Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 54 (1961)

Heft: 1

Artikel: Der Obere Muschelkalk im östlichen Schweizer Jura

Autor: [s.n.]
Anhang: Tafeln

DOI: https://doi.org/10.5169/seals-162819

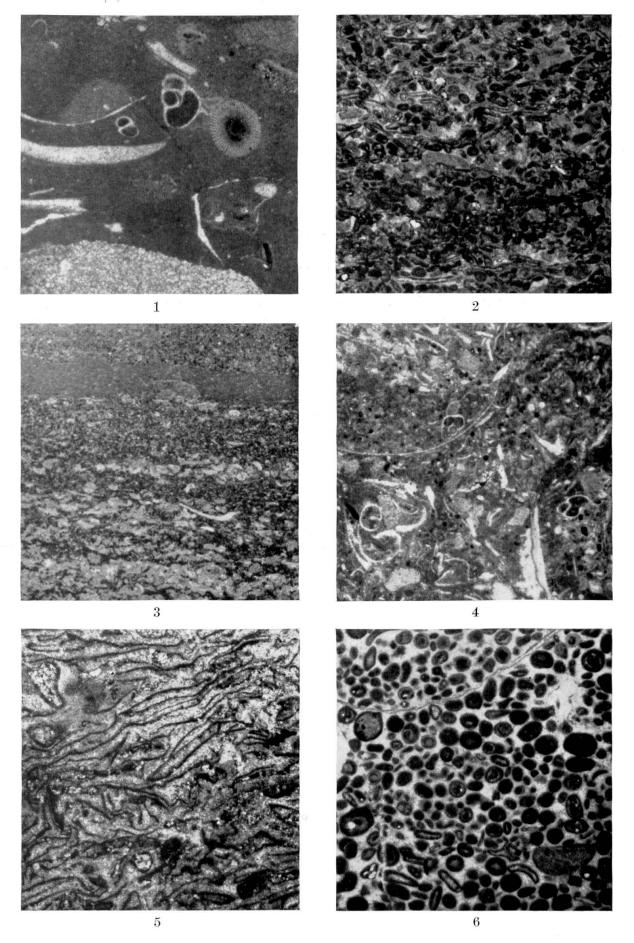
Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

