Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 46 (1953)

Heft: 2

Artikel: Geologische und sedimentpetrographische Untersuchungen im

Hochrheingebiet zwischen Zurzach und Eglisau

Autor: Braun, Eckart von

DOI: https://doi.org/10.5169/seals-161694

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ECLOGAE GEOLOGICAE HELVETIAE

Vol. 46, No 2 — 1953

Geologische und sedimentpetrographische Untersuchungen im Hochrheingebiet zwischen Zurzach und Eglisau

Von Eckart von Braun, Basel

Mit 2 Figuren und 8 Tabellen im Text, und 3 Tafeln (VIII-X)

Inhaltsverzeichnis¹)

Vorwort	4
Einleitung	ŧ
Stratigraphie	
Malm	
Bolusformation	8
Untere Süsswassermolasse	ç
Obere Meeresmolasse	
Burdigalien	10
Helvétien	11
Obere Süsswassermolasse	14
Tektonik	
Praeaquitane Strukturen	16
Prae- und intravindobone Strukturen	
Postvindobone Strukturen	
Sedimentpetrographie (morphoskopische Quarzkornanalyse)	
Voraussetzungen und Vorbereitungen	90
Korntypen und Kornformung	
	21
Die Verteilung der Quarzkorntypen in den Tertiärablagerungen:	20
Bolusformation	
Untere Süsswassermolasse	
Obere Meeresmolasse	24
Obere Süsswassermolasse	25
Zusammenfassung	26
Tabellen	
Literaturverzeichnis	

¹⁾ Die vorliegende Arbeit ist eine gekürzte Fassung der Basler Dissertation von E. v. Braun: Geologische und sedimentpetrographische Untersuchungen im Hochrheingebiet zwischen Zurzach und Eglisau. Letztere kann als Manuskript in der Universitätsbibliothek Basel und im Geologisch-Paläontologischen Institut der Universität Basel eingesehen werden.

Verzeichnis der Figuren und Tafeln in Text und Anhang

- Fig. 1: Schematische Darstellung der Molassestratigraphie beiderseits des Hochrheins zwischen Zurzach und Eglisau.
- Fig. 2: Isopachenkarte der praevindobonen Molasse.
- Taf. VIII: Geologische Karte des Klettgaues und der nördlichen Teile des Kantons Aargau und des Kantons Zürich. Maßstab 1:50000.
- Taf. IX: Profile der Oberen Meeresmolasse im Klettgau und in den nördlichen Teilen der Kantone Aargau und Zürich.
- Taf. X: Strukturkarte des Mittleren Malms (ma 3, Badenerschichten). Strukturkarte des Oberen Helvétien.

Vorwort

Die vorliegende Arbeit entstand auf Anregung von Herrn Prof. Dr. L. Vonderschmitt (Basel), dem ich an dieser Stelle für sein Interesse und seine stete Hilfsbereitschaft herzlich danken möchte. Ferner gedenke ich aller meiner übrigen Lehrer, die mich direkt mit ihrem Rat und indirekt durch die Ausbildung, die ich bei ihnen genoss, unterstützten, vor allem der Herren Prof. P. Bearth, H. Falke, M. Reichel, M. Reinhard, E. Wenk und P. D. Dr. W. Nabholz. Herr P. D. Dr. A. v. Moos stellte mir liebenswürdigerweise das unveröffentlichte Manuskript seiner Diplomarbeit zur Verfügung. Mein Freund H. E. Reineck besorgte die erste Korrektur. Die Fortsetzung und Beendigung meines Studiums ermöglichte mir in erster Linie Herr H. Adler. Auch ihnen allen meinen besten Dank.

Die geologische Feldaufnahme erfolgte in den Sommermonaten der Jahre 1951 und 1952, während die Laborarbeiten und Auswertungen sich über die dazwischenliegenden und anschliessenden Wintermonate 1951/52 und 1952/53 erstreckten. –

Ich widme diese Arbeit dem Andenken meines Vaters.

Einleitung

Das hier behandelte Untersuchungsgebiet liegt am Hochrhein sowohl auf deutschem als auch auf schweizerischem Boden und wird etwa durch folgende Ortschaften umgrenzt: Bechtersbohl, Albführen, Baltersweil (Deutschland, Baden), Hüntwangen, Schachen, Windlach (Kanton Zürich, Schweiz), Waldhausen, Vogelsang und Rekingen (Kanton Aargau, Schweiz). Wo erforderlich, sind jedoch auch Aufschlüsse ausserhalb dieses Bereiches berücksichtigt worden, so vor allem an den Rheinufern zwischen Eglisau und Rüdlingen und südlich der Linie Windlach-Vogelsang.

Geographisch und geologisch gesehen nimmt das Untersuchungsgebiet in mehrfacher Hinsicht eine Mittelstellung zwischen teilweise recht unterschiedlichen morphologischen und tektonischen Grossbereichen ein. Sein N-Rand mit der Steilstufe gegen das weite Klettgauer Tal kann als südwestliche Fortsetzung der Schwäbischen Alb angesehen werden. Demgegenüber stellt die südlich davon gelegene Landschaft ein ganz verschiedenes Element dar. Sie wurde in erster Linie durch die glazialen und fluviatilen Erosions- und Akkumulationsvorgänge während des Quartärs geformt, deren Produkte derartig verbreitet sind, dass eine Entzifferung der geologischen Verhältnisse des Untergrundes mit manchen Schwierigkeiten verbunden ist. – Wie sich im Verlauf der folgenden Ausführungen erweisen wird, überschneiden sich hier auch mehrere geologische Einheiten: einmal der sogenannte Tafeljura in Form des mit der Schwäbischen Alb verglichenen Plateaurestes im N; von SE her greift das Molassebecken herein; dazwischen eine Zwitterbildung von Tafel- und Kettenjura, eine in ziemlich flache Antiklinalen und Synklinalen gegliederte Mesozoikum-Tertiär-Serie. –

Grösstenteils ist das Untersuchungsgebiet bereits durch folgende geologische Karten detailliert dargestellt:

- J. Hug: Geologische Spezialkarte der Schweiz Nr. 36, Blatt Kaiserstuhl, 1:25000 (1907).
- A. GÖHRINGER: Geologische Spezialkarte des Grossherzogtums Baden, Blatt Lienheim, 1:25000 (1915).
- F. Schalch: Geologische Spezialkarte von Baden, Blatt Griessen, 1:25000 (1922).

F. Bader: Geologische Karte des Tafeljura zwischen Aare und Rhein, 1:25000 (Diss. Zürich 1925).

Es konnte deshalb darauf verzichtet werden, sämtliche – besonders die quartären – geologisch interessierenden Bildungen in die neue Bearbeitung aufzunehmen, deren Hauptziel eine Revision der Tertiärstratigraphie und die Darstellung der tektonischen Verhältnisse ist. Einige sedimentpetrographische Untersuchungen sollen dabei als Ergänzung dienen.

Folgende Karten wurden als topographische Grundlagen der geologischen Feldaufnahme benutzt:

a) Topographischer Atlas der Schweiz (Siegfried-Atlas) 1:25000

Blatt 21^{bis} Lauchringen

- .. 23 Zurzach
- ,, 24 Hüntwangen
- ., 26 Kaiserstuhl
- " 27 Eglisau
- b) Deutsche topographische Karte 1:25000

Blatt 8316 Griessen

- " 8415 Dangstetten
- , 8416 Lienheim

und die Vergrösserungen dieser Karte 1:10000.

Da das deutsche und das schweizerische Gitternetz nicht miteinander übereinstimmen, musste für die endgültige Darstellung der Kartierungsergebnisse eine einheitliche topographische Basis gewählt werden. Hierzu eignen sich die Siegfried-Blätter besser, da sie den deutschen Gebietsanteil genauer wiedergeben als die deutschen topographischen Karten den schweizerischen Abschnitt.

Im Text und in den Profilen werden der Einfachheit und Übersichtlichkeit halber folgende Abkürzungen verwendet:

UG = Untersuchungsgebiet OSM = Obere Süsswassermolasse OH = Oberes Helvétien USM = Untere Süsswassermolasse UH = Unteres Helvétien OMM = Obere Meeresmolasse

STRATIGRAPHIE

Mesozoikum

Die ältesten hier zu besprechenden Ablagerungen gehören dem oberen Jura (Malm) an, der das jüngste Glied einer mesozoischen Schichtserie bildet, die – nach einer Bohrung beim benachbarten Zurzach (Bader 1925) – über dem kristallinen Sockel des Schwarzwaldmassives die Stufen der Trias und des Jura umfasst. Ablagerungen des höchsten Malms und der Kreide fehlen im UG und seiner weiteren Umgebung.

