Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 59 (1966)

Heft: 2

Artikel: Die Jura/Kreide-Grenzschichten im Bielerseegebiet (Kt. Bern)

Autor: Häfeli, Charles

Inhaltsverzeichnis

DOI: https://doi.org/10.5169/seals-163389

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

une quantité de 0,01% de carbone submicroscopique suffit pour provoquer cette coloration. Les cailloux noirs sont liés à des conditions de sédimentation bien déterminées qu'on retrouve toujours. Ils peuvent se présenter dans les niveaux stratigraphiques les plus différents pour autant que ces conditions sédimentaires soient données. Leur présence ne se limite point au Jura, et elle indique pour les dépôts adjacents un milieu de sédimentation limnique à saumâtre, exceptionellement littoral. Le sédiment de départ des cailloux noirs est une gyttia calcaire pauvre en détritus qui se forme dans des bassins littoraux ou limnique. Plus le degré de carbonisation est prononcé, plus la couleur passe du gris-brun au noir. Des oscillations de niveau provoquent le remaniement du sédiment plus ou moins durei.

Les couches limitrophes jurassique – crétacé

Les conditions de sédimentation pendant le malm supérieur et le néocomien ont été déterminées non seulement à l'aide de méthodes sédimentologiques, mais également par des analyses de sulfate et de phosphate. Le stratotype du berriasien (Coquand 1871) au sud-est de la France est en grande partie plus âgé que le stratotype du valanginien (Desor 1853) à Valangin. Les connaissances dont on dispose actuellement ne permettent pas encore de tracer une limite bien distincte entre le berriasien et le valanginien du Jura suisse.

Grâce à des ostracodes il est possible de corréler la base de la formation de Goldberg (purbeckien) avec celle du berriasien au sud-est de la France et du lower Purbeckian du sud de l'Angleterre. Ainsi, la limite jurassique – crétacé (Berriasella chaperi/Berriasella grandis) correspond dans le territoire que nous avons exploré, à la limite entre les formations du Twannbach et de Goldberg.

INHALTSVERZEICHNIS

Vorwo	rt	569
Einleit	tung	570
	tigraphie und Tektonik des Gebietes zwischen Taubenloch- und Twannbachschlucht.	
1.1	Malm	
	1.1.1 Bisherige Untersuchungen	572
	1.1.2 Reuchenetteformation («Kimmeridgien»)	573
	1.1.3 Twannbachformation ("Portlandien")	574
1.2	Untere Kreide	
	1.2.1 Bisherige Untersuchungen	587
	1.2.2 Goldbergformation («Purbeckien»)	590
	1.2.3 Valanginien	591
	1.2.4 Hauterivien	594
1.3	Obere Kreide	
	1.3.1 Bisherige Untersuchungen	595
	1.3.2 Cénomanien und Maestrichtien	595
1.4	Tertiär	
	1.4.1 Bisherige Untersuchungen	598
	1.4.2 Siderolithikum	598
	1.4.3 Oligocaen?	600
1.5	Quartär	
	1.5.1 Bisherige Untersuchungen	601
	1.5.2 Pleistocaen	602
	1.5.3 Holocaen	605
1.6	Tektonik	
	1.6.1 Seekette-Antiklinale	606
	1.6.2 Kapf-Antiklinale und Chros-Synklinale	608
	1.6.3 Jorat-Synklinale	609
2. Die	Hauterivientaschen	
2.1	Bisherige Deutungsversuche	609
2.2	Verbreitung	610
	Die Taschen im Bielerseegebiet	
	2.3.1 Vorkommen, stratigraphische Lage, Füllmasse, Lagerungsweise	610
	2.3.2 Paläontologische Untersuchungen	613

