson, 1838

Espèce-type: Muraena balearica DE LA ROCHE, 1809.

Ariosoma sp. (Pl. II, Fig. 2)

Matériel et localité. - 1 otolithe. Formation de Manzanilla: point 12 (rivière Guaracarito), échantillon K.R.25971.

Nous ne disposons que d'une seule otolithe dont la partie supérieure est assez abimée par l'érosion. Sa hauteur est à peu près égale à sa longueur.

De ce fait, elle se distingue aisément de l'espèce actuelle Ariosoma balearica DE LA ROCHE, 1809 (voir CHAINE, 1938, pl. XVIII, sous le nom Congermuraena balearica). De plus, le fossile présente une cauda dont la partie postérieure élargie est plus longue.

Il existe dans la faune actuelle des côtes de l'Amérique du Sud et des Caraïbes une espèce voisine, A. impressa POEY, 1860. De cette dernière, nous ne possédons malheureusement que des otolithes assez fortement attaquées par le formol. Le sulcus est identique à celui de l'espèce fossile, mais pour ce qui est du contour, on ne peut rien dire.

Genre Gnathophis KAUP, 1860

Espèce-type: Gnathophis heterognathus KAUP, 1860

Gnathophis sp. (Pl. II, Fig. 5-7)

Matériel et localités. - 15 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 11 (fleuve Garcia), échantillon Cb. 1855; point 20 (rivière Navaro), échantillon Cb. 1848; point 23 (sentier Ranjit), échantillon Cb. 1875; point 28 (rivière Tamanaquito), échantillon K.R.6666; Formation de Tamana (ou base de la Formation de Manzanilla): point 2 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 12054.

Ce sont des otolithes épaisses et quelque peu allongées. La face externe, inornée, est légèrement bombée. La face interne est également bombée. Les bords antérieurs et postérieurs sont anguleux. Chez la plupart des exemplaires, le bord ventral est légèrement anguleux; il forme un angle obtus qui se situe juste en avant du milieu de ce bord.

Le sulcus est étroit et légèrement oblique. La crista inferior est presque droite. Au-dessus de la crista superior se situe une dépression assez importante dans l'area dorsale. Les otolithes de cette espèce ressemblent assez bien à celles de l'espèce actuelle *Gnathophis mystax* DE LA ROCHE, 1809 (voir CHAINE, 1938, pl. XVIII).

«genus Congridarum» sp. I (Pl. II, Fig. 8-10)

Matériel et localités. - Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 20 (rivière Navaro), échantillon Cb. 1852.

Les otolithes de cette espèce sont petites et épaisses. La face externe est inornée et bombée. La face interne est presque platte. Le contour est relativement rond. Chez tous les exemplaires, on remarque un angle postdorsal. Le sulcus est étroit. La crista inferior est très légèrement courbée. La convexité de la courbe est orientée vers le bord inférieur. La crista superior est quelque peu saillante, caractère encore accentué par une dépression considérable qui se situe dans l'area dorsale. Il nous est impossible de fournir une détermination générique plus poussée, vu les grandes lacunes qui existent dans nos connaissances des otolithes des Congridae actuels, en particulier des espèces sud-américaines et caraïbes.

«genus Congridarum» sp. II (Pl. II, Fig. 3)

Matériel et localité. - 1 otolithe. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953.

Cette otolithe se rapproche quelque peu de celles que nous avons décrites cidessus sous le nom de *Gnathophis* sp. Elle s'en distingue cependant par un petit angle postdorsal et par la partie antérieure du bord ventral plus arrondie. Il s'agit probablement d'un genre proche de *Gnathophis*, mais nos connaissances trop sommaires des Congridae actuels ne permettent pas d'en dire plus.

> «genus Congridarum» sp. III (Pl. II, Fig. 4)

Matériel et localité. - 1 otolithe. Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 12054.

Une petite otolithe droite de conservation assez satisfaisante peut également être attribué à un Congridé. La face externe est globalement convexe, mais on remarque une toute petite dépression en son centre. La face interne est légèrement convexe. La partie postérieure de l'area dorsale est très développée et forme un angle post-dorsal considérable situé sur le bord dorsal.

Le sulcus est relativement court et oblique. Juste au-dessus se situe une légère dépression dans l'area dorsale.

Ordre Cypriniformes

Famille Ariidae (Pl. X, Fig. 6)

Genre Arius Cuvier & Valenciennes, 1840

Espèce-type: Arius stricticassis Cuvier & Valenciennes, 1840.

Arius aff. felis LINNAEUS, 1758 (Pl. II, Fig. 12a et b)

Matériel et localité. – 1 otolithe utriculaire. Formation de Springvale: point 18 (Melajo), échantillon K. R. 11862.

Une otolithe utriculaire quelque peu érodée est identique à celles de l'espèce actuelle Arius felis (pl. II, Fig. 11). Elle ressemble également à celles de Bagre marinus MITCHILL, 1814, mais, chez cette dernière espèce, la face externe est moins convexe.

La seule raison pour laquelle nous n'osons pas identifier notre fossile à l'espèce actuelle *Arius felis* est que celle-ci présente actuellement une répartition plus septentrionale et n'existe pas dans la faune des côtes de Vénézuela.

Arius spixii AGASSIZ, 1829 (Pl. II, Fig. 15-17)

Matériel et localités. - 3 otolithes utriculaires. Formation de Manzanilla (ou plus jeune): point 14 (route Mandillon), échantillon K. 12301; Formation de Springvale: point 18 (Melajo), échantillon K. R. 11862.

Nos fossiles sont identiques aux otolithes utriculaires (lapili) de l'espèce actuelle vénézuélienne Arius spixii (Pl. II, Fig. 17). Les lapili de cette espèce sont fort différent de celles de tous les autres Ariidés qui ont un contour presque circulaire. Chez Arius spixii, par contre, les lapili sont beaucoup plus allongés en direction antéro-postérieure, la protubérance dorsale se situe très en avant, le bord antérieur est concave, la saillie antéro-ventrale est très prononcée, et le bord inférieur est légèrement concave. En plus, le sillon dorso-antérieur, qui ne se distingue presque pas sur les lapili des autres espèces d'Ariidés, est très profondement entaillé chez Arius spixii. Le fait que les lapili fossiles que nous figurons ont un contour un peu plus arrondi que celui de l'espèce actuelle, est uniquement dû à une assez forte érosion des bords et non pas à une différence morphologique.

Arius sp. (Pl. II, Fig. 13-14)

Matériel et localités. 21 otolithes. Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb. 2076; Formation de

Manzanilla: point 14 (route Mandillon), échantillon K. 12301; point 16 (côte de Manzanilla), échantillon K. 1084; point 22 (Pointe-à-Pierre), échantillon S. M. 1399; point 24 (rivière Sabanetta), échantillon K. 9845; point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633; Formation de Gros Morne: point 19 (rivière Mogue), échantillon K. 12059; Equivalent de la Formation de Springvale: point 1 (sondage ABM5) à 606 ft; Pléistocène: point 30 (sondage T.P.D.) à 583 ft.

Les lapili de cette espèce sont morphologiquement intermédiaires entre celles des Ariidae de type normal et celles d'Arius spixii.

Ils sont un peu allongés et leur protubérance dorsale se situe nettement plus en avant. Ils montrent également une saillie antéro-ventrale assez marquée, un bord antérieur concave et un sillon dorso-antérieur entaillé. Ils diffèrent, cependant, de celles d'A. spixii par leur bord ventral convexe.

Il est probable que ces otolithes appartiennent à une espèce fossile ayant des affinités avec Arius spixii, mais comme on les trouve jusque dans le Quaternaire et comme les lapili de plusieures espèces d'Ariidae d'eau douce et estuariennes de la faune vénézuélienne actuelle nous sont encore inconnues, nous préférons de ne pas établir une nouvelle espèce fossile.

Genre Selenaspis BLEEKER, 1858

Espèce-type: Silurus herzbergii BLOCH, 1794.

Selenaspis herzbergii (BLOCH, 1794) (Pl. II, Fig. 18-19)

Matériel et localité. - 1 otolithe utriculaire. Formation de Manzanilla: point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633.