Malm

Der für das UG von den älteren Autoren schon eingehend beschriebene Malm (Moesch 1856 und 1867, Wuertenberger 1865, Schill 1867, Göhringer 1915, Schalch 1922) lässt sich nach der schwäbischen Nomenklatur in die folgenden Stufen untergliedern:

Bezeichnung:		Mächtigkeit:
Ulmensisschichten	$ma 4 o^2$	bis 35 m
Massenkalke	$\mathrm{ma}~4~\mathrm{o}^{1}$	bis 55 m
Quaderkalke	ma 4 u	ca. 15 m
Mittlere Malmmergel	ma 3	ca. 25 m
Wohlgeschichtete Kalke	ma 2	ca. 75 m
Impressamergel	ma 1	ca. 95 m

Die Parallelisierung dieser hauptsächlich aus Kalken und Mergeln zusammengesetzten Serie mit den entsprechenden Schichtbezeichnungen im aargauischen Jura ist auf Tab. 7 gegeben.

Der ausgeprägte lithologische Wechsel zwischen den ma-2-Kalken und den ma-3-Mergeln lässt sich im Gelände gut verfolgen. Deshalb ist diese Grenze als Bezugshorizont einer Strukturkarte des Malms besonders geeignet (Taf. X).

Früher nahm man an, dass die höchsten Malmhorizonte des UG – die im Weilergraben bei Bergöschingen, im Schlosswald westlich Kaiserstuhl und in der Nähe von Hohenthengen und bei Herdern noch erhalten sind – Äquivalente der Plattenkalke Schwabens seien. Durch die Untersuchungen von Erb & Spitz (1931) und Tobien (1947) im Hegau ist jedoch gezeigt worden, dass es sich dort nicht um Plattenkalke, sondern um die stratigraphisch tieferen Ulmensis-Schichten handelt. Dies gilt ebenso für das hier betrachtete UG, denn die im Liegenden der echten Plattenkalke auftretenden Oberen Malmmergel (ma 5) sind unter den plattenkalk-ähnlichen Schichten des UG wie im Hegau nicht nachweisbar, dagegen erscheinen letztere eng verzahnt mit den Massenkalken.

Tertiär

Die Tertiärablagerungen des UG lassen sich in zwei verschiedene Typen gliedern:

1. Eine Decke mehr oder weniger autochthon entstandener Verwitterungsrelikte auf dem Malm, die sogenannte Bolusformation, die nach anderenorts gemachten Fossilfunden etwa im Eocän entstand. 2. Die Molassesedimente, die in erster Linie einen alpinen Abtragungsschutt darstellen. Das Molasseprofil des UG umfasst folgende Unterstufen: a) die oberen Teile der Unteren Süsswassermolasse (Aquitanien = oberes Oligocän); b) die Obere Meeresmolasse (Burdigalien und Helvétien = unteres und mittleres Miocän); c) die miocänen Anteile der Oberen Süsswassermolasse (Tortonien = oberes Miocän).

Bolusformation

Die Bolusformation besteht zur Hauptsache aus unregelmässig tief in die verkarstete Malmoberfläche eingreifenden, meist rötlichen und violettbraunen Tonen, deren Mächtigkeit im allgemeinen 10 m nicht überschreitet. Sie wird als eine fossile lateritische Verwitterungsdecke angesehen (Harrassowitz 1930). Neben dem sporadischen Auftreten von bis haselnussgrossen Bohnerzkonkretionen war bislang nur der fehlende Kalkgehalt als typisches Merkmal dieser Stufe bekannt. Als ein weiteres Charakteristikum hat sich nun die Beimischung von äolisch verfrachtetem Quarzsand im normal entwickelten Bolus ergeben (s. p. 157). Dies lässt darauf schliessen, dass in dem Zeitraum zwischen der Sedimentation der jüngsten mesozoischen und ältesten Molasse-Schichten auf dem kretazisch-eocänen Festland mindestens zeitweise kontinental-aride bis semiaride Klimabedingungen geherrscht haben müssen.

Untere Süsswassermolasse

Auf die alttertiäre Landoberfläche transgredierte im Aquitanien die USM mit meist mehr oder weniger feinkörnigen, grüngrauen Glimmersanden und -sandsteinen, bunten Mergeln und allen Zwischenstufen zwischen Sandstein und Mergel. Exotische Gerölle fehlen der USM des UG vollständig. Charakteristisch sind die meist fliessenden Übergänge der mergeligeren und sandigeren Partien untereinander. Wo rechtsrheinisch (vor allem im Weilergraben und seinem nordwestlichen Nebenbach) schärfere lithologische Wechsel auf einige Entfernung verfolgbar sind, zeigen sich diese Grenzen meist nicht streng flach, denn offenbar erfolgte hier die Ablagerung der Schichten in seichten Mulden oder Rinnen. Hier findet man in den relativ gröberen Sandsteinen auch häufig kleine Mergelbollen eingelagert, die ausnahmsweise einen Durchmesser von 0,3 m erreichen können und lokale Erosionen während der Bildung dieses Schichtkomplexes andeuten. Beckenwärts (Glattmündung, Fisibachtal usw.) herrscht dagegen eine horizontal-bankige Sedimentationsart vor.

Da in der USM des UG bisher keine leitenden Fossilien gefunden wurden, erfolgte ihre Datierung durch Vergleich mit sicher bestimmten, lithologisch und in ihrer stratigraphischen Stellung gleichen Schichten des Aargaues und Schwabens (s. Stehlin 1914, Kiderlen 1931). Ob auch noch Äquivalente des tiefsten Burdigalien in den hangenden USM-Horizonten enthalten sind, wie es im westschweizerischen Jura vermutet wird (Huerzeler 1946) muss offen bleiben. Jedenfalls konnte keine Wechsellagerung oder Verzahnung von USM und tieferer OMM aus dem UG nachgewiesen werden. Die beiden Molassestufen scheinen im Gegenteil durch einen Hiatus getrennt zu sein (vgl. z. B. Profil 21, Taf. IX).

Obere Meeresmolasse

Die OMM ist im UG und seiner weiteren Umgebung dank ihrer besonderen lithologischen Ausbildung (glaukonitische Sandsteine, weit verfolgbare Geröllager) einer der markantesten Tertiärhorizonte, trotzdem sie in ihrer Mächtigkeit meist hinter den übrigen Molassestufen zurückbleibt.

Die wichtigsten modernen Beiträge zur Klärung der OMM-Stratigraphie zwischen der Bodenseegegend und der subjurassischen Zone des schweizerischen Mittellandes bilden neben den hier durchgeführten Kartierungen vor allem die Arbeiten folgender Autoren: Stehlin (1914), Brandenberger (1926), Kiderlen (1931), v. Moos (1932), Haus (1950).

Eine der Hauptaufgaben der vorliegenden Untersuchungen war die Verknüpfung der in der schwäbischen OMM gewonnenen Feingliederung mit den neueren Ergebnissen der OMM-Stratigraphie des Aargaues.

Burdigalien

Unter der Bezeichnung Burdigalien werden hier alle diejenigen marinen Molassesedimente des UG verstanden, die die später zu besprechenden, sich durch die Führung exotischer Gerölle auszeichnenden helvetischen Ablagerungen unterteufen. Trotzdem aus dem UG und seiner Umgebung bisher keine leitenden (Säuger-) Fossilien aus dieser Schichtgruppe gefunden wurden, erscheint die Anwendung einer solchen Altersbezeichnung auf Grund lithologischer Parallelen im Vergleich mit eindeutig dem Burdigalien zugewiesenen Schichten (Aargau usw.) doch berechtigt. Es bleibt abzuwarten, ob die im Gange befindlichen mikrofaunistischen Untersuchungen der OMM die wahrscheinlich im hangenden Teil dieses

Komplexes befindliche paläontologische Burdigalien/Helvétien-Grenze schärfer zu erfassen gestatten.

Die vollständigsten, d. h. mächtigsten Burdigalien-Profile befinden sich für das weitere UG östlich Eglisau. Dort bei Rüdlingen und im engeren UG bei der Lochmühle nördlich Fisibach kann man beobachten, dass die erste OMM-Transgression lokal die Liegendschichten aufgearbeitet hat (USM-Süsswasserkalkgerölle bei Rüdlingen, Malmkalkbreccie bei der Lochmühle als Basiskonglomerat). Im übrigen herrschen durch das ganze Profil mehr oder weniger feinkörnige, relativ stark glaukonitische, graue Sandsteine, teilweise mit dunkelgrauen, siltigen Mergeln wechsellagernd, vor. Basal findet man hin und wieder auch einen Muschelsandsteinhorizont (südwestlich Weiach, Lochmühle, Rüdlingen). Abweichend hiervon ist die Ausbildung des Burdigalien gleich südlich Weiach und bei Zweidlen sehr grobkörnig. Die hier steil schräggeschichteten, wechselnd harten Sandsteine, die z. T. ripplemarks aufweisen, gehören einer burdigalen Litoralzone an.

Auf Fig. 2 ist die ungefähre heutige Verbreitungsgrenze des Burdigalien dargestellt. Man erkennt, dass die maximale Transgressionsweite der OMM nach N und NW von diesen Schichten noch nicht erreicht wird.

Helvétien

Als Helvétien (= unteres Vindobonien) werden alle diejenigen OMM-Schichten des UG bezeichnet, die sich durch eine mindestens basale Führung exotischer (alpiner) Gerölle auszeichnen. Mit der Graupensandgrube bei Riedern liegt glücklicherweise eine säugetierpaläontologische Typlokalität für diese Stufe im UG (s. Stehlin 1914), so dass ihre Datierung gesichert ist.