JURA/KREIDE-GRENZSCHICHTEN IM BIELERSEEGEBIET	567
2.4 Entstehung	
2.4.1 Hohlraumbildung	613
2.4.2 Auffüllung	615
2.4.3 Datierung der Taschenbildung	615
3. Die Cailloux noirs	
3.1 Bisherige Deutungsversuche	616
3.2 Stratigraphische, geographische und biofazielle Übersicht der Cailloux noirs-	
Vorkommen	618
3.2.1 Die stratigraphische Lage	620
3.2.2 Die geographische Verbreitung	621
3.2.3 Die Biofazies	621
3.3 Die Cailloux noirs-Horizonte zwischen Lengnau und Twann	623
3.4 Sedimentologische und sedimentpetrographische Untersuchungen	
3.4.1 Die «Brèches multicolores»	626
3.4.2 Die Lagerungsverhältnisse der Cailloux noirs im Sediment	628
3.4.3 Die Morphologie der Cailloux noirs	629
3.4.4 Dünnschliffuntersuchungen	631
3.5 Die chemische Zusammensetzung	
3.5.1 Anorganisch	633
3.5.2 Organisch	634
3.6 Die Entstehung und Herkunft der Cailloux noirs	638
4. Jura/Kreide-Grenzschichten	
4.1 Überblick	
4.1.1 Die stratigraphische Einordnung des «Purbeckien» im Juragebirge	639
4.1.2 Die stratigraphischen Einheiten: Berriasien, Valanginien, Néocomien	642
4.2 Litho- und Biofazies	
4.2.1 Profile im Bielerseegebiet	643
4.2.2 Typprofil Valangin	662
4.3 Geochemische und petrographische Untersuchungen	00 -
4.3.1 Sulfat- und Phosphatgehalt	665
4.3.2 Mineralneubildungen	673
4.4 Ablagerungsmilieu, Sedimentationsverhältnisse	675
4.5 Grenzziehung Jura/Kreide	678
5. Zusammenfassung	0.0
5.1 Stratigraphie und Tektonik des Gebietes zwischen Taubenloch- und Twannbach-	
schlucht	680
5.2 Die Hauterivientaschen	683
5.3 Die Cailloux noirs	683
5.4 Jura/Kreide-Grenzschichten	684
Literaturverzeichnis	686
Literaturverzeichnis	080
VERZEICHNIS DER ILLUSTRATIONEN UND TABELLEN	
VENZEIGHNIS DEN ILLUSTRATIONEN UND TABELLEN	
Fig. 1: Übersichtskarte des Untersuchungsgebietes, 1:100000	570
Tab. 1: Übersicht zu den stratigraphischen Beziehungen und zum Ablagerungsmilieu der	
Jura/Kreide-Grenzschichten im Bielerseegebiet	571
Tab. 2: Vergleichende stratigraphische Übersicht zum «Portlandien» im Berner und	
Neuenburger Jura	575
Fig. 2: Situation der Profile aus der Twannbachformation	578
Fig. 3: Coprolithus salevensis Paréjas in mikrokristallinem Kalk der obersten Twann-	
bachformation (Profil Twannbach, Tb)	579
Fig. 4: Profil Twannbach (Tb)	580
Fig. 5: Profil Burgfluh, neuer Steinbruch (Bn)	582
Fig. 6: Profil Burgfluh, alter Steinbruch (Bu)	583
Fig. 7: Profil Fluhrebe (Fl)	584
Fig. 8: Schichtfolge in der Grenzzone Reuchenette-/Twannbachformation im Tüscherzwald	586