Un lapilus quelque peu érodé ressemble beaucoup à ceux de l'espèce actuelle Selenaspis herzbergii (Pl. II, Fig. 18). Les lapili de Selenaspis se caractérisent par une saillie antéro-ventrale très développée.

Ordre Stomiatiformes

Famille Sternoptychidae (Pl. X, Fig. 7)

Genre Polyipnus Gunther, 1887

Espèce-type: Polyipnus spinosus Gunther, 1887

Polyipnus sp. (Pl. III, Fig. 4)

Matériel et localités. - 3 otolithes. Formation de Nariva: point 17 (rivière Mayo) échantillon K. R. 25930.

Ce sont toutes des otolithes un peu érodées, qui ressemblent beaucoup à celles des espèces actuelles *Polyipnus asteroides* SCHULTZ, 1938 et *Polyipnus aquavitis* BAIRD, 1971 (voir WEITZMAN, 1974, p. 373, fig. 44 et p. 374, fig. 45).

Les otolithes de *Polyipnus* sont d'un type tout à fait particulier et ne pourraient être confondues avec celles de n'importe quel autre genre. Elles se caractérisent par le rostre et l'antirostre très minces et saillants, tandis que la partie postérieure de l'otolithe est devenue très épaisse et s'est surtout développée dans le sens de la hauteur. La face externe est lisse et très bombée. La face interne est beaucoup plus platte.

La morphologie du sulcus se limite à une très faible concavité qui est soulignée par une crista inférior légèrement saillante. De la crista superior, on ne voit que la partie tout à fait postérieure qui est jointe à la crista inferior par une crête très peu marquée.

Vu l'érosion des otolithes fossiles, d'une part, et, d'autre part, l'insuffisance de nos connaissances des différentes espèces actuelles de *Polyipnus*, une détermination spécifique est exclue.

Famille *Photichthyidae* (Pl. X, Fig. 8)

Genre Polymetme MAC CULLOCH, 1926

Espèce-type: Polymetme illustris MAC CULLOCH, 1926.

Polymetme cf. corythaeola (ALCOCK, 1898)
(Pl. III, Fig. 5)

Matériel et localité. - 1 otolithe. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953.

Il s'agit d'une toute petite otolithe droite dont le rostre a été brisé. Elle nous semble identique à celles de l'espèce actuelle *Polymetme corythaeola*, figurées par KOTTHAUS (1972, p. 24, fig. 15) et par WEITZMAN (1974, p. 369, fig. 41).

? Photichthyidae ind. (Pl. III, Fig. 7)

L'échantillon K. R. 25953 provenant de la rivière Mayo (Formation de Nariva) nous a également livré une petite otolithe incomplète qui pourrait appartenir à la famille des Photichthyidae, peut être à un genre proche de *Yarella* GOODE & BEAN, 1885 (voir Pl. III, Fig. 6; *Yarella blackfordi* GOODE & BEAN, 1885 actuel).

Ordre Aulopiformes

Famille Synodontidae (Pl. X, Fig. 9)

Genre Saurida VALENCIENNES, 1849

Espèce-type: Salmo tumbil BLOCH, 1795.

Saurida aff. caribbaea Breder, 1927

(Pl. III, Fig. 1-3)

Matériel et localités. – 17 otolithes. Formation de Nariva: point 17 (rivière Mayo) échantillons K.R. 25953, K.R. 25956, K.R. 25957; Formation de Brasso: point 8 (rivière El Ricon), échantillon K.R. 7546; point 10 (rivière Ganteaume), échantillon K.R. 9247; point 20 (rivière Navaro), échantillon Cb. 1852; point 28 (rivière Tamanaquito), échantillon K.R. 6666; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 12050.

Nous avons eu l'occasion de comparer les otolithes fossiles avec celles des espèces actuelles vénézuéliennes et caraïbes Saurida brasiliensis NORMAN, 1935, S. suspicio Breder, 1927 et S. caribbaea Breder, 1927. Elles sont pour ainsi dire identiques à celles de S. caribbaea. Malheureusement, on ne peut être tout à fait affirmatif, car nos exemplaires actuels sont extraits de poissons conservés au formol et, de ce fait, légèrement érodés.

Nos otolithes fossiles se caractérisent par la hauteur relativement importante pour le genre Saurida, par leurs bords ornés et par un angle postdorsal assez net.

Ordre Myctophiformes

Famille Myctophidae (Pl. X, Fig. 10)

Genre Diaphus Eigenmann & Eigenmann, 1890

Espèce-type: Diaphus theta Eigenmann & Eigenmann, 1890.

Diaphus dumerili (BLEEKER, 1856)
(Pl. III, Fig. 8-14)

Matériel et localités. - 339 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillons K.R. 25930, K.R. 25931, K.R. 25942, K.R. 25953; Formation de Brasso: point 11 (fleuve Garcia), échantillon Cb. 1855; point 20 (rivière Navaro), échantillons Cb. 1848, Cb. 1852; point 23 (sentier Ranjit); échantillon Cb. 1875; point 28 (rivière Tamanaquito), échantillon K.R. 6666; équivalent de la Formation de Springvale: point 1 (sondage ABM5, à 603 ft).

Les otolithes de cette espèce sont identiques à celles de l'espèce actuelle *Diaphus dumerili* (Pl. III, Fig. 13-14). Le fait que les otolithes fossiles ont les bords un peu moins ornés que les actuelles figurées ci-dessous est essentiellement causé par une légère érosion.

Diaphus sp. I (Pl. III, Fig. 17)

Matériel et localité. - 1 otolithe. Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K. R. 666.

Une otolithe gauche de bonne conservation nous semble bien différente de l'espèce précédente. Elle a un contour beaucoup plus carré et elle est pourvue d'un

angle postdorsal net. Nous avons comparé cette otolithe avec celles d'une quinzaine d'espèces atlantiques actuelles du genre Diaphus, mais nous n'en avons vu aucune avec laquelle elle concorde parfaitement. C'est encore à celles de Diaphus taaningi Norman, 1930 (Pl. III, Fig. 16) qu'elle ressemble le plus. Les otolithes de cette dernière espèce ont cependant des otolithes relativement plus hautes, un sulcus plus étroit et la partie antérieure de leur area dorsale est plus étendue, ce qui forme un angle prédorsal marqué dans le bord supérieur. Il est probable qu'il s'agit d'une espèce nouvelle mais comme nous n'en possédons qu'un seul exemplaire et qu'en plus, il existe dans la faune actuelle une cinquantaine d'espèces du genre Diaphus (Paxton, 1972, p.49) dont, pour la plupart, les otolithes nous sont inconnues, nous estimons qu'il vaut mieux ne pas innover une espèce pour elle.

Diaphus sp. II (Pl. III, Fig. 18-19)

Matériel et localités. - 26 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillons K.R. 25930 et K.R. 25942.

Ce sont des petites otolithes assez rondes pourvues d'un rostre saillant. Ils se rapprochent quelque peu des otolithes des espèces actuelles *Diaphus termophilus* TAANING (1928) (Pl. III, Fig. 15) et *D. mollis* TAANING (1928). Malheureusement, elles sont assez fortement érodées et l'on ne peut en dire plus.

Ordre Batrachoidiformes

Famille Batrachoididae (Pl. XI, Fig. 1)

Genre Perulibatrachus Roux & Whitley, 1971

Espèce-type: Batrachus eliminensis Bleeker, 1863.

«genus aff. *Perulibatrachus*» sp. (Pl. IV, Fig. 6)

Matériel et localité. - 1 otolithe. Formation de Manzanilla: point 7 (rivière Crespo), échantillon K. R. 7574.

Cette otolithe est assez différente de celles des Batrachoididae américains que nous connaissons (*Batrachoides Lacepede*, 1800, *Opsanus Rafinesque*, 1818, *Porichthys Girard*, 1854 et *Thalassophryne Gunther*, 1861).

Par contre, elle ressemble beaucoup à celles de l'espèce actuelle africaine *Perulibatrachus rossignoli* (Roux, 1957) (Pl. IV, Fig. 5), mais elle en diffère par sa face interne plus platte et par son sulcus plus irrégulier. Notons cependant que le genre *Perulibatrachus* n'est pas connu dans la faune actuelle des côtes ouest-atlantiques. C'est la raison pour laquelle nous ne sommes pas tout à fait affirmatif dans notre détermination générique.

Genre Porichthys GIRARD, 1854

Espèce-type: Porichthys notatus GIRARD, 1854.

Porichthys sp. (Pl. IV, Fig. 2-4)

Matériel et localités. – 11 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillons K.R.25953, K.R.25957; Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K.R.6666; Formation de Springvale: point 18 (Melajo), échantillon K.R.11862.

Quelques otolithes d'assez bonne conservation peuvent être attribuées au genre *Porichthys*. Leur face externe est convexe et peu ornée; on n'y voit que quelques sillons marginaux séparant les lobes des bords.

La face externe est platte. Elle est pourvue d'un large sulcus qui ne se différencie pas en ostium ni cauda. Dans la partie ventro-postérieure du colliculum, on remarque une crête quelque peu saillante. Les contours sont relativement réguliers pour le genre *Porichthys* (comparé par exemple aux saillies extravagantes qu'on remarque sur le bord dorsal des espèces *P. myriaster* Hubbs & Schultz, 1939 (voir Fitch, 1964, p. 29, fig. 44) et *P. porosissimus* Valenciennes, 1837 (voir Fitch & Brownell, 1971, p. 631, fig. 1f).

Elles ressemblent quelque peu à celles de l'espèce actuelle des côtes ouestaméricaines P. notatus GIRARD, 1854 (Pl. IV, Fig. 1) mais elles en diffèrent par leur bord supérieur dont la partie postérieure est beaucoup plus saillante. En dehors de P. porosissimus qui est nettement différent de notre espèce fossile, on trouve encore dans la faune actuelle des Caraïbes et des côtes vénézuéliennes, cinq autres espèces du genre Porichthys dont les otolithes nous sont inconnues.

Genre Thalassophryne Gunther, 1861

Espèce-type: Thalassophryne maculosa Gunther, 1861.

Thalassophryne sp. (Pl. IV, Fig. 8-10)

Matériel et localités. – 8 otolithes. Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K. R. 6666; Formation de Tamana ou base de la Formation de Manzanilla: point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 12049; Formation de Springvale: point 18 (Melajo) échantillon K. R. 11862.

Ces otolithes ressemblent d'assez près à celles de l'espèce actuelle vénézuélienne *Thalassophryne natterei* STEINDACHNER, 1876 (Pl. IV, Fig. 7) mais elles en diffèrent par leur face interne plus platte, par leur sulcus plus étroit et par leur épaisseur plus considérable.

L'épaisseur de nos otolithes fossiles est d'ailleurs assez variable. Certains exemplaires sont particulièrement épais, et pourraient appartenir à une espèce

différente. Toutefois notre matériel est trop restreint pour trancher la question. A cela s'ajoute que nous ne savons rien de la variabilité des Thalassophrynae actuels.

Ordre Lophiiformes

Famille Antennariidae (Pl. XI, Fig. 2)

Antennariidae ind. (Pl. IV, Fig. 14)

Matériel et localité. – 1 otolithe. Formation de Manzanilla; point 12 (Guaracarito River), échantillon K. R. 25973.

C'est une toute petite otolithe droite provenant d'un très jeune animal. Elle se caractérise par son bord ventral très fortement lobé. Nos connaissances sur les otolithes des Antennariidae actuels sud-américaines et caraïbes sont trop restreintes pour que nous puissons donner une détermination plus précise.

Ordre Gadiformes

Famille *Bregmacerotidae* (Pl. XI, Fig. 3)

Genre Bregmaceros Thompson, 1840

Espèce-type: Bregmaceros macclellandi Thompson, 1840.

Bregmaceros sp. (Pl. IV, Fig. 15-18)

Matériel et localités. – 186 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillons K.R.25930, K.R.25931, K.R.25942, K.R.25953, K.R.25954, K.R.25955, K.R.25956; Formation de Brasso: point 8 (rivière El Ricon), échantillon K.R.2546; point 10 (rivière Ganteaume) échantillons K.R.9244, K.R.9246, K.R. 9247; point 13 (rivière Los Atajos), échantillon K.11035; point 20 (rivière Navaro) échantillon Cb.1852; point 28 (rivière Tamanaquito), échantillon K.R.6666; Formation de Manzanilla: point 12 (rivière Guaracarito), échantillons K.R.25971, K.R.25973, K.R.25974; point 16 (côte de Manzanilla), échantillons K.10842, K.12041, K.12044, K.12047, K.12054.

Ces otolithes nous semblent différentes de celles de l'espèce actuelle Bregmaceros macclellandi Thompson, 1840 par leur area dorsale plus large. Le genre Bregmaceros est un genre à mode de vie pélagique, représenté par trois espèces dans la faune actuelle de l'Atlantique. Comme nous ne connaissons que les otolithes d'un seul exemplaire de B. macclellandi, il nous est impossible de savoir si nos fossiles appartiennent à une espèce actuellement éteinte ou non.

Famille *Eretmophoridae* (= *Moridae*) (Pl. XI, Fig. 4)

Genre Gadella Lowe, 1843

Espèce-type: Gadella gracilis Lowe, 1843 (= Gadus maraldi Risso, 1840).

Gadella sp. (Pl. IV, Fig. 13a et b)

Matériel et localité. - 1 otolithe. Formation de Nariva: point 17 (Mayo River), échantillon K. R. 25953.

Cette otolithe fossile ressemble beaucoup à celles de l'espèce actuelle Gadella maraldi (RISSO, 1810) (Pl. IV, Fig. 11 et 12) mais elle en diffère par son bord dorsal dont la partie centrale est horizontale et non saillante, comme c'est le cas chez G. maraldi. Notons cependant que les otolithes de G. maraldi provenant de Tortugas (Caraïbes) sont assez différentes de celles figurées par KARRER (1971, p. 168, fig. 7) provenant de la Méditerranée. Les exemplaires de Tortugas (Pl. IV, Fig. 11 et 12) sont beaucoup moins hautes et se rapprochent davantage du fossile de Trinidad que celles de la Méditerranée.

Famille *Ophidiidae* (incluant les Brotulidae, Brotulophidae, Aphyonidae) (Pl. XI, Fig. 5)

Genre Brotula CUVIER, 1829

Espèce-type: Enchelyopus barbatus SCHNEIDER, 1801.

Brotula barbata (SCHNEIDER, 1801)
(Pl. V, Fig. 1 et 2)

Matériel et localité. - 1 otolithe. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953.

Cette otolithe est identique à celles de l'espèce actuelle *Brotula barbata* (Pl. V, Fig. 1).

Genre Lepophidium GILL, 1895

Espèce-type: Lepophidium profundorum GILL, 1863.

Lepophidium sp. I (Pl. V, Fig. 5-7)

Matériel et localités. – 5 otolithes. Formation de Brasso: point 23 (sentier Ranjit), échantillon Cb. 1875; Formation de Tamana ou base de la Formation de Manzanilla: point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 16 (côte de Manzanilla, partie N. de la baie de Manzanilla), échantillons

K. 10842 et K. 12044; Formation de Talparo: point 29 (sentier Tamboo), échantillon K. 12163.

Cette espèce possède des grosses otolithes de contour général ovale, pourvues d'une petite saillie acuminée au bord postérieur. Il y a un très faible angle prédorsal. La face externe est inornée. La délimitation entre la face externe et la face interne se fait, ventralement, par un bord très tranchant et par un bord obtus et tuméfié, dorsalement.

La face interne est très bombée, aussi bien en direction antéro-postérieure qu'en direction dorso-ventrale.

Le sulcus est constitué d'un ostium long et large et d'une petite cauda. Ce n'est que dans la crista inferior qu'on peut apercevoir une délimitation entre la partie ostiale et caudale du sulcus. Le sulcus est comblé avec un colliculum très mince et très régulier.

Les otolithes de cette espèce ressemblent un peu à celles de l'espèce actuelle Lepophidium prorates (JORDAN & BOLLMAN, 1889) (Pl. V, Fig. 3) qui ont un même type de sulcus et présentent également une petite saillie acuminée sur le bord postérieur. Notons cependant que les otolithes de L. prorates sont beaucoup plus allongées et que leur face interne n'est nettement convexe qu'en direction antéropostérieure, tandis qu'en direction dorso-ventrale, elle est presque platte. Nous ne pouvons établir une espèce nouvelle pour cette espèce fossile, car il existe encore sur la côte vénézuélienne deux espèces actuelles du genre Lepophidium dont nous ignorons les otolithes.

Lepophidium sp. II (Pl. V, Fig. 9)

Matériel et localité. - 1 otolithe. Formation de Manzanilla: point 22 (Pointe-à-Pierre), échantillon SM. 1399.

Il s'agit d'une otolithe gauche grande et robuste, dont les extrémités antérieure et postérieure sont malheureusement très fortement atteintes par l'érosion. Cette otolithe ressemble beaucoup à celles de l'espèce actuelle *Lepophidium microlepis* GILBERT, 1890 (Pl. V, Fig. 4).

Genre Neobythites GOODE & BEAN, 1858

Espèce-type: Neobythites gillii GOODE & BEAN, 1885.

Ce genre bathybenthique est représenté par deux espèces dans les dépôts néogènes de Trinidad.

Neobythites aff. malayanus WEBER, 1913 (Pl. V, Fig. 10 et 11)

Matériel et localités. - 6 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953 (3 otolithes); Formation de Brasso: point 11 (fleuve Garcia), échantillon Cb. 1852 (2 otolithes).

Ces otolithes fossiles sont pour ainsi dire identiques à celles de l'espèce actuelle N. malayanus d'Indonésie (voir Pl. V, Fig. 8). La seule différence que l'on pourrait peut-être évoquer est que, chez les fossiles, le sulcus est un tout petit peu plus étroit, mais la raison pour laquelle nous n'osons pas attribuer notre fossile à l'espèce actuelle en tout certitude est surtout la grande distance géographique qui les sépare.

Neobythites sp. (Pl. V, Fig. 12a et b)

Matériel et localité. - 1 otolithe. Formation de Brasso: point 20 (rivière Navaro), échantillon Cb. 1852.

Nous ne disposons que d'une seule otolithe gauche qui est, heureusement, bien conservée. La face externe est légèrement convexe et, dans la partie supérieure, on remarque quelques traces de tubercules grossiers très faiblement développés. La face interne est nettement bombée (voir Pl. V, Fig. 12b). De ce fait, elle se distingue des otolithes des espèces actuelles *Neobythites gilli* Goode & Bean, 1885, *N. malayanus* Weber, 1913 (Pl. V, Fig. 8) et *N. steaticus* Alcock, 1893, qui ont toutes une face interne platte. Par contre, ils se rapprochent beaucoup des otolithes de l'espèce pacifique *N. fasciatus* SMITH & RADCLIFFE, 1913 (Pl. V, Fig. 13) qui, elle également, possède une face interne plus convexe.

L'espèce fossile se caractérise également par son contour parfaitement ovale. Le sulcus est très semblable à celles des espèces actuelles de *Neobythites*. Le cauda est relativement courte comparée à celle des espèces actuelles.

Ophidiidae ind. (Pl. V, Fig. 14)

Matériel et localité. - 1 otolithe. Formation de Manzanilla: point 22 (Pointe-à-Pierre), échantillon SM. 1399.

Une otolithe très grande, épaisse et très érodée appartient probablement à la famille des Ophidiidae. Son état de conservation ne permet pas une détermination générique plus poussée.

Ordre Beryciformes

Famille Myripristidae (Pl. XI, Fig. 6)

Genre Myripristis CUVIER, 1829

Espèce-type: Myripristis jacobus Cuvier, 1829.

? Myripristis sp. (Pl. VI, Fig. 1)

Matériel et localité. - 1 otolithe. Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K. R. 6666.

Une otolithe très érodée appartient à la famille des Myripristidae, peut-être au genre *Myripristis*. Toute détermination spécifique est exclue, vu l'état de conservation de la pièce.

Ordre Perciformes

Famille Serranidae (Pl. XI, Fig. 7)

Genre Neanthias NORMAN, 1931

Espèce-type: Neanthias accraensis Norman, 1931.

Neanthias sp. (?aff. accraensis NORMAN, 1931)
(Pl. VI, Fig. 3)

Matériel et localités. - 3 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953 (1 otolithe); Formation de Brasso: point 20 (rivière Navaro), échantillon Cb. 1852.

Ces otolithes ressemblent particulièrement bien à celles de l'espèce actuelle des côtes ouest-africaines *Neanthias accraensis* (Pl. VI, Fig.2). Parmi les genres de Serranidae américains dont les otolithes nous sont connues, nous n'en avons vu aucun ayant des otolithes comparables à celles de l'espèce africaine. C'est uniquement à cause de la grande distance géographique et chronologique que nous n'osons conclure à l'identité de nos fossiles et de *N. accraensis*.

Famille Apogonidae (Pl. XI, Fig. 8)

Genre Apogon Lacepede, 1802

Espèce-type: Apogon ruber LACEPEDE, 1802.

Il existe dans la faune actuelle des côtes vénézuéliennes et des Caraïbes une bonne vingtaine d'espèces du genre Apogon, dont nous ne connaissons les otolithes que d'une seule. Il est évident que, dans de telles conditions, toute création d'espèces nouvelles est exclue. Il nous a cependant été possible de distinguer parmi nos fossiles deux types d'otolithes bien distinctes qui appartiennent à deux espèces différentes.

Apogon sp. I (Pl. VI, Fig. 4 et 5)

Matériel et localités. – 9 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso; point 10 (rivière Ganteaume), échantillon K.R.9247; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 10842.

Apogon sp. II (Pl. VI, Fig. 6-8)

Matériel et localités. - 27 otolithes. Formation de Nariva: point 16 (rivière Mayo), échantillons K.R. 25953, K.R. 25960; Formation de Brasso: point 8 (rivière

El Ricon), échantillon K.R.7546; point 10 (rivière Ganteaume), échantillon K.R.9244; pont 28 (rivière Tamanaquito), échantillon K.R.6666.

Genre Epigonus RAFINESQUE, 1810

Espèce-type: Epigonus macrophthalmus RAFINESQUE, 1810.

Epigonus sp. (Pl. VI, Fig. 10)

Matériel et localités. – 2 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953.

Ce sont des otolithes de contour plutôt rond. La face dorsale est presque platte. Sa partie supérieure est ornée de quelques tubercules grossiers peu développés. La face interne est très légèrement convexe. Dans l'area dorsale, on remarque une dépression au-dessus de la crista superior. Le sulcus est constitué d'un ostium large et d'une cauda plus horizontale beaucoup plus étroite. Les otolithes des espèces ouest-atlantiques *Epigonus pandionis* (Goode & Bean, 1889) et *E. occidentalis* Goode & Bean, 1895 nous sont inconnues. A l'appui de notre détermination générique nous figurons ici une otolithe de l'espèce africaine *E. trewavasae* Poll, 1954 (Pl. VI, Fig. 9).

Famille Carangidae (Pl. XI, Fig. 9)

Carangidae ind. (Pl. VI, Fig. 11)

Nous avons trouvé dans l'échantillon K.R.25953 provenant de la rivière Mayo, Formation de Nariva, une otolithe mince et allongée appartenant à un Carangidé, peut être voisin des genres *Trachurus* RAFINESQUE, 1810 ou *Decapterus* BLEEKER, 1851. Nos connaissances des otolithes des Carangidae actuels des Caraïbes et des côtes sud-américaines sont trop sommaires pour permettre une détermination plus poussée.

Famille *Pomadasyidae* (Pl. XI, Fig. 10)

Genre Haemulon CUVIER, 1829

Espèce-type: Haemulon elegans Cuvier, 1829 (= Sparus sciurus Shaw, 1803).

Haemulon sp. (Pl. VI, Fig. 17 et 18)

Matériel et localité. - 5 otolithes. Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K.R.6666; Formation de Manzanilla: point 25 (rivière San José), échantillon Cb. 1633.

Ce sont des otolithes robustes et épaisses, de contour ovale, avec une petite saillie anguleuse au centre du bord dorsal. La face externe est légèrement concave. La face

interne est fortement bombée, surtout en direction antéro-postérieure. Le sulcus est constitué d'un ostium large et d'une cauda plus étroite dont l'extrémité postérieure est infléchie en direction ventrale. Comme c'est presque toujours le cas chez les Pomadasyidae, l'angle formé par la jonction de la partie ostiale à la partie caudale de la crista inferior occupe une position nettement plus postérieure que l'angle homologue de la crista superior.

Quoique les fossiles soient d'une conservation excellente, il nous est impossible de les décrire comme espèce nouvelle. Sur la côte vénézuélienne, on trouve, en effet, douze espèces actuelles du genre *Haemulon*. Comme nous ne connaissons que les otolithes de deux d'entre elles, il se pourrait très bien que l'espèce fossile se rapporte à une des dix autres.

Genre Pomadasys LACEPEDE, 1802

Espèce-type: Sciaena argentea Forskal, 1775.

Pomadasys sp. (Pl. VI, Fig. 15 et 16)

Matériel et localités. - 20 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 8 (rivière El Ricon), échantillon K.R.7546; point 11 (fleuve Garcia), échantillon Cb.1855; point 20 (rivière Navaro), échantillon Cb.1848; point 23 (sentier Ranjit), échantillon Cb.1875; Formation de Tamana; point 5 (carrière Concord), échantillon K.12163.

Cette espèce possède des otolithes robustes à contour presque circulaire. La face externe est légèrement convexe en direction antéro-postérieure. La face interne est très bombée. Le sulcus est constitué d'un large ostium et d'une cauda presque horizontale, dont la partie postérieure est cependant légèrement infléchie en direction ventrale.

Famille *Sparidae* (Pl. XII, Fig. 1)

«genus Sparidarum» sp. I (Pl. VI, Fig. 12)

Matériel et localité. - 1 otolithe. Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K. R. 6666.

Une petite otolithe gauche de conservation plutôt médiocre pourrait appartenir à un Sparidae. Elle ressemble quelque peu aux otolithes du genre *Pagellus*. Nous ne connaissons, cependant, parmi les Sparides ouest-atlantiques, aucun genre dont les otolithes ont une forme semblable.

«genus Sparidarum» sp. II (Pl. VI, Fig. 13)

Matériel et localité. - 1 otolithe Formation de Brasso: point 8 (rivière El Ricon), échantillon K. R. 7546.

Une otolithe légèrement érodée et dépourvue de son rostre, pourrait également appartenir à la famille des Sparidae. Nous n'avons cependant pas encore vu un genre de Sparidae ouest-atlantique possédant des otolithes semblables.

Famille Sciaenidae (Pl. XII, Fig. 2)

Genre Ctenosciaena Fowler & Bean, 1923

Espèce-type: Sciaena dubia FOWLER & BEAN, 1923.

Ctenosciaena aff. gracilicirrhus (METZELAAR, 1919)
(Pl. VII, Fig. 2)

Matériel et localité. - 1 otolithe. Formation de Nariva: point 17 (rivière Mayo), échantillon K. R. 25953.

Une otolithe droite un peu érodée nous semble identique à celles de l'espèce actuelle vénézuélienne Ctenosciaena gracilicirrhus (voir Pl. VII, Fig. 1) mais, vu l'érosion, on ne peut juger en toute certitude. C'est une otolithe presque ronde. Le sulcus est divisé en un ostium large, de contour vaguement quadrangulaire, et une cauda beaucoup plus étroite constituée d'une partie antérieure horizontale et d'une partie postérieure verticalement infléchie en direction ventrale.

Genre Cynoscion GILL, 1862

Espèce-type: Johnius regalis Schneider, 1801.

Cynoscion sp. (Pl. VII, Fig. 3)

Matériel et localités. - 4 otolithes. Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 16 (côte de Manzanilla), échantillon K. 12054; point 25 (Partie supérieure de la Rivière San José), échantillon Cb. 1633.

Tous les fossiles que nous avons examinés sont des exemplaires très usés et incomplets. On peut cependant y observer encore assez de caractères permettant de les classer dans le genre Cynoscion: forme très allongée; otolithes épaisses; partie postérieure de la crista inferior ostiale sans rejet en direction postérieure; large cauda horizontale, dont seulement l'extrême bout postérieur est infléchie en direction ventrale et élargie. Les otolithes fossiles sont bien distinctes de celles des espèces actuelles Cynoscion jamaicensis (Vaillant & Bocourt, 1874), C. nebulosus (Cuvier, 1830), C. petranus (Ribeiro, 1915), C. striatus (Cuvier, 1829) et C. virescens (Cuvier, 1830). Par contre, elles se rapprochent beaucoup de celles des espèces plus nordiques (Florida, Golfe de Mexique) C. nebulosus (Cuvier, 1830) et surtout de celles de C. arenarius Ginsburg, 1929) (Pl. VII, Fig. 5). Nous n'osons cependant pas les attribuer à cette dernière espèce, vu leur état de conservation et vu que les

otolithes de C. acoupa (LACEPEDE, 1802), C. leiarchus (CUVIER, 1830), C. maraca-iboensis SCHULTZ, 1949, et C. similis RANDALL & CERVIGNON, 1967, espèces actuelles vénézuéliennes, nous sont inconnues.

Genre Isopisthus GILL, 1862

Espèce-type: Ancylodon parvipinnis Cuvier, 1830.

Isopisthus sp. (Pl.VII, Fig. 4)

Matériel et localité. - 1 otolithe. Equivalent de la partie supérieure de le Springvale Formation: point 1 (ABM nr. 5, sondage, échantillon à 603 ft).

Une otolithe droite assez érodée, nous semble appartenir à un Sciaenidé du genre Isopisthus.

Elle est plutôt platte et mince et de contour semi-circulaire avec, cependant, un angle postéro-dorsal bien marqué. Le sulcus est constitué d'un ostium plutôt étroit pour un Sciaenidé et d'une assez longue cauda horizontale dont seul l'extrémité est infléchie en direction ventrale.

Cette otolithe ressemble d'assez près celles de l'espèce actuelle vénézuélienne *Isopisthus parvipinnis* (CUVIER, 1830) (Pl. VII, Fig. 6) sans qu'on puisse cependant conclure à une identité d'espèce. En plus les otolithes de l'espèce actuelle *I. harro-weri* FOWLER, 1916 de côtes atlantiques de l'Amérique centrale nous sont inconnues.

Genre Larimus Cuvier, 1830

Espèce-type: Larimus breviceps Cuvier, 1830.

Larimus breviceps CUVIER, 1830 (Pl. VII, Fig. 8-10)

Matériel et localités. – 7 otolithes. Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 22 (Pointe-à-Pierre), échantillon SM. 1309; point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633.

Nos fossiles sont identiques aux otolithes de l'espèce actuelle vénézuélienne Larimus breviceps (Pl. VII, Fig. 8). Ce sont des otolithes très épaisses. La plus forte épaisseur se situe dans la portion postérieure de l'otolithe, formant ainsi un gros bourrelet sur sa face externe. Le sulcus est constitué d'un ostium très étendu (plus que la moitié antérieure de la face interne), comblé d'un colliculum très plat, et d'une cauda profondément entaillée dont la partie antérieure est horizontale, tandis que la partie postérieure forme un angle de 90° en direction ventrale. Cet angle est très net dans la crista inferior caudale. La crista inferior ostiale se caractérise par un angle très aigu qui se situe un peu avant son milieu et par le fait que sa portion antérieure reste très loin du bord ventro-antérieur. Ainsi l'ostium ne s'ouvre sur le bord ostial que par un petit sillon long et mince.

Larimus sp. (Pl. VII, Fig. 11)

Matériel et localités. – 9 otolithes. Formation de Brasso: point 10 (rivière Ganteaume), échantillon K.R.9244; Formation de Manzanilla: point 7 (rivière Crespo), échantillon K.R.7546; point 14 (route Mandillon), échantillon K.12301; Formation de Springvale: point 18 (Melajo), échantillon K.R.11862; Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon no.675.

Nous attribuons au genre Larimus neuf petites otolithes provenant de très jeunes individus. Quoi-que leur face interne soit plus platte et que leur ostium soit beaucoup plus petit que chez les espèces actuelles Larimus acclivis JORDAN, 1898, L. breviceps CUVIER, 1830 (Pl. VII, Fig. 8) et L. fasciatus HOLBROOK, 1855 (Pl. VII, Fig. 7), nous croyons qu'il s'agit bien du genre Larimus pour les raisons suivantes: l'ostium, quoique plus petit à un contour très semblable à celui des trois espèces de Larimus précitées, la partie postérieure de leur cauda est identique à celle de L. breviceps, la partie antérieure de la crista inferior ostiale reste loin du bord et, enfin, ils montrent une petite expansion de la partie antérieure de leur area dorsale qui se retrouve également chez L. acclivis et L. fasciatus. A notre avis, il n'est même pas exclu que ce soient des otolithes d'exemplaires juvéniles d'une des trois espèces actuelles précitées, dont nous ne connaissons que des otolithes d'individus de plus grande taille.

Genre Macrodon SCHINZ, 1822

Espèce-type: Lonchurus ancylodon Schneider, 1801.

Macrodon sp. (Pl. VII, Fig. 13)

Matériel et localités. - 3 otolithes. Formation de Manzanilla: point 24 (rivière Sabanetta), échantillon K.9833; Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon no 675.

Il s'agit de trois otolithes très fortement érodées. Les caractères de leur sulcus permettent cependant encore de les attribuer au genre Macrodon. Les otolithes du genre Macrodon ont une forme allongée et se caractérisent surtout par leur crista inferior ostiale qui à partir de l'angle formé par la jonction avec la cauda, se dirige directement en direction antérieure, sans aucun rejet, comme c'est généralement le cas chez les Sciaenidae. Les otolithes fossiles sont nettement plus épaisses que celles de l'espèce actuelle Macrodon ancylodon (Pl. VII, Fig. 12). D'après Roux (1973, p. 133), le genre Macrodon est très voisin de Cynoscion où l'on trouve également des otolithes plus épaisses. Pour cette raison, nos fossiles pourraient représenter une espèce plus plésiomorphe que l'actuel Macrodon ancylodon. Notons encore que les otolithes provenant de la Formation de Morne l'Enfer sont nettement plus allongées que celle de la Formation de Manzanilla.

Genre Nebris Cuvier, 1830

Espèce-type: Nebris microps Cuvier, 1830.

Nebris microps Cuvier, 1830 (Pl. VIII, Fig. 1 et 2)

Matériel et localités. – 4 otolithes. Formation de Brasso: point 25 (partie supérieur de la rivière San José), échantillon Cb. 1527; Formation de Manzanilla: point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 24 (rivière Sabaneta), échantillon K. 9833.

Quoique les otolithes fossiles soient quelque peu érodées, on peut voir qu'elles sont identiques aux otolithes de l'actuel *Nebris microps* (Pl. VIII, Fig. 1) des côtes sud-américaines.

Les otolithes de *N. microps* sont d'un type hautement spécialisé. L'ostium marque une forte extension en direction postérieure et, d'autre part, la portion postérieure et verticale de la cauda s'est également élargie et profondement entaillée. De cette façon, l'area qui se situe entre l'ostium et la portion verticale de la cauda en est réduite à une simple crête. On constate également des modifications de la cauda, par rapport a ce qui s'observe chez la plupart des autres Sciaenidae. Dans cette famille, la cauda est à peu près de largeur égale sur toute son étendue et chez les formes les plus plésiomorphes (genre *Otolithes* Cuvier, 1830) [voir Nolf & Taverne (sous presse)], la partie postérieure de la cauda n'est que peu infléchie en direction ventrale. De plus, l'entaille y est d'une profondeur égale sur tout son parcours. Chez *Nebris*, nous constatons les apomorphies suivantes dans la morphologie de la cauda: retrécissement de sa partie antérieure, à la jonction avec l'ostium; infléchissement de sa partie postérieure, avec la formation d'un angle très aigu dans la crista inferior et, enfin, élargissement et entaillement profond de cette portion postérieure.

Genre Pachypops GILL, 1861

Espèce-type: Micropogon trifilis MULLER & TROSCHEL, 1848.

«genus aff. *Pachypops*» sp. (Pl. VIII, Fig. 4 et 5)

Matériel et localités. - 34 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25959; Formation de Brasso: point 10 (rivière Ganteaume), échantillon K.R.9244; Formation de Manzanilla: point 3 (rivière Guaracarito), échantillon K.R.25971; point 16 (côte de Manzanilla), échantillons K.10842, K.12051, K.12052, K.12054; point 22 (Pointe-à-Pierre), échantillon SM.1399; point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633; Formation de Springvale: point 1 (sondage ABM 5, échantillon 603 ft; Formation de Morne l'Enfer: point 21 (Pointe Courbaril), échantillon no.675.

Plusieurs otolithes, généralement de petite taille, ressemblent beaucoup à celles de l'espèce actuelle *Pachypops fourcroi* (LACEPEDE, 1802) (Pl. VIII, Fig. 3). Ils en diffèrent cependant par leur ostium nettement moins allongé. Le genre *Pachypops* est représenté en Amérique centrale et dans la région de l'Amazone par au moins trois espèces actuelles. Ce sont des poissons adaptés à la vie dans de l'eau saumâtre et douce.

Genre Plagioscion GILL, 1861

Espèce-type: Sciaena squamosissima HECKEL, 1840.

Plagioscion sp. (Pl. VIII, Fig. 7)

Matériel et localités. – 9 otolithes. Formation de Manzanilla: point 24 (rivière Sabanetta), échantillon K.9845; Formation de Gros Morne: point 19 (rivière Mogue), échantillon K.12059.

Neuf otolithes très fortement érodées montrent les mêmes caractères de sulcus que l'espèce actuelle vénézuélienne *Plagioscion squamossissimus* (HECKEL, 1840) (Pl. VIII, Fig. 6): partie postérieure de la crista inferior ostiale relativement droite et orientée obliquement en direction ventro-antérieure, et portion postérieure de la cauda longue et infléchie dans la même direction. La forte érosion des fossiles exclut toute détermination spécifique. Les différentes espèces de *Plagioscion* vivent surtout en milieu estuarien et d'eau douce.

Genre Polyclemus BERG, 1895

Espèce-type: Polycirrhus dumerili BOCOURT, 1869.

Polyclemus sp. (Pl. VIII, Fig. 9)

Matériel et localités. - 4 otolithes. Formation de Manzanilla: point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633.

Ce sont des otolithes fortement érodées ressemblant un peu à celles de l'espèce actuelle *Polyclemus brasiliensis* (STEINDACHNER, 1875) (Pl. VIII, Fig. 8). Ils en diffèrent cependant par leur hauteur relativement plus grande et par la partie postérieure de leur cauda plus étroite. Leur état de conservation ne permet pas de détermination spécifique.

Genre Sigmurus GILBERT, 1898

Espèce-type: Corvina vermicularis Gunther, 1868.

Sigmurus sp. (Pl. VIII, Fig. 11-13)

Matériel et localités. - 5 otolithes. Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633.

On trouve parmi les Sciaenidae de l'Amérique centrale et de la zone tropicale de l'Amérique du Sud, un groupe présentant des otolithes d'un type très spécial. Elles sont toutes relativement hautes et leur face interne est très fortement convexe en

direction antéro-postérieure. La partie supérieure de leur area dorsale est de longueur normale, tandis que toute leur area ventrale est fortement rétrécie en direction antéro-postérieure, le bord dorsal formant ainsi deux fortes saillies, l'une orientée en direction antérieure, l'autre en direction postérieure. Le sulcus est constitué d'un ostium court et haut, et d'une cauda divisée en une partie antérieure plus ou moins horizontale et une partie postérieure verticale ou oblique, un peu élargie et profondement entaillée. Dans la crista inferior caudale, la transition de la partie horizontale à la partie verticale de la cauda est anguleuse.

Nous avons observé des otolithes de ce type chez tous les genres suivants: Bairdiella GILL, 1861, Corvula Jordan & Eigenmann, 1886, Odontoscion GILL, 1862, Ophioscion, GILL, 1863, Sigmurus GILBERT, 1898 et Stellifer (CUVIER) OKEN, 1817.

Nous avons comparé nos fossiles (malheureusement assez érodés) avec les otolithes de plusieures espèces actuelles de ces genres et c'est avec celles de l'espèce panamienne Sigmurus vermicularis (GUNTHER, 1868) (Pl. VIII, Fig. 10) qu'elles montrent le plus d'affinité, surtout en ce qui concerne la forme de leur sulcus. Leur état de conservation ne permet plus de détermination spécifique.

«genus Sciaenidarum sp.» (Pl. IX, Fig. 1 et 2)

Matériel et localités. – 17 otolithes. Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb. 2076; Formation de Manzanilla: point 22 (Pointe-à-Pierre), échantillon S. M. 1399; point 24 (rivière Sabanetta), échantillon K. 9845: point 25 (partie supérieure de la rivière San José), échantillon Cb. 1633; Formation de Gros Morne: point 19 (rivière Mogue), échantillon K. 12059.

Nous avons trouvé dans plusieurs échantillons du Miocène supérieur, des otolithes d'un type tout à fait particulier, que nous interprêtons comme des otolithes de type très apomorphe d'une espèce de Sciaenidé.

Ce sont des otolithes épaisses, de forme générale allongée où la partie antérieure est plus large que la partie postérieure, qui offre une extrémité pointue.

Le sulcus montre nettement qu'il s'agit d'un Sciaenidé à otolithes très apomorphes. L'ostium est très large et comblé par un colliculum très plat et très régulier. C'est un ostium qu'on ne trouve que chez les Sciaenidae et chez les Myripristidae (famille que nous considérons comme ancestrale par rapport aux Sciaenidae, voir NOLF & TAVERNE, sous presse).

La cauda est constituée d'une partie antérieure régulièrement courbée, la concavité étant orienté vers le haut. Puis, on remarque un angle aigu, marquant la jonction avec la partie postérieure qui s'entaille très profondement, et est orienté obliquement en direction ventrale.

Quoique cette cauda soit à première vue très aberrante, elle offre au fond de très grandes analogies avec celle d'espèces telles que Sigmurus vermicularis (GUNTHER, 1868) (Pl. VIII, Fig. 10), Nebris microps CUVIER, 1830 (Pl. VIII, Fig. 1) et de nombreuses espèces des genres Bairdiella GILL, 1861, Corvula JORDAN & EIGENMANN, 1886, Odontoscion GILL, 1862, Ophioscion GILL, 1863 et Stellifer (CUVIER) OKEN,

1817. Toutes ces espèces présentent une cauda constituée d'une partie antérieure horizontale; puis il y a un angle de presque 90° et la partie postérieure de la cauda, toujours profondement entaillée est orientée plus ou moins verticalement.

Si l'on s'imagine maintenant une expansion anormale en direction antéropostérieure de la partie inférieure de l'area située entre la portion postérieure de la crista inferior ostiale et la portion verticale de la cauda, on obtient une cauda parfaitement égale à celle du fossile en question.

En plus d'une analogie de la cauda, on remarque que, dans la plupart des espèces citées plus haut, la plus importante épaisseur de l'otolithe se situe dans sa partie dorsale, ce qui donne un bord dorsal épais, tandis que le bord ventral est tranchant. C'est également le cas chez nos fossiles.

Il se peut qu'il s'agisse d'un genre de Siaenidae actuellement éteint, mais comme les otolithes de plusieurs genres de Sciaenidae actuels d'Amérique centrale nous sont encore inconnues, nous ne pouvons conclure.

Famille Mullidae (Pl. XII, Fig. 3)

Mullidae ind. (Pl. VI, Fig. 14)

Dans l'échantillon K.R.7546, provenant de la rivière El Ricon (Formation de Brasso) nous avons trouvé une petite otolithe d'un poisson de la famille des Mullidae. La pièce est trop érodée pour qu'on puisse en dire plus.

Famille Bathyclupeidae (Pl. XII, Fig. 4)

Genre Bathyclupea ALCOCK, 1891

Espèce-type: Bathyclupea hoskynii ALCOCK, 1891.

Bathyclupea sp. (Pl. IX, Fig. 4)

Matériel et localités. - 2 otolithes. Formation de Nariva, point 17 (rivière Mayo), échantillon K. R. 25953.

Les otolithes de cette espèce sont d'un type tout à fait particulier et ne peuvent être confondues avec celles d'aucun autre genre. La face externe est inornée et presque platte. La face interne est convexe suivant un axe ventro-antérieur dorso-postérieur, tandis que chez presque tous les autres poissons à otolithes présentant une face interne convexe, l'axe principale de la convexité est orienté verticalement (en direction dorso-ventrale).

Cette convexité oblique s'accompagne d'une sorte de distortion oblique de l'otolithe en direction ventro-antérieure dorso postérieure. La partie postérieure du bord dorsal est ornée de petites saillies épineuses qui sont orientées suivant l'axe de convexité des otolithes. Le bord postérieur est anguleux, la partie postérieure du

bord ventral est droite et parallèle à l'axe de convexité; la transition de la partie postérieure du bord ventral à sa partie antérieure est marquée par un angle d'à peu près 90°. Le sulcus est assez profondement entaillé. L'ostium est nettement plus large que la cauda. Cette dernière est ouverte.

Notre espèce fossile se caractérise par un extrême allongement suivant l'axe de convexité et par son bord ventral dont la partie antérieure présente une courbe régulière.

A l'appui de notre détermination générique nous figurons à la Pl. IX, Fig. 4 une otolithe de l'espèce actuelle *Bathyclupea hoskynii* ALCOCK, 1891 (Golfe d'Aden). Les otolithes de l'espèce actuelle vénézuélienne *B. argentea* GOODE & BEAN, 1895 nous sont malheureusement inconnues.

Famille incertae sedis

«genus Percoideorum» sp.

(Pl. IX, Fig. 5)

Matériel et localités. – 3 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 11 (fleuve Garcia), échantillon Cb. 1855.

Ce sont des otolithes plutôt épaisses, de forme allongée. La face externe, inornée, est platte dans le sens antéro-postérieure, convexe dans le sens dorso-ventral. La face interne est légèrement convexe. Le sulcus est assez fortement entaillé. Il est constitué d'un ostium large et d'une cauda plus étroite, légèrement infléchie en direction ventro-postérieure. La crista superior est assez saillante. Parmi les familles du sous-ordre des Percoidei dont les otolithes nous sont connues, nous n'en avons vu aucune montrant des otolithes semblables.

Famille *Opistognathidae* (Pl. XII, Fig. 5)

Genre Lonchistium Myers, 1935

Espèce-type: Lonchistium lemur Myers, 1935.

Lonchistium sp. (Pl. IX, Fig. 9-11)

Matériel et localités. - 25 otolithes. Formation de Nariva: point 17 (rivière Mayo) échantillons K.R.25953, K.R.25956; Formation de Brasso: point 8 (rivière el Ricon), échantillon K.R.7547; point 10 (rivière Ganteaume), échantillon K.R.9247; point 11 (fleuve Garcia), échantillon Cb. 1855; point 20 (rivière Navaro), échantillon Cb. 1848; point 23 (sentier Ranjit), échantillon Cb. 1875; point 28 (rivière Tamanaquito), échantillon K.R.6666; Formation de Tamana (ou base de la Formation de Manzanilla): point 3 (rivière Cascade), échantillon Cb.2076; Formation de Manzanilla: point 7 (rivière Crespo), échantillon K.R.7574.