Es hat sich gezeigt, dass das Helvétien im UG und darüber hinaus in zwei gleichwertige Abteilungen untergliedert werden muss, denn (s. Fig. 1 und Taf. IX):

- 1. Die das Helvétien kennzeichnende Schüttung alpiner Gerölle erfolgte in zwei getrennten Phasen: zwei Geröllhorizonte und ihre hangenden Begleitschichten überlagern sich häufig stratigraphisch.
- 2. Als Grenzhorizont zwischen den beiden Zyklen beobachtet man meist eine erosiv modellierte Transgressionsfläche entsprechend der wechselnden Konsistenz der Liegendschichten. Die tieferen OMM-Horizonte haben also zur Zeit der zweiten Geröllschüttung bereits eine differenzierte Diagenese erfahren.
- 3. In einigen Fällen schaltet sich sogar ein Verwitterungshorizont zwischen die beiden Helvétienabteilungen ein. Damit wird es notwendig, folgenden Ablauf der Ereignisse anzunehmen: Erste Geröllschüttung Regression und terrestrische Exposition Transgression der zweiten Geröllschüttung.
- 4. Die Transgression der zweiten Unterstufe des Helvétien führte ausserdem zur Aufarbeitung bereits diagenetisch verfestigter Ablagerungen des ersten Zyklus, was durch die Identifizierung von verschiedenen Geröllkomponenten der jüngeren Serie mit speziellen Lokalausbildungen der älteren sicher bewiesen werden kann.

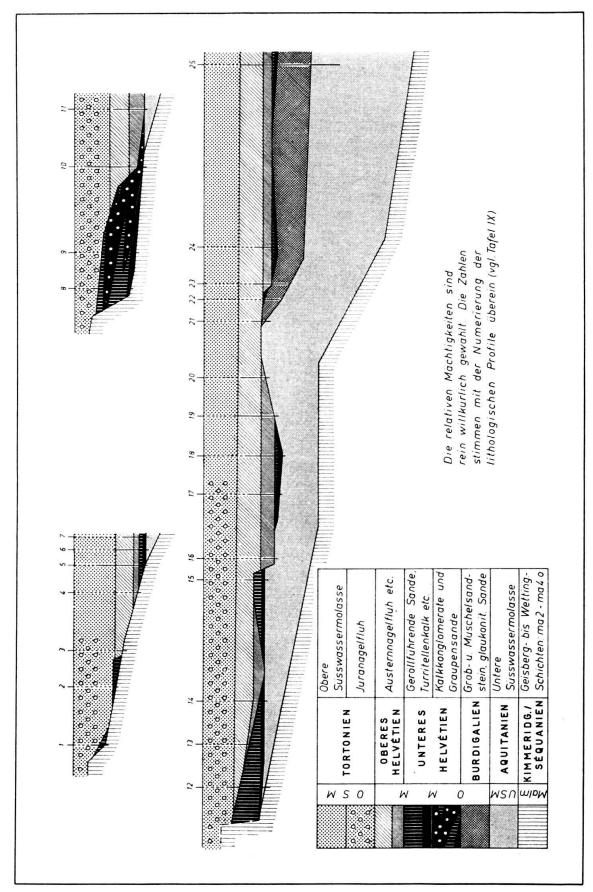
Überblickt man das Bild der Helvétien-Ablagerungen auf der geologischen Karte (Taf. VIII) und die OMM-Profile (Taf. IX), so treten folgende Tatsachen von grundsätzlicher Bedeutung hervor:

a) Die als Oberes Helvétien (OH) bezeichneten Ablagerungen (= die sogenannte Austernnagelfluh) stellen im Hinblick auf lithologische Ausbildung und durchgehende Verbreitung einen einheitlichen Komplex dar. Ihr Ausstrich lässt sich – soweit nicht quartäre Überdeckung hinzutritt – kontinuierlich verfolgen, der ursprüngliche Zusammenhang wurde nur durch die quartäre Erosion unterbrochen.

b) Demgegenüber sind die unter der Bezeichnung Unteres Helvetién (UH) zusammengefassten Bildungen lithologisch mannigfaltiger entwickelt. Jedoch ist auch hier fast allen Ausbildungen eine basale Führung alpiner Geröllkomponenten gemeinsam. Das UH ist nur noch in Relikten unter bzw. neben dem OH erhalten geblieben, was die Folge einer Regression nach seiner Ablagerung (evtl. terrestrische Erosion?) und der anschliessenden Transgression des OH (UH teilweise wieder aufgearbeitet) ist.

Unteres Helvétien. Das UH besteht aus lithologisch recht unterschiedlichen Sedimenten: Sand- und Grobkalke, Kalknagelfluhen, Muschelsandstein und grobbis mittelkörnige Sande. Allen Typen ist jedoch im allgemeinen eine basale alpine Geröllführung gemeinsam, oder – wo dies nicht der Fall zu sein scheint – die Vorkommen befinden sich zumindest eindeutig nördlich des weiter unten zu besprechenden Anlagerungsrandes des OH.

In den Aufschlüssen bei Eglisau hat man den Eindruck, dass der Schnitt zwischen Burdigalien und UH kein besonders scharfer ist; andererseits lagert eine Geröllschnur des UH bei Zweidlen deutlich diskordant über schräggeschichtetem burdigalem Grobsandstein (s. Profil 22, Taf. IX). Für das Verhältnis dieser beiden Stufen zueinander scheint es also keine feste Regel zu geben.


Im Gegensatz dazu ist die obere Begrenzung des UH immer scharf und teilweise durch stratigraphisch eingeschaltete Verwitterungshorizonte bezeichnet.

Zur Zeit des UH transgredierte die OMM im UG am weitesten gegen N und NW bis auf den Malm. Demgegenüber bleiben die Ablagerungen des OH im allgemeinen weiter beckenwärts zurück, so dass eine Art Marginalsaum des UH den Maximalvorstoss der OMM bezeichnet, der mit den OMM-Relikten an der Klifflinie Schwabens vergleichbar ist.

Die basal mit Malmschutt vermengten Grobkalke der Küssaburg (Bechtersbohl) und der sogenannte Turritellenkalk nordwestlich Bercherhof können als typische Litoralsedimente des UH gelten. – Zwischen Reutehof und Eichberg sind die Reste eines Flussdeltas aus dem UH erhalten: Kalknagelfluhen – zusammengesetzt aus Komponenten der mesozoischen Decke des Schwarzwaldmassives – wechsellagern hier mit Grobsanden der Molasse (alpine Gerölle führend). – Beckeneinwärts beherrscht Molassematerial alpiner Herkunft die Zusammensetzung des UH: Vorwiegend Quarz-, Quarzit- und Hornsteingerölle führende Sande, die untergeordnet geringmächtige Muschelsandsteineinlagerungen zeigen können.

Die hier als UH bezeichneten Bildungen entsprechen dem "transgressiven Vindobonien" des Aargaues (Brandenberger 1926, v. Moos 1932) und sind vermutlich mindestens bis in die Gegend von Zofingen weiter verfolgbar (s. Niggli 1912, p. 56, und Muehlberg 1908, p. 29 usw.). Am Randen und im Hegau können ihnen der Randengrobkalk und ein Teil der von Schalch (1921, p. 41; 1916, p. 94, Profil d, Nr. 2) als "geröllführende Meeressande" bezeichneten OMM-Vorkommen gleichgestellt werden. Diese entsprechen nach Kiderlen (1931, p. 247) und Haus (1950, p. 55) den Bodmansanden des Bodenseegebietes (= M-3s-Stufe Kiderlens), so dass sich nun die auf Tab. 8 gegebene Parallelisation des tieferen Helvétien durchführen lässt.

Oberes Helvétien. Als Oberes Helvétien (OH) wird hier die für das UG und seine Umgebung schon durch Wuertenberger (1870), Göhringer (1915) und Schalch (1922) eingehend beschriebene Austernnagelfluh mit ihren hangenden Begleitsanden (die sogenannten "Melaniensande") bezeichnet. Auf eine detaillierte Beschreibung dieses aus alpinen und germanisch-mesozoischen Geröllen zusammengesetzten

Schematische Darstellung der Molassestratigraphie beiderseits des Hochrheins zwischen Zurzach und Eglisau. Fig. 1.

Konglomerates kann verzichtet werden, statt dessen seien einige wichtige neue Beobachtungen mitgeteilt.

Die Austernnagelfluh besitzt im UG einen nördlichen und nordwestlichen Anlagerungsrand an einen Randsaum von UH-Ablagerungen (s. Taf. VIII und X und Fig. 1), der von Hinter-Eichberg über die Mooswiese bei Riedern, nordwestlich Bergscheuerhöfe, Reutehof, Egg, nördlich Küssnach bis zu den Kohlgruben bei Reckingen verläuft und sich über den Nurren bei Rekingen vermutlich gegen W fortsetzt. Das OH erreichte im UG also nicht mehr dieselbe Transgressionsweite wie das UH.