Fig. 9:	Goldbergsteinbruch, Typlokalität der Goldbergformation
Fig. 10:	Anteil Ca-Karbonat, Dolomit, Nichtkarbonat in der Goldbergformation 59
Fig. 11:	Anteil Ca-Karbonat, Dolomit, Nichtkarbonat aus der Mergel- und Kalk-Zone und
	Marbre bâtard
Fig. 12:	Zoogendetritischer Maestrichtien-Kalk aus dem Vorkommen N Biel 59
Fig. 13:	Profil zu einem Vorkommen von siderolithischen Quarzsanden zwischen Win-
80.	greis und Twann
Fig. 14:	Profil zu einem Molassevorkommen bei Wingreis
Fig. 15:	Auszählung von je 250 Geröllen der Fraktion 4–16 cm aus einem Moränenan-
11g. 10.	schnitt nördlich Twann sowie aus Schottergruben bei Lamboing und Orvin . 60
Fig. 16:	
Fig. 17: Tab. 3:	Ubersicht zu den Hauterivientaschen (1–18) zwischen Biel und Twann 61
1ab. 5:	Situation, stratigraphische Stellung und Füllmasse der Hauterivientaschen
T2: 10	zwischen Biel und Cressier
Fig. 18:	Hauterivientasche im Steinbruch Rusel (TRu 3)
Tab. 4:	Deutungsversuche zur Herkunft der Cailloux noirs (1818–1927)
Tab. 5:	Übersicht zum Vorkommen der Cailloux noirs
Fig. 19:	Die Verbreitung der Cailloux noirs im Juragebirge
Fig. 20:	Situation der Cailloux noirs-Horizonte zwischen Lengnau und Twann 62
Fig. 21:	Tiefschwarze bis graubeige, arenitische Cailloux noirs aus der untersten Reuche-
	netteformation (Reuchenette, Nr. 14)
Fig. 22:	Gradiert geschichtete «Brèche multicolore» aus der Goldbergformation (Profil
	Fluhrebe, Fl 46)
Fig. 23:	Ausgesprochen eckige Cailloux noirs aus der Twannbachformation 62
Fig. 24:	Rundungsgrad der Cailloux noirs aus Horizont Ru 7
Tab. 6:	Vergleichende Dünnschliffuntersuchungen zwischen den Cailloux noirs und dem
	angrenzenden Sediment
Tab. 7:	Der Karbonatgehalt einiger Cailloux noirs
Tab. 8:	Methoden für die Bestimmung von Fe, Mn, P, S und SO ₄ der Cailloux noirs 63
Tab. 9:	Fe_2O_3 -, MnO-, P_2O_5 -, S- und SO_4 -Gehalt einiger Cailloux noirs 63
Tab. 10:	Verlauf der organisch-chemischen Untersuchung bei den Cailloux noirs-Proben
	A3/2 und Ri 19
Tab. 11:	Elementaranalyse des CHCl ₃ -unlösichen Rückstandes der Proben A3/2 und Ri
	$19 \ldots \ldots$
Tab. 12:	Vergleichende stratigraphische Übersicht zum «Purbeckien» im Juragebirge 64
Fig. 25:	Situation der Detailprofile aus den Jura/Kreide-Grenzschichten 64
Fig. 26:	Legende zu den Profilen aus den Jura/Kreide-Grenzschichten
Fig. 27:	Profil Riedli (Ri)
Fig. 28:	Profil Goldberg (Go)
Fig. 29:	Geröll aus dem Basiskonglomerat (Ru 11)
Fig. 30:	Profil Rusel (Ru)
Fig. 31:	Profile Tüscherz (Tü) und Pasquart (Pa)
Fig. 32:	Profil Fluhrebe (Fl)
Fig. 33:	Profil Twann-Schützenhaus (Tw)
Fig. 34:	Typprofil Valangin (Va)
Tab. 13:	SO ₄ ²⁻ -Werte einiger Gesteinsproben nach dem Aufschlussverfahren in Soda resp.
	HCl
Fig. 35:	Analysenwerte der Sulfat- und Phosphatbestimmung
Fig. 36:	Die Sulfat- und Phosphatführung in den verschiedenen stratigraphischen Ein-
- 18. 001	heiten des Jura/Kreide-Überganges
Fig. 37:	54 Phosphatanalysen aus der Twannbachformation
Tab. 14:	P_2O_5 - und SO_4^{2-} -Gehalt charakteristischer Gesteine verglichen mit Mittelwerten 67
Tab. 15:	P ₂ O ₅ -Gehalt einiger Fossilien und des umgebenden Sedimentes
Fig. 38:	Bipyramidale Quarzkristalle aus der Goldbergformation
Tab. 16:	Ton-Mineralien und Ablagerungsmilieu im Profil Twann-Schützenhaus (Tw) . 67
Fig. 39:	Das Ablagerungsmilieu im Bereich der Jura/Kreide-Grenze