Les otolithes de cette espèce ressemblent beaucoup à celles de l'espèce actuelle Opistognathus aurifrons JORDAN & THOMPSON, 1905 (Pl. IX, Fig. 8) et surtout de

Lonchistium meadi MENES & DE FIGUEIREDO, 1971. De cette dernière espèce, nous ne possédons malheureusement que des otolithes assez fortement atteintes par le formol et il n'est pas possible de dire si les fossiles appartiennent ou non à la même espèce.

Notons que les otolithes de beaucoup d'Opistognathidae ressemblent particulièrement à celles des Cepolidae et pourraient même facilement être confondues avec celles de cette dernière famille. De façon générale, les otolithes des Opistognathidae sont un peu plus allongées et ont un sulcus plus étroit que chez les Cepolidae. Toutefois, dans la région que nous étudions, on ne pourrait les confondre, puisqu'il n'existe pas de Cepolidae sur toute la côte atlantique de l'Amérique, tandis que les Opistognathidae sont abondants dans la région des Caraïbes.

Famille Gobiidae (Pl. XII, Fig. 6)

Gobiidae

(Pl. IX, Fig. 6-7)

Matériel et localités. - 441 otolithes. Dans presque tous les échantillons des formations de Nariva, de Brasso, de Manzanilla, de Springvale, de Morne l'Enfer et dans le Pleistocène.

Il existe dans la faune actuelle des Caraïbes et des côtes vénézuéliennes au moins une cinquantaine d'espèces de Gobiidae dont, pour la plupart, nous ignorons les otolithes. A fortiori nous ne savons rien de leur variabilité. Il est évident que la création de nouvelles espèces dans des conditions pareilles serait démunie de tout sens critique. Comme il est impossible de combler cette lacune dans un temps raisonnable, nous n'avons pas fait de tentative pour séparer les éventuelles espèces différentes et nous nous bornerons ici à figurer le type d'otolithes que l'on trouve le plus fréquemment dans le Néogène de Trinidad.

Ordre Pleuronectiformes

Famille *Bothidae* (Pl. XII, Fig. 7)

Genre Citharichthys BLEEKER, 1862

Espèce-type: Citharichthys cayennensis Bleeker, 1862.

Citharichthys sp. (Pl. IX, Fig. 12)

Matériel et localité. - 1 otolithe. Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon K. 12013.

Il s'agit d'une petite otolithe très érodée, appartenant probablement au genre Citharichthys. Il existe actuellement sur les côtes vénézuéliennes trois espèces différentes du genre Citharichthys dont nous ignorons les otolithes. De ce fait, ainsi qu'en raison de la mauvaise conservation de l'otolithe fossile, une détermination

spécifique est exclue. A la Pl. IX, Fig. 13, nous la comparons à une otolithe de l'espèce actuelle californienne Citharichthys stygmaeus JORDAN & GILBERT, 1882, pour prouver notre détermination générique.

Famille incertae sedis

«genus Pleuronectiformorum» sp. I (Pl. IX, Fig. 14)

Matériel et localités. – 4 otolithes. Formation de Nariva: point 17 (rivière Mayo), échantillon K.R.25953; Formation de Brasso: point 28 (rivière Tamanaquito), échantillon K.R.6666.

Ce sont des petites otolithes qui se caractérisent surtout par la partie antérieure de leur area dorsale qui présente une forte expansion et, de ce fait, forme un angle prédorsal très saillant. Nous n'avons vu jusqu'ici aucun genre de Pleuronectiformes qui présentait un tel angle prédorsal. Il nous est donc impossible de faire un raprochement systématique plus poussé, surtout que notre connaissance des otolithes des 17 espèces actuelles de Bothidae de la côte vénézuélienne est très incomplète.

«genus Pleuronectiformorum» sp. II (Pl. IX, Fig. 15)

Matériel et localité. - 1 otolithe. Formation de Springvale: point 18 (Melajo), échantillon K. 11862.

C'est une petite otolithe droite de conservation plutôt médiocre. Elle est assez épaisse. La face externe est faiblement convexe, presque platte. La face interne est nettement plus bombée. Le bord dorsal est droit dans sa partie centrale. Les parties antérieure et postérieure présentent respectivement un angle pré- et postdorsal assez bien marqué. Les bords postérieur et ventral sont régulièrement courbés. Le sulcus est plutôt long et large, mais l'érosion de la pièce ne permet plus d'en donner une description détaillée.

Famille Soleidae (Pl. XII, Fig. 8)

«genus Soleidarum» sp. (Pl. IX, Fig. 16a et b)

Matériel et localités. - 5 otolithes. Formation de Brasso: point 20 (rivière Navaro), échantillon Cb. 1848, point 28 (rivière Tamanaquito), échantillon K.R. 6666.

Ce sont des otolithes presque circulaires, mais présentant cependant un petit angle post-dorsal. La face externe est platte et inornée. La face interne est très bombée. Le bord ostial se situe assez haut. Dans le sulcus, on ne voit pas de division nette en partie ostiale et caudale. Il est probable que ces otolithes appartiennent à la famille des Soleidae, mais il nous est impossible d'en dire plus. Sur la côte vénézué-

lienne il existe huit espèces actuelles de Soleidae, réparties dans des genres dont les otolithes nous sont inconnues: Achirus Lacepede, 1802, Apionichthys Kaup, 1858, Gymnachirus Kaup, 1858, Hypoclinemus Chabanaud, 1928 et Trinectes Rafinesque, 1832.

Famille Cynoglossidae (Pl. XII, Fig. 9)

Genre Symphurus RAFINESQUE, 1810

Espèce-type: Symphurus nigrescens Rafinesque, 1810.

Symphurus sp. (Pl. IX, Fig. 17)

Matériel et localités. - 2 otolithes. Formation de Manzanilla: point 17 (côte de Manzanilla), échantillon K. 12054; Formation de Morne l'Enfer: point 21 (Point Courbaril), échantillon no. 675.

Deux otolithes un peu érodées, présentent les caractéristiques du genre Syphurus: otolithes à contour presque circulaire et sulcus constitué d'un ostium étroit et d'une cauda s'élargissant fortement en direction postérieure. La cauda se termine en ligne droite, orientée en direction dorso-ventrale. Aussi bien dans l'area dorsale que dans l'area ventrale, on remarque une petite dépression. A l'appui de notre détermination générique, nous comparons nos fossiles aux otolithes de l'espèce actuelle africaine Symphurus nigrescens RAFINESQUE, 1810 (Pl. IX, Fig. 18 et 19).

Il nous est impossible d'effectuer une détermination spécifique, puisqu'il existe actuellement sur les côtes vénézuéliennes et brésiliennes au moins cinq espèces du genre *Symphurus* dont les otolithes nous sont inconnues.

Conclusions

La faune ichthyologique fossile que nous avons pu reconstituer d'après les otolithes (voir tableau de répartition) est très semblable aux faunes actuelles du plateau continental argentino-brésilien de milieu non corallien. Elle se constitue avant tout de genres qui se cantonnent au dessus de 200 m. de profondeur. Parmi eux, plusieurs sont même capables de pénétrer en eau douce (Ariidae, plusieurs Sciaenidae).

A cela s'ajoutent quelques espèces épipélagiques (Clupeidae, Bregmaceros) qui, à l'exception de Bregmaceros, sont également fréquentes dans la zone littorale et même en eau saumâtre (Anchoa).

La présence relativement importante dans certains échantillons, de genres mésopélagiques tels que les Sternoptychidae, Photichthyidae, Myctophidae et Bathyclupeidae, ainsi que de rares éléments bathybenthiques (Neobythites), est à première vue surprenante dans une association d'otolithes de poissons essentiellement côtiers.

Il s'agit là cependant d'un fait qu'on constate dans toutes les associations d'otolithes de dépôts épicontinentaux de régions largement ouvertes au milieu