In einigen Fällen konnten speziell das OH kennzeichnende Gerölle – analog dem aufgearbeiteten Knollenkalk in den Kirchberger-Schichten der erweiterten Graupensandrinne (Haus 1950) – beobachtet werden. Es sind dies:

- a) aufgearbeiteter Turritellenkalk des UH am Jukenberg nordöstlich Lienheim (Taf. IX, Profil 16);
- b) aufgearbeiteter Block von Kalknagelfluh des UH mit spärlichen Quarzgeröllen sowie marinen Fossilien und Glaukonit im Bindemittel (Hünklergraben nordöstlich Stetten);
- c) aufgearbeiteter, limonitisch verkitteter Grobsandstein des UH an der Buchhalde bei Vogelsang (Taf. IX, Profil 6);
- d) aufgearbeitete Grobsandsteinblöcke des Burdigalien im ehemaligen Steinbruch südlich Weiach (Taf. IX, Profil 23).

Zusammen mit der immer transgressiven Untergrenze des OH beweist dies, dass die älteren OMM-Sedimente bereits vor der Ablagerung des OH diagenetisch verfestigt waren.

Die Austernnagelfluh wurde schon früher von verschiedenen Bearbeitern durch das schweizerische Mittelland bis in die Berner Molasse verfolgt (s. Muehlberg 1902, 1905, 1908, Niggli 1912, Brandenberger 1926, Gerber 1928, Huerzeler 1932, Rutsch 1933 usw.). Charakteristisch ist die überall mit der Austernnagelfluh beginnende Aussüssung der OMM in die OSM, ein Vorgang, der offenbar auch das schwäbische Molassebecken ziemlich gleichzeitig erfasst hat: hier sind es die im Hegau beginnenden, dem OH gleichzusetzenden Kirchberger Schichten (Erb 1931, Pfannenstiel 1931, Kiderlen 1931, Haus 1950), die in die OSM überleiten.

Obere Süsswassermolasse

Die OSM des UG ist durch zwei verschiedene Faziesbereiche ausgezeichnet: 1. Das Areal der Juranagelfluh, die nur nördlich des Rheines vorkommt, dort aber fast allein diese Stufe vertritt. Sie setzt sich aus fluviatilen Kalkkonglomeraten mit zwischengeschalteten Mergel- und Kalksandsteinhorizonten zusammen, die Abtragungsprodukte der mesozoischen Hülle des Schwarzwaldkristallins sind. Dieser Komplex war bereits Gegenstand spezieller Untersuchungen von Wuertenberger (1862, 1870), Schaad (1908), Scheid (1929) u. a.

2. Die normal subjurassisch ausgebildete, hier völlig geröllfreie OSM, zusammengesetzt aus sandigem und mergeligem Detritus der Alpen und Süsswasserkalkbänken.

In jedem Falle ist der Übergang aus dem OH in die OSM ein kontinuierlicher. Nach Fossilfunden aus der Gegend von Baldingen bestimmte Stehlin (1914) das Alter der hier in Betracht kommenden OSM als Oberes Vindobonien (=Tortonien). Die im UG im Vergleich zum Bodenseeareal usw. relativ geringmächtig erhaltene OSM enthält aller Wahrscheinlichkeit nach keine jüngeren Glieder der OSM mehr.

TEKTONIK

Im Gegensatz zur verbreiteten Auffassung einiger älterer Autoren, dass das hier betrachtete UG nur sehr schwach tektonisch strukturiert sei, konnten durch die genauere Verfolgung der Tertiärhorizonte und spezielle Detailbeobachtungen im Zusammenhang mit der Auswertung einiger älterer Bohrdaten in dieser Hinsicht eine Reihe neuer Erkenntnisse gewonnen werden, die teilweise nicht nur lokales Interesse beanspruchen dürften.

Praeaquitane Strukturen

Es lassen sich im UG zwei verschiedene praemolassische Bewegungsphasen konstatieren:

- 1) Das Liegende der Bolusformation ist nicht überall derselbe Malmhorizont, sondern im NW und W greift diese älteste Tertiärstufe bis auf die wohlgeschichteten Kalke hinab (ma 2), während im SE entweder die Massenkalke (ma 4 o¹) oder die stratigraphisch noch höheren Ulmensisschichten (ma 4 o²) ihre Unterlage bilden. Daraus folgt, dass eine vermutlich praeeocäne Kippachse ähnlich wie in der Gegend von Blumberg (s. Roll 1935) durch das UG zieht.
- 2) Die USM transgredierte diskordant über ein praeexistierendes, tektonisch bedingtes Malmrelief hinweg, das so plombiert wurde. Die Isopachenkarte der praevindobonen Molasse (Fig. 2) gibt ein annäherndes Bild von den vor evtl. noch während dem Aquitanien entstandenen Niveaudifferenzen der alttertiären Peneplain.

Ein erhöhtes Interesse beansprucht dabei vor allem der Malmkomplex Weilergraben-Schlosswald (westlich Kaiserstuhl), denn hier sind in einem ehemaligen Steinbruch und weiteren natürlichen und künstlichen Anschnitten zahlreiche Brüche und Schichtverbiegungen des Malms aufgeschlossen, wogegen die anstossende Molasse keine derartigen Dislokationen aufweist, denn: Im Bachbett des Weilergrabens treten mehr oder weniger horizontal ausstreichende Sandsteinbänkchen der USM mit ca. 42° SE fallendem Malm in Kontakt; an der Lochmühle bei Fisibach enthält das flachlagernde Basiskonglomerat des Burdigalien fossilen Malm-Gehängeschutt. Der Schlosswald-Weilergraben-Malmsporn war also bereits zur Zeit der Molassesedimentation der Abtragung unterworfen. Obwohl die ganze Malmkulmination offenbar tektonischen Vorgängen ihre Entstehung verdankt, kann jedoch nicht von einer klaren Antiklinalstruktur gesprochen werden, da ihr ein Kern älterer Malmschichten fehlt.

Weiterhin ergibt sich konstruktiv eine Art Flexur der Malmunterlage zwischen Rheinsfelden und Weiach, südöstlich der eine Depression zu vermuten ist, die sich evtl. bis in eine "embryonal" angelegte Lengnauer Mulde fortsetzt (Auskeilen der USM an der Endinger Flexur). Demgegenüber muss die Lägern als ein praeaquitan angelegtes tektonisches Hochgebiet angesehen werden (vgl. Schuppli 1952), wie die geringe USM-Mächtigkeit bei Schöfflisdorf beweist (Fig. 2: nach Escher v. d. Linth 1847, Letsch 1899).

Auch die in der Isohypsenkarte der Untergrenze der Badenerschichten (ma 3, Taf. X) zum Ausdruck kommenden Strukturen dürften im wesentlichen vormolassisch angelegt sein. Ein Vergleich mit dem Tafeljura (Amsler 1915) und Schwaben (Bentz 1949) zeigt, dass der mesozoische Sedimentmantel des Schwarzwaldmassives in sich ablösenden, unscharf getrennten Staffeln gegen SE unter das Molassebecken abtaucht, woraus Taf. X nur einen kleinen Ausschnitt wiedergibt.

Prae- und intravindobone Strukturen

Die vor und während der Ablagerung der OMM das UG erfassenden tektonischen Vorgänge sind nur in grossen Zügen zu rekonstruieren, da es sich hierbei offenbar weniger um lokal deutlich prononcierte Dislokationen als vielmehr um sehr viel weiter gespannte Bewegungen handelte.

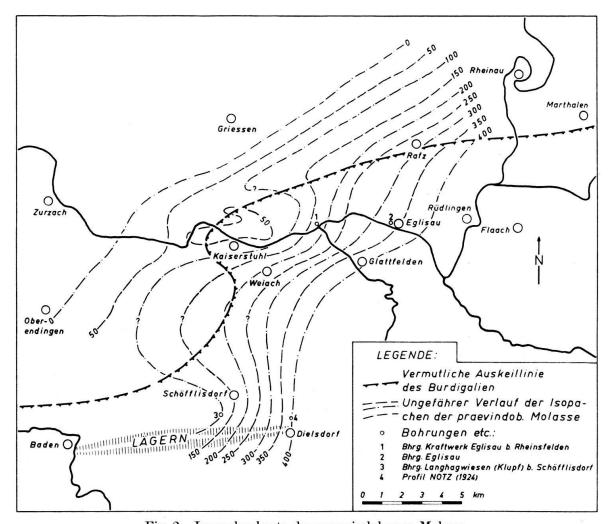


Fig. 2. Isopachenkarte der praevindobonen Molasse.

Zusammengestellt nach eigenen Aufnahmen, mit Benutzung der Geologischen Spezialkarte von Baden, Blatt Jestetten-Schaffhausen, und Literaturdaten.

Aus den Aufarbeitungen der USM durch das Burdigalien und die im ganzen UG scharfe Grenze zwischen den beiden Stufen sowie aus einer leichten Diskordanz zwischen USM und OMM bei Vogelsang (Taf. IX, Profil 6) kann man schliessen, dass das UG vor der ersten OMM-Invasion einer Regressionsperiode unterworfen war.

Dies wiederholt sich an der Wende vom UH zum OH, wie Verwitterungshorizonte und transgressives Übergreifen des OH bezeugen. Möglicherweise zeichneten sich schon einige schwache Depressionen und Kulminationen als Vorläufer späterer Mulden und Antiklinalen ab; eine endgültige Entscheidung hierüber kann aber noch nicht gefällt werden. Auch das nordwestliche Hinterland erlebte spürbare Heraushebungen, wie das Flussdelta des UH bei Reutehof-Riedern einerseits und

das Zurückbleiben der OH-Transgression gegenüber dem maximalen OMM-Vorstoss andererseits beweist.

Unzweifelhafte Fortsetzungen einer tektonisch angelegten Klifflinie oder eines "Donauabbruches" (Kiderlen 1931) sind im UG nicht nachweisbar.

Postvindobone Strukturen

Im Zusammenhang mit der Auffaltung des Juras wurde auch das UG in eine Reihe von Synklinalen und Antiklinalen gegliedert. Die Bezeichnungen Lienheimer Mulde, Baldinger Mulde, Siglistorfer Antiklinale, Windlacher Mulde ergeben sich aus der Strukturkarte (Taf. X), in die auch noch die bereits bekannte Irchel-Antiklinale (Bendel 1923) einbezogen wurde.

Der Südschenkel der Siglistorfer Antiklinale bildet gleichzeitig den Nordschenkel der Lengnauer Mulde (Mühlberg 1902, Brandenberger 1926), mit der das UG im S tektonisch begrenzt wird.

Interessant ist die Einflussnahme älterer Strukturen auf die Ausgestaltung der postvindobonen. Die Windlacher Mulde entspricht offenbar der praeaquitanen Weiacher Depression. Die wahrscheinlich NNE verlaufende westliche Begrenzung der letzteren veranlasst ein Ausweichen der Siglistorfer Antiklinale in dieser Richtung und damit eine Parallelverschiebung ihrer Antiklinalenachse. Im W entwickelt sich die Siglistorfer Antiklinale aus der sicher ebenfalls praeaquitan angelegten Endinger Flexur (s. p. 153). Die Auffaltung älterer Flexuren zu Juraantiklinalen wurde schon früher verschiedenenortes in Erwägung gezogen (z. B. Buxtorf 1916) und könnte möglicherweise auch für die Lägernkette zutreffen (s. p. 153).

Die Existenz intradiluvialer Störungen (Hug 1907, Penck 1909) ist für das gesamte UG unbeweisbar, denn entweder zeigen die Molassehorizonte keine den hypothetischen diluvialen Störungen entsprechenden Versetzungen, oder die als abnorm angesehenen Molasse-Deckenschotter-Kontakte erweisen sich als einfache Ränder diluvialer Erosionsrinnen.

Immerhin muss auf die relativ rege Seismizität der Gegend um Eglisau hingewiesen werden (s. die Jahresberichte des Erdbebendienstes der Schweizerischen metereologischen Zentralanstalt, Denzler 1847, Montandon 1943 usw.).

SEDIMENTPETROGRAPHISCHE UNTERSUCHUNGEN

In Anbetracht der unbefriedigenden Ergebnisse vieler sedimentpetrographischer Untersuchungen in der Molasse wurde hier eine neuartige, bislang noch wenig bekannte Methode angewandt: Die von A. Cailleux (1942, 1952) entwickelte morphoskopische Quarzkornanalyse. Mit ihrer Hilfe sollen Aussagen über die Ablagerungsbedingungen der Tertiärsedimente des UG gemacht werden.

Zur allgemeinen Orientierung seien die Grundzüge der Methode kurz skizziert; auf eine detaillierte Beschreibung wird jedoch verzichtet und statt dessen auf die Arbeiten von Cailleux und die übrige zitierte Literatur verwiesen.

Voraussetzungen und Vorbereitungen

Die zur Untersuchung gelangenden Quarzkörner sollen einen Durchmesser von etwa 0,7 mm besitzen, da bei dieser Grösse die zu beobachtenden Merkmale einerseits typisch zum Ausdruck kommen, andererseits auch relativ häufig angetroffen werden. Zur Probennahme sind also nur sandige Sedimente mit einem genügenden Gehalt groben Kornes geeignet.

Die eingesammelten Proben wurden mittels technischer Salzsäure von ihrem kalkigen Bindemittel befreit, ausgewaschen, getrocknet und gesiebt. Von jeder Probe wurden zwei Fraktionen gesondert abgetrennt: 0,5–1,0 mm (grobe Fraktion = G. F., mit dem gewünschten Mittelwert etwa bei 0,7 mm) und 0,1–0,25 mm (feine Fraktion = F. F., zur Beurteilung von Glaukonitführung und Gehalt äolisch transportierten Quarzmateriales (s. p. 157)).

Zur Untersuchung und Auszählung unter dem Binokular (40fache Vergrösserung) befinden sich die Körner auf schwarzem Untergrund, direkt (ohne Mattscheibe) von einer 60-Watt-Lampe beleuchtet. Von der G. F. werden möglichst ca. 200 Exemplare pro Probe klassifiziert und gezählt. Bei der F. F. konnte auf eine quantitative Bestimmung dieser Art verzichtet werden. Ihr Charakter in bezug auf Rundung der Quarzpartikel und Glaukonitführung ist durch einen abgeschätzten Häufigkeitsindex befriedigend darstellbar.

Korntypen und Kornformung

CAILLEUX zeigte, dass nach dem jeweiligen Formungsagens grundsätzlich drei verschiedene Quarzkorntypen in der G. F. zu unterscheiden sind, die es – unter Berücksichtigung sekundärer Aufarbeitungserscheinungen – gestatten, Rückschlüsse auf die Genese des jeweils betrachteten Sedimentes zu ziehen.

Typ ,,anguleux".

Hierunter fallen alle diejenigen Körner, die von meist irregulären Flächen mit immer scharfen Kanten und Ecken begrenzt sind. Sie haben ihre Formung einer reinen Zertrümmerung ohne jede weitere Abrundung zu verdanken. Cailleux nennt sie "non usés". Hier werden unter dieser Gruppe dagegen auch solche Körner verstanden, die bereits einmal der folgenden Klasse der "emoussés-luisants" angehört hatten, nachträglich aber wieder angebrochen wurden, weil auf jeden Fall die jüngste Formung massgeblich sein sollte.

Ungerundete Quarzkörner herrschen ganz allgemein in den Abtragungsprodukten kristalliner Gesteine vor, die keine äolische oder marine Ab- und Umlagerung erfahren haben. Höchstens sehr langer Flusstransport scheint eine geringe Abrundung bewirken zu können.

Typ "emoussés-luisants".

Bei allen Übergängen zwischen polyedrischen bis globulösen Formen besitzen die Körner dieser Klasse immer abgerundete Kanten und Ecken und glänzend polierte Oberflächen. Das bestrahlende Licht wird sowohl beim ersten Auftreffen auf bestimmte, dafür günstig gerichtete Stellen des Kornes als auch innerhalb desselben reflektiert.

Abgesehen von den seltenen Fällen einer sehr schwachen Rundung der Quarzkörner nach langem fluviatilem Transport ist die Entstehung des Typs "emoussésluisants" ganz auf das marine Milieu beschränkt. Zu diesem Ergebnis kamen nicht nur Cailleux und die von ihm zitierten Autoren, sondern z. B. auch Ries & Conant (1931, p. 355, 374) und Twenhofel (1945). Der letztere machte die wichtige Feststellung, dass Quarzkörner mit Durchmessern unter ¼ mm in keinem Falle im Wasser noch eine merkliche Abrundung erfahren. Thiel (1940) unter-

warf eine quantitativ zusammengestellte Mineralassoziation frisch gebrochener Körner (darunter auch Quarz) bestimmter Fraktionen einer künstlichen Abnützung in einer wassergefüllten rotierenden Trommel. Die Mikrophotographien der Quarzfraktion 0,5–1,0 mm zeigen nach ca. 8000 km Transportweg, dass der Habitus der Körner sich grösstenteils vom "anguleux"- bzw. "non-usés"-Typ zum "emoussés-luisants"-Typ gewandelt hat.

Typ ,,ronds-mats".

Hier handelt es sich um meist gut gerundete Körner, die eine matte (frosted, dépoli), plastisch gut hervortretende Oberfläche besitzen. Dies rührt von einer Vielzahl über die ganze Oberfläche verteilter winzigster Schlaggrübchen her, die bei jedem Einfallwinkel des Lichtes eine direkte Reflexion desselben zum Beobachter bewirken. In der "ronds-mats"-Gruppe findet man ungemein häufiger als in der "emoussés-luisants"-Klasse vollkommen abgerundete Exemplare ohne einspringende Furchen usw. - Cailleux unterscheidet hier noch die Unterklassen "ronds-mats propres" und "ronds-mats sales". Von ersterer waren im UG jedoch so wenige nachweisbar, dass einheitlich nur eine Klasse "ronds-mats" unterschieden werden musste. D. h. praktisch alle hierzu zählenden Quarzkörner besitzen kleine Restchen von Sediment-Bindemittel in feinen Rissen, Grübchen usw. -Im Gegensatz zu der bei der "emoussés-luisants"-Klasse geübten Praxis wurden auch Bruchstücke von "ronds-mats"-Körnern dieser Gruppe zugeteilt. Offenbar waren nämlich ihre Entstehungsbedingungen nur in einer Tertiärstufe erfüllt, wodurch - unter Berücksichtigung auch der "ronds-mats"-Fragmente - eventuelle Aufarbeitungen dieser Stufe durch jüngere Ablagerungen nachgewiesen werden können (s. a. Bersier 1938).

Die "ronds-mats"-Körner haben ihre charakteristischen Eigenschaften durch äolische Verfrachtung und Abnutzung erhalten. Neben Cailleux und den von ihm zitierten Autoren stellten dies auch Ries & Conant fest (1931, p. 385). Sie fanden überdies (a. a. O., p. 359, 374) ebenso wie Twenhofel (1945, p. 67), dass bei Windverfrachtung auch noch kleinere Kornklassen eine Abrundung erfahren. Damit ergibt sich die Möglichkeit, durch die Untersuchung der Rundungsverhältnisse in der Quarzkornfraktion 0,1–0,25 mm zusätzliche Anhaltspunkte über das Auftreten äolisch transportierten Materiales in den betrachteten Proben zu gewinnen.

Die Verteilung der Quarzkorntypen in den Tertiärablagerungen des UG.

Bolusformation

Die Bolusformation wird praktisch vollkommen vom "rond-mats"-Quarz-korntyp beherrscht. Alle Proben, die noch einen bemerkenswerten Anteil von Körnern der anderen Klassen enthalten, konnten wegen ungünstigen Aufschlussverhältnissen nicht aus ganz frisch anstehendem Material entnommen werden. Bezeichnenderweise wird auch die F. F. zum grössten Teil aus gerundeten Quarz-körnern zusammengesetzt, während die in einigen Fällen zusätzlich untersuchte Fraktion 0,25–0,5 mm sich in ihrer Zusammensetzung bereits ganz der G. F. anschliesst.

Bersier & Badoux (1937) konnten vom Mormont ein Vorkommen typischer Dünensande aus der Bolusformation nachweisen. Eine zu Vergleichszwecken hier hergestellte Probe dieses Sandsteines erwies, dass es sich dabei ausschliesslich um Quarzkomponenten des "ronds-mats"-Typs handelt. – Weiger (1908) beschreibt auffällig gut gerundete Sande aus Spaltenfüllungen in den Jurakalken der Schwäbischen Alb. Die auf Grund von Schweremineraluntersuchungen durch Weiger vorgenommene Datierung dieser Bildung erscheint beim Vergleich mit moderneren Schweremineralanalysen aus Bolusformation und Molasse (v. Moos 1935, 1936) nicht mehr haltbar. Aller Wahrscheinlichkeit nach handelt es sich auch dort um Ablagerungen der Bolusformation mit äolisch geformtem Quarzmaterial.

Nach dem hier Gesagten kann man nun die schon von Bersier & Badoux (1937) aufgeworfene Frage, ob die Bolusformation mindestens teilweise unter ariden Klimabedingungen entstand, mit Bestimmtheit bejahen. Als Quelle ihres Quarzmaterials werden aber nicht allein die Kreideablagerungen des westschweizerischen Jura in Betracht zu ziehen sein. U. a. könnte man auch an eine Zufuhr aus dem N (böhmisch-herzynische Masse) denken, wo weite Gebiete bereits seit langem der Abtragung und Denudation unterworfen waren und die transgredierende Oberkreide der Fränkischen Alb ebenfalls sandig ausgebildet ist.

Untere Süsswassermolasse

Das Bild der G. F. wird in dieser Stufe durch den "anguleux"-Quarzkorntyp bestimmt. Die als "émoussés-luisants" gezählten Körner zeigen praktisch noch immer polyedrische Formen, sehr schwache Abrundung ihrer Ecken und Kanten und ebenso geringe Politur. Am häufigsten findet man sie in den relativ gröberen Sandsteinvarietäten der USM. In diesen Fällen scheint die Abrundungsleistung des Wassers offenbar etwas grösser gewesen zu sein. "Ronds-mats"-Körner sind im allgemeinen angebrochen und nur spärlich vertreten. Wo dagegen eine direkte Aufarbeitung der Bolusformation stattgefunden hat (basale USM-Mergel in der Lochmühle), steigt ihre Zahl sprunghaft an. Die äusserst seltenen, meist angebrochenen Glaukonitpartikel wurden aller Wahrscheinlichkeit nach aus älteren marinen Schichten eingeschwemmt.

Insgesamt lassen die Quarzkornanalysen der USM erkennen, dass zur Zeit der Ablagerung dieser Schichten (Aquitanien) die Bedingungen für eine äolische oder aquatische Rundung ihrer Quarzkomponenten nicht, bzw. nur in sehr geringem Mass erfüllt waren. Unter Anwendung der von Cailleux (1942) und Twenhofel (1945) mitgeteilten Erfahrungen über die Bildung gerundeter Sandkörner in Seen wird damit die bekannte Auffassung bestätigt, wonach die USM ein limnischlagunäres Sediment ist.

Obere Meeresmolasse

Mit dem Eintritt mariner Ablagerungsbedingungen ist ein neuer Umschwung in der Typenverteilung der Quarzkörner der G. F. verbunden: Die OMM wird durch ihre reichliche Führung von "émoussés-luisants"-Körnern gekennzeichnet, die oft den Hauptanteil der G. F. bilden. Kornrundung und Politur schwanken naturgemäss zwischen schwachen Anfangsstadien bis zu ideal gerundeten Exemplaren, sind im allgemeinen aber ganz typisch ausgebildet. "Ronds-mats"-Körner treten wieder nur in den Fällen einer Aufarbeitung der Bolusformation merklich in Erscheinung. Es bestätigt sich zudem die in der USM schon angedeutete Abhängigkeit der aquatischen Rundung von der durchschnittlichen Korngrösse des Sedimentes, denn die höchsten "émoussés-luisants"-Werte erreichen regelmässig Grobsande. Besonders das UH ist reich an diesem Typ. – Glaukonit tritt erwartungsgemäss reichlich im Burdigalien und UH auf, während sich im OH bereits eine

Abnahme dieses Gemengteiles erkennen lässt, was die folgende Aussüssung in der OSM ankündigt.

Obere Süsswassermolasse

Im allgemeinen wird die OSM wie die USM vom "anguleux"-Quarzkorntyp bestimmt. Lediglich die aus der OMM überleitenden Schichten besitzen noch eine merkliche Beteiligung an "émoussés-luisants"-Körnern. Lokal finden sich in der Juranagelfluh relativ hohe Anteile des "ronds-mats"-Typs. Dies ist wohl mit der Abräumung der alttertiären Verwitterungsdecke des Schwarzwald-Festlandes und evtl. auch durch Umlagerung von Buntsandsteinmaterial erklärbar, denn nach Cailleux (1952) führt dieser vorwiegend "ronds-mats"-Komponenten.

Allgemein fällt in den Proben der OSM die reichliche Beimischung an Hornstein- und Carneolfragmenten auf. Der spärlich vertretene Glaukonit dürfte wiederum eingeschwemmt sein.

Zusammenfassung

Die stratigraphischen Ergebnisse der vorliegenden geologischen Untersuchungen im Hochrheingebiet sind folgende: Als jüngste Ablagerungen des Mesozoikums treten die sogenannten Ulmensisschichten (ma 4 o²) auf, höhere Malmhorizonte und Kreideablagerungen fehlen. – Die Tertiärsedimente beginnen mit einer wahrscheinlich etwa im Eocän entstandenen fossilen Verwitterungsdecke auf dem Malm, der Bolusformation. – Die darüber folgende Untere Süsswassermolasse – eine Serie meist feinkörniger Sandsteine und bunter Mergel – ist in das Aquitanien zu stellen. Sie besitzt keinerlei Übergänge zum Hangenden. - Die Obere Meeresmolasse beginnt mit einer Folge glaukonitischer Sandsteine des Burdigalien. In ihrem Liegenden lassen sich lokal aufgearbeitete Untere Süsswassermolasse und Malm nachweisen. Das durch alpine Geröllschüttungen gekennzeichnete Helvétien muss in zwei Abteilungen untergliedert werden, die ein stratigraphischer Hiatus (Regression) trennt, der der Bildungszeit des sogenannten "Albsteines" im weiteren Bodenseegebiet entspricht. Im Unteren Helvétien erreichte die OMM-Transgression ihre maximale Ausdehnung. Das Obere Helvétien (Austernnagelfluh usw.) leitet kontinuierlich in die Obere Süsswassermolasse über. – Die tortone Obere Süsswassermolasse tritt im Untersuchungsgebiet in zwei Faziestypen auf: als Juranagelfluh im N (Kalknagelfluhen und -sandsteine, Mergel), südlich des Rheines in normaler subjurassischer geröllfreier Ausbildung (Sandsteine, Mergel).

Die tektonische Formung des Untersuchungsgebietes erfolgte in mehreren Phasen: Eine praeeocäne Kippachse wird durch das Übergreifen der Bolusformation von den jüngsten anzutreffenden Malmschichten im S und SE auf ältere Malmhorizonte im NW markiert. – Praeaquitane Bewegungen liessen tektonische Hoch- und Depressionsgebiete entstehen, die als fossiles Relief von der Unteren Süsswassermolasse eingedeckt wurden. Nordwestlich Kaiserstuhl tritt im Weilergraben ungestörte Untere Süsswassermolasse mit einer Zone dislozierter Malmkalke in Kontakt, die bis südlich des Rheines westlich Kaiserstuhl verfolgbar ist. – Die Heraushebung des nördlichsten Molassesaumes während des intrahelvetischen Hiatus betraf neben dem UG wahrscheinlich auch weitere Teile der subjurassischen Zone. – Die posttortone Jurafaltung bewirkte im mittleren und südlichen Abschnitt des Untersuchungsgebietes die Anlage einiger Mulden und Antiklinalen, deren Bau stark von den älteren, praeaquitanen Strukturen mitbestimmt wird. – Die Existenz hypothetischer intradiluvialer Störungen zwischen Kaiserstuhl und Eglisau lässt sich nicht bestätigen.

Die sedimentpetrographischen Untersuchungen nach der von Cailleux (1942) entwickelten morphoskopischen Quarzkornanalyse befassen sich mit den Tertiärsedimenten. Es wird nachgewiesen, dass die Bolusformation wenigstens zeitweise unter ariden Bedingungen entstanden sein muss, denn sie enthält nur äolisch geformtes Quarzmaterial. Innerhalb der Molassestufen zeigen erwartungsgemäss nur die marinen Horizonte (Obere Meeresmolasse) einen bemerkenswerten Gehalt an aquatisch gerundeten Quarzkörnern, während in den Süsswasserablagerungen ungerundete Quarzpartikel weitaus überwiegen. Es wird darauf hingewiesen, dass die Quarzkornrundungen im Wasser offenbar auch von der durchschnittlichen Korngrösse des betrachteten Sedimentes abhängig ist.

Legende zu den Tabellen der Quarzkornanalyse

N = Anzahl der aus der Probe untersuchten Quarzkörner

r. m. = Prozentualer Anteil der "ronds-mats"-Körner

e. l. – Prozentualer Anteil der "émoussés-luisants"-Körner

ag. = Prozentualer Anteil der "anguleux"-Körner
Die Rubriken r. m., e. l. und ag. beziehen sich jeweils auf die Quarzkornfraktion
0,5-1,0 mm = G. F.

F. F. = Ungefährer Gehalt an gerundeten Körnern in der Fraktion 0,1–0,25 mm. Die Zeichen bedeuten:

++ Sehr häufig

+ Häufig

.. = Deutlich vorhanden, aber nicht häufig

= Selten

(.) = Äusserst selten, nur spurenweise vorhanden

G = Glaukonitgehalt der Fraktion 0,1–0,25 mm. Die Häufigkeitszeichen haben dieselbe Bedeutung wie oben, sind aber nicht als ganz gleichwertig aufzufassen: In der Rubrik F. F. entspricht das Zeichen "+" etwa dem "…" in der Rubrik G.

Die Bemerkung "wie oben" bezieht sich immer auf die zuletzt kommentierte Probe.

Quarzkornanalyse

Tabelle 1: Bolusformation

Lokalität	N	r. m.	e. l.	ag.	F. F.	G	Bemerkungen
Steinbruch Mellikon, E-Flügel, oberste Terasse	22	100,0	-	_	++	-	Bis herab zur 0,1- Fraktion praktisch 100% ig gerundet
Steinbruch Mellikon, Bolustasche im Kalk	73	100,0	_	-	++	_	Wie oben
In der Halden, ESE Rekingen, ca. Kote 480	112	100,0	-	-	++	_	Wie oben
Bachbettverbauung SW Leisehof, Strasse Rümikon-Kaiserstuhl	227	99,6	_	0,4	++	_	Wie oben
Weilergraben: Verwitterungsrinde über Malm an der Strasse E "g" der Signatur Unt. Zelg	75	100,0	_	-	++	_	Wie oben
Fisibach: Bahnüberführung nördlich Lochmühle Reutehof, am Weg nach	0	1	-	-	++	-	Diespärlichen Qu körner sind unter 0,5 mm gross und praktisch alle bis zur 0,1-mm-Fr.ge- rundet
NNW, Tonmergel unter dem Helvétien-Kgl.	0	-	_	_	++	_	Wie oben
Bohnerzausbiss N Linken- hölzle bei Herdern	212	92,4	_	7,6	++		Fremdbeimischung von Gehängeschutt
Napberg, NE Pkt. 600,8	86	94,2	3,5	2,3	++	-	Fremdbeimischung wahrscheinlich
Weilergraben, Hohlweg SE Pkt. 409	73	39,7	23,3	37,0	++	-	Beimischung von Gehängeschutt überwiegt

Tabelle 2: Untere Süsswassermolasse

Lokalität	N	r.m.	e. l.	ag.	F. F.	G	Bemerkungen
Weilerhof bei Bergöschin- gen Bachbett S Pkt. 456 Schuttblock	237	5,9	25,3	68,8		(.)	In der agKlasse meistkeinefrischen Bruchflächen, G angebrochen
Lokalität wie oben, anstehender Sandstein	157	1,3	6,4	92,3		(.)	Wie oben
Thürnenhof NE Lienheim	130	-	11,5	88,5		(.)	Wie oben. Rundung der elKlasse
Bei "W" der Signatur Wickenbühl, NE Lien-							sehr gering
heim	172	-	20,9	79,1	(.)	-	Wie oben
Lehmgrube bei Pkt. 399, S Fisibach	98	-	7,2	92,8	(.)	-	Wie oben

Quarzkornanalyse Tabelle 2 (Fortsetzung)

Lokalität	N	r.m.	e.l.	ag.	F. F.	G	Bemerkungen
Glattmündung: bei "d" der Signatur (Zweidler)- hard	212	0,5	2,4	97,1	-	_	Wie oben
Sandloch SE Schüssel bei Bühl, ca. Kote 550	234	2,1	4,7	93,2	(.)	_	Wie oben
Wislikofen, Wäldchen E Goldenbühl	208	5,4	9,1	85,5	ě	(.)	Wie oben. Einge- schwemmte Malm- reste
Lochmühle N Fisibach, basale Mergel	16	100,0		-	++	-	0,1-Fr. fast voll- ständig gerundet
Bei "b" der Signatur Jukenberg, NE Lienheim	209	5,3	22,9	71,8		(.)	Probe direkt aus dem Liegenden der OMM, leichte Auf- arbeitung möglich

 ${\it Tabelle~3:~Obere~Meeres molasse/Burdigalien}$

Lokalität	N	r.m.	e. l.	ag.	F. F.	G	Bemerkungen
Würenlos (Aargau), Muschelsandstein	368	6,8	82,3	10,9	·	++	agKlasse fast ausnahmslos aus angebrochenen el Körnern zusammengesetzt. Die r mKörner aquatisch überarbeitet, teils angebrochen.
Zweidlen, am Wasserreservoir	251	1,6	77,3	21,1	(.)	++	Wie oben
Glattbrücke Strasse Glattfelden-Schachen	56		85,7	14,3	(.)	+	Wie oben
Schießstand Neerach, Pkt. 431	207	3,9	71,0	25,1	(.)	++	Wie oben
Buchberg bei Eglisau, Vordere Ramsen, E Pkt. 489 dto., ohne Hornsteine	503	0,8 0,9	56,2 66,1	43 ,0 33 ,0	-	++	Praktisch sämtli- che Hornsteinfrag- mente in der ag Klasse
Buchberg bei Eglisau, Vordere Ramsen, E Linde unter dem UH- Geröllhorizont	161	4,3	36,7	59,0		+	In der agKlasse einige angebroche- ne elKörner
Glattfelden: Gross Rebberg, W Pkt. 471	71	1,4	21,1	77,5		, ++	Wie oben
Lochmühle N Fisibach, Transgressionskonglome- rat	256	22,6	7,0	70,4	++	٠	Eingeschwemmtes Bohnerz u. Malm- komponenten

Quarzkornanalyse

 $T\ a\ b\ e\ l\ l\ e\ 4:\ \textit{Obere}\ \textit{Meeresmolasse}\ / \textit{Unteres}\ \textit{Helv\'etien}$

	Ī		ı	ı	1	Ι	
Lokalität	N	r.m.	e.l.	ag.	F.·F.	G	Bemerkungen
Riedern, Graupensand- grube Kätzler, polygenes Kon-	230	5,2	74,4	20,4	• •		Die meisten Körner der agKlasse sind angebrochene e. l.
glomerat	215	7,9	79,1	13,0			Wie oben
dto., Graupensandpartie	358	2,2	87,2	10,6		(.)	Wie oben
Benken (Kt. Zürich) Graupensandgrube: oben	300	2,3	80,4	17,3			Wie oben
Mitte	234	?	70,1	29,9			Wie oben. rm
unten .	346	?	82,1	17,9		+	Klasse nicht
Birnberg bei Griessen, Weg zum Pkt. 617	205	7,8	72,7	19,5			erkennbar Wie Riedern
Hornbuck bei Riedern	207	16,4	60,4	23,2		_	Wie oben
Alkeimerholz, Seilbahn- fundament NE des Steiggrabens	262	19,1	67,2	13,7			Wie oben, reich- lich Glimmer führend
Küssaburg, Schuttblock an der Strasse nach Bechtersbohl	384	13,0	75,0	12,0		++	Wie Riedern. Die meisten Körner der rmKlasse angebrochen
Lachen bei Reckingen, SW-Hang, ca. Kote 515	275	3,6	38,2	58,2		٠	Wie oben
Kohlgruben bei Reckingen unter dem OH-Konglome- rat dto., basaler Sandstein in der Runse	152 199	3,3	23,0 17,1	73,7 82,9	(.)	+	Glimmerreich In der 0,1-Fr. ziemlich häufig gelbe durchsichtige Körner
In den Mösern bei Reckingen, Grobsand- linsen	391	6,7	57,0	36,3	٠	•••	In der agKlasse teils erste Kanten- rundung angedeu- tet, teils angebro- chene elKörner
Bercherhof, Turritellen- kalk	287	8,4	82,9	8,7		++	Wie oben
Bergöschingen: bei Pkt. 532	291	2,1	25,0	72,9		+	Wie oben
Häuserhof bei Albführen, SE "L" der Signatur Loh	258	6,2	24,0	69,8		+	Wie oben
Buchberg bei Eglisau, Ramsen, E Linde	223	3,6	38,1	58,3		+	Wie oben
Haberstall bei Zweidlen	228	3,1	76,7	20,2		+	Praktisch alle ag Körner sind angebrochene el Körner

Quarzkornanalyse Tabelle 4 (Fortsetzung)

Lokalität	N	r.m.	e.l.	ag.	F.F.	G	Bemerkungen
Lettenbuck bei Wisliko- fen	262	6,5	65,3	28,1		٠	Wie oben
Schurlirain im Ehthal, bei Böbikon	209	2,9	58,9	38,2		٠	Viele agKörner sind angebrochene elKomponenten
Buchhalde bei Vogelsang, Grobsand	412	10,9	60,7	28,4		•	Wie oben
Hünklergraben NE Stetten, Konglomeratblock im OH dto., ohne Hornsteine	123 31	18,7 74	8,9 19	72,4 7	++		Hornsteinfragmente der agKlasse, Beteiligung 75% an N.

Tabelle 5: Obere Meeresmolasse/Oberes Helvétien

Lokalität	N	r. m.	e. l.	ag.	F. F.	G	Bemerkungen
Reutehof, Weg nach NNW Richtung Vieselhof	117	23,1	38,4	38,4	•	,	Zerfallende Kristal- lingerölle erhöhen evtl. die Zahl der agKörner
Küssnach: Sommerhalde, S Pkt. 551	232	1,7	43,1	55,2			Die agKlasse ent- hält z. T. angebro- chene elKörner
Riedhalde, Sandloch am Weg nach Ohmrütte	231	4,3	51,5	44,2			Wie oben
In den Kohlgruben bei Reckingen, Verwitterungs- horizont	200	7,5	51,5	42,0		(.)	Wie oben
Kiesgrube 250 m SW Sandhof bei Lienheim	560	7,0	71,4	21,6		••	Wie oben. Horn- steine in der ag Klasse
Sandgrube 450 m NW Sandhof bei Lienheim	400	4,3	59,2	36,5		+	In der 0,1-Fr. verkieselte Seeigel- stachelreste (Malm)
Bercherhof, über dem Turritellenkalk	230	10,4	51,3	38,2		: •11	Wie Küssnach
Kiesgrube bei Hau, SW Bühl, Hangendsande	125	1,6	29,6	68,8			Wie oben
Buchberg bei Eglisau, Vordere Ramsen, Sand- linse im OH-Kgl.	125	2,4	40,8	56,8		•••	Wie oben
Steinbruch Im Berg, E Tegerfelden	108	25,9	21,3	52,8			Wie oben
Auf Nurren, Pkt. 504,9 bei Rekingen	29	3	14	83	••	٠	Wie oben

Quarzkornanalyse Tabelle 5 (Fortsetzung)

Lokalität	N	r.m.	e. l.	ag.	F. F.	G	Bemerkungen
Auf Nurren, 200 m E "W" der Signatur Weidenhau, alter Weg nach Böbikon	284	5,3	27,4	67,3	•		Wie oben
Bannholz, Weg von Siglis- torf zum Tägerholz, Sande über dem OH-Kgl.	382	6,0	47,7	46,3			Wie oben
Haberstall bei Zweidlen, Hangendsande	225	3,1	39,5	57,4		* *	Wie oben

Tabelle 6: Obere Süsswassermolasse

Lokalität	N	r. m.	e.l.	ag.	F. F.	G	Bemerkungen
In den Kohlgruben bei Reckingen, Sande über dem Verwitterungshori- zont	60	8	13	79	٠	_	Hornsteinfragmen- te finden sich fast immer in der ag Klasse
In den Mösern bei Reckingen, höchste aufgeschlossene Sande	104	1,9	35,6	62,5	_	-	Wie oben
Hiltenberg bei Station Eglisau, 150 m NNE Hof Löchli	352	1,4	23,1	75,6	(.)	(.)	Wie oben
Haggenberg bei Raat	111	-	34,2	65,8	(.)	(.)	Fast ausschliess- lich Hornsteinfrag- mente, die weder frische Bruch- flächen noch gute Rundung zeigen
Haggenberg NW Eichhalde, Pkt. 487	247	1,2	4,0	94,8		(.)	58% Hornstein-
dto., ohne Hornsteine	105	3	8	89			fragmente
Täglimoss S Siglistorf	214	0,9	5,6	93,5	(.)	()	60% Hornstein-
dto., ohne Hornsteine	86	2	11	87			fragmente
Küssaburg bei Bechters- bohl, Juranagelfluhsdst. beim Hinteren Schlosshof	92	8,7	4,3	87,0	+	()	24% Hornstein- fragmente
dto., ohne Hornsteine	70	10	6	84			Hagmente
Steinreute NW Lienheim, Juranagelfluh	226	39,8	1,8	58,4	+	(.)	Wie Kohlgruben
Ehem. Stbr. E Dachshof bei Bergöschingen, Jura- nagelfluh	318	2,2	0,6	97,2		(.)	52% Hornstein- fragmente
dto., ohne Hornsteine	154	3,9	1,3	94,8			Hagmente

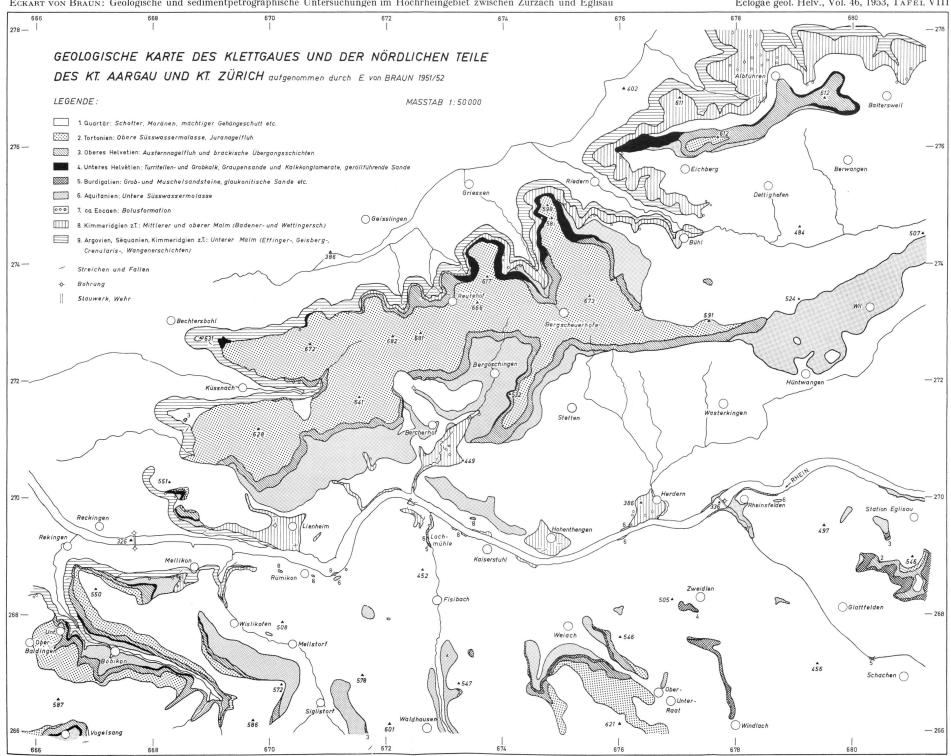
Tabelle 7: Die Malmstratigraphie im Aargau, Klettgau und in Schwaben