Fig. 40:	Die Lithofazies der Karbonatgesteine im Bereich der Jura/Kreide-Grenze	677
Tab. 17:	Korrelation der Jura/Kreide-Grenzschichten aus dem Bielerseegebiet mit den	
	zeitgleichen Ablagerungen in SE-Frankreich und S-England	679
Taf. I:	Geologische Profile durch die Seekette zwischen Biel und Twann (1:25000).	696
Taf. II:	Geologische Karte der Seekette zwischen Biel und Twann (1:25000)	696

VORWORT

Im Herbst 1961 wurde die vorliegende Arbeit auf Anregung meines verehrten Lehrers Herrn Prof. Dr. R. F. Rutsch begonnen und im Sommer 1964 abgeschlossen.

Ausgangspunkt der Untersuchungen war die geologische Detailkartierung von Teilgebieten der LK-Blätter 1126 (Büren a.A.), 1125 (Chasseral) und 1145 (Bielersee). Als topographische Grundlage dienten Übersichtspläne im Maßstab 1:10000 (Vermessungsamt des Kantons Bern). Die verwendeten Orts- und Flurbezeichnungen beziehen sich ausschliesslich auf die Landeskarte 1:25000.

Es ist mir ein Bedürfnis, allen jenen hier herzlich zu danken, die zum Gelingen meiner Arbeit beigetragen haben.

Mein grösster Dank gilt Herrn Prof. Dr. R. F. Rutsch, unter dessen Leitung die Untersuchungen ausgeführt wurden. Sein lebhaftes Interesse und die zahlreichen Anregungen förderten tatkräftig meine gesamte Arbeit. Viele gemeinsame Feldbegehungen waren dabei von grösstem Nutzen.

Zu ganz besonderem Dank bin ich auch Herrn Dr. H. J. OERTLI, SNPA in Pau, für die Erörterung verschiedener stratigraphischer Probleme, sowie für die Bestimmung der Ostrakoden verpflichtet.

Herrn Prof. Dr. Th. Hügi möchte ich für seine Ratschläge und stete Hilfsbereitschaft bei den geochemischen Untersuchungen herzlich danken.

Herrn Dr. W. Mayne bin ich für die Bearbeitung der isolierten Foraminiferen, sowie für die Anleitung zur Bestimmung derselben im Dünnschliff äussert dankbar.

Grosser Dank gebührt ebenfalls Herrn Prof. Dr. L. Grambast, Université de Montpellier, für die Bearbeitung der Charophyten aus dem schlämmbaren Gesteinsmaterial.

Herrn Prof. Dr. R. Signer und Herrn PD Dr. H. Arm vom Organisch-Chemischen Institut der Universität Bern verdanke ich ihre tatkräftige Mithilfe bei den Analysen der Cailloux noirs.

Herr Prof. Dr. M. Reichel, Geologisch-Paläontologisches Institut der Universität Basel, bestimmte die Foraminiferen aus dem Cénomanien und Maestrichtien. Herr Dr. O. Renz, Basel, bearbeitete die Cephalopoden einer Kreide-Tasche des Goldberg-Steinbruches. Die Cyanophyceen aus dem Berriasien wurden von Herrn Dr. E. Gasche, Naturhistorisches Museum Basel, begutachtet. Allen diesen Herren möchte ich meinen verbindlichsten Dank aussprechen.

Anregungen verdanke ich auch meinem Terrainnachbar cand. geol. H. Thal-Mann, mit dem ich manche Frage besprechen konnte und der mir bereitwillig Einblick in seine eigenen Arbeiten gewährte.

Mein herzlichster Dank aber gilt meinen Eltern, die mir mein Studium und die Durchführung der vorliegenden Arbeit ermöglichten, wie auch meiner Frau, die mir stets behilflich war.