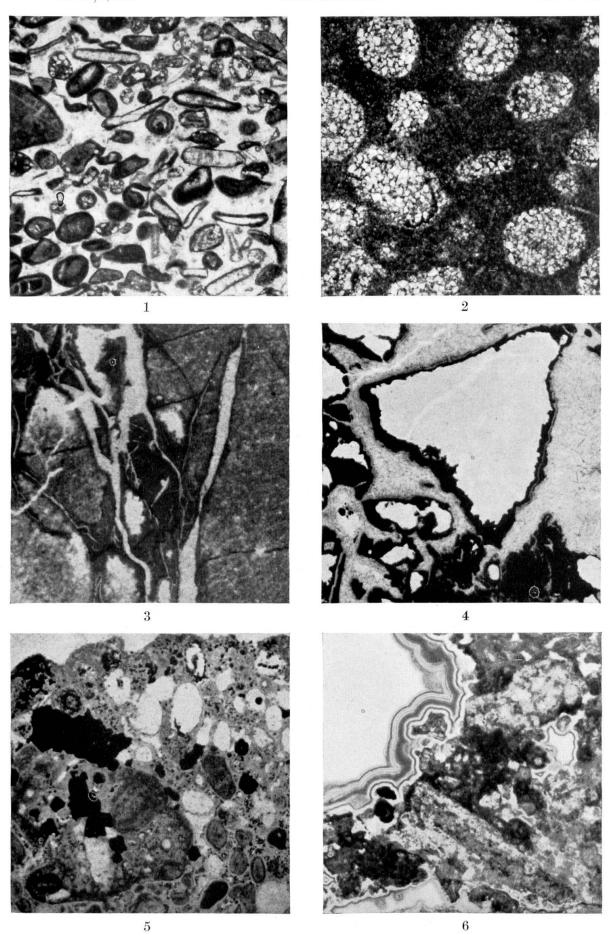

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

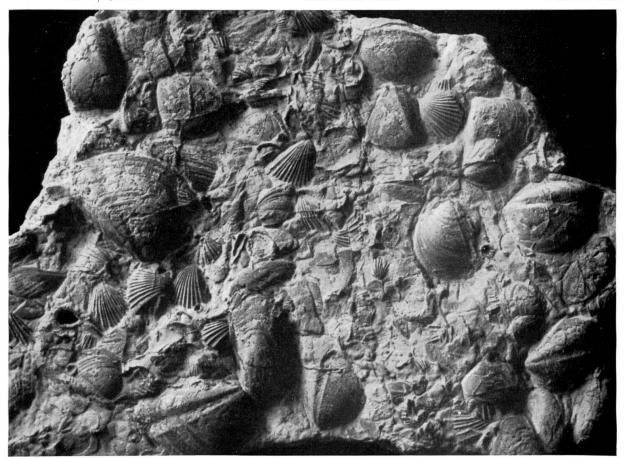
Tafel I

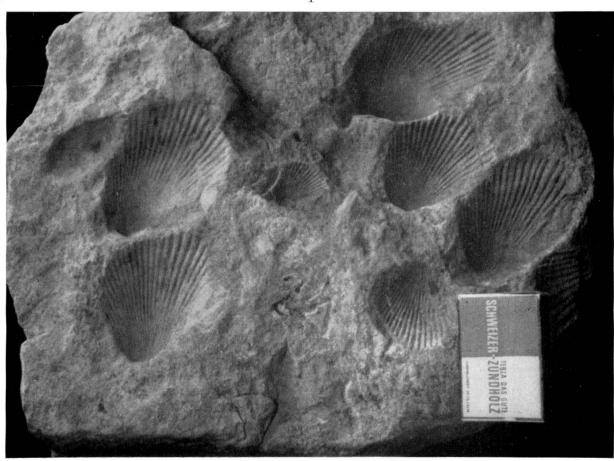
- Fig. 1. Halbschillkalk. Lockere Lagerung von grossen Schalenbruchstücken, Gastropodengehäusen und eines Echinoiden-Stachels in kryptokristalliner, kalzitischer Grundmasse. Kugelige Aggregate idiomorpher Dolomitkristalle im Bindemittel (unten im Bild). \times 10, gewöhnliches Licht, Haematoxylinfärbung.
- Fig. 2. Bruchschillkalk. Deutlich geschichtete Anordnung stark gerollter Schalentrümmer und Onkoide in kryptokristallinem, kalzitischem Bindemittel. × 10, gewöhnliches Licht, ungefärbt.
- Fig. 3. Bruchschillkalk. Vertikalsortierung des Detritus; Abnahme der Korngrösse gegen oben. × 5, gewöhnliches Licht, ungefärbt.
- Fig. 4. Bruchschillkalk. Wirre Lagerung der Schalenelemente in kryptokristallinem Bindemittel. × 10, gewöhnliches Licht, ungefärbt.
- Fig. 5. Bruchschillkalk. Bruchlose Verformung der Schalenreste infolge von frühdiagenetischen Setzungsbewegungen im Sediment, verbunden mit Umkristallisationsvorgängen. Körneraggregate idiomorpher Dolomitkristalle. \times 10, gewöhnliches Licht, ungefärbt.
- Fig. 6. Oolith des untersten Trochitenkalkes (Basaloolith). Ooide, stark gerollte Schalen- und Encrinitenreste in mikrokristallinem, kalzitischem Bindemittel. \times 10, gewöhnliches Licht, ungefärbt.



Tafel II

- Fig. 1. Oolithischer Schill-Trochitenkalk. Deformierte, zum Teil dolomitisierte Ooide, gerollte Schalentrümmer und Encrinitenreste in mikrokristallinem, kalzitischem Bindemittel. × 10, gewöhnliches Licht, Haematoxylinfärbung.
- Fig. 2. Oolith des obersten Plattenkalkes (Giebenacher Oolith). Vollständig dolomitisierte Ooide. Ein dunkles, limonitisches Häutchen deutet stellenweise noch die primäre Umgrenzung der Ooide an. Das Bindemittel besteht aus einem mikrokristallinen Gefüge von Kalzitund Dolomitkristallen. × 20, gewöhnliches Licht, Haematoxylinfärbung.
- Fig. 3. Rauhwacke (Zellendolomit) aus dem Grenzdolomit. Mikrokristalliner, in Zersetzung begriffener Dolomit, durchzogen von einem Kalzitnetzwerk.


 × 7, gewöhnliches Licht, ungefärbt.
- Fig. 4. Rauhwacke aus dem Anhydritdolomit. Netzwerk aus makrokristallinem Kalzit. Der Dolomit in den Zellen ist herausgewittert. Die Aussenwände der Kalzitadern sind mit einer Kruste von Fe-Pigment überzogen.
 × 5, gewöhnliches Licht, Haematoxylinfärbung.
- Fig. 5. Silexkonkretion aus dem obersten Plattenkalk (Eptinger Oolith). Die Ooide und das Bindemittel sind verkieselt. Das Bild zeigt die Randzone einer Konkretion, wo sich Anhäufungen von Hämatitkristallen beobachten lassen.


 × 10, gewöhnliches Licht, ungefärbt.
- Fig. 6. Silex aus dem obersten Trigonodusdolomit. Mikrokristallines Gefüge von Chalzedon und Quarz. Fasriges Chalzedonwachstum in Drusen. × 10, gewöhnliches Licht, ungefärbt.

Tafel III

- Fig. 1. Schalenpflaster (Schichtoberfläche) aus dem Grenzdolomit (Profil 41, Schicht 4). Hoernesia socialis (Schlotheim) Myophoria intermedia Schauroth Myophoria goldfussi Alberti Original in der Sammlung des geol. Inst. ETH, Zürich \times 0,6
- Fig. 2. Schalenpflaster (Schichtunterfläche) aus dem Grenzdolomit (Profil 72, Schicht 21). Hohlformen von $Lima\ striata$ (Schlotheim) Man beachte die Einregelung der Muscheln. $\times\ 0.5$

MERKI 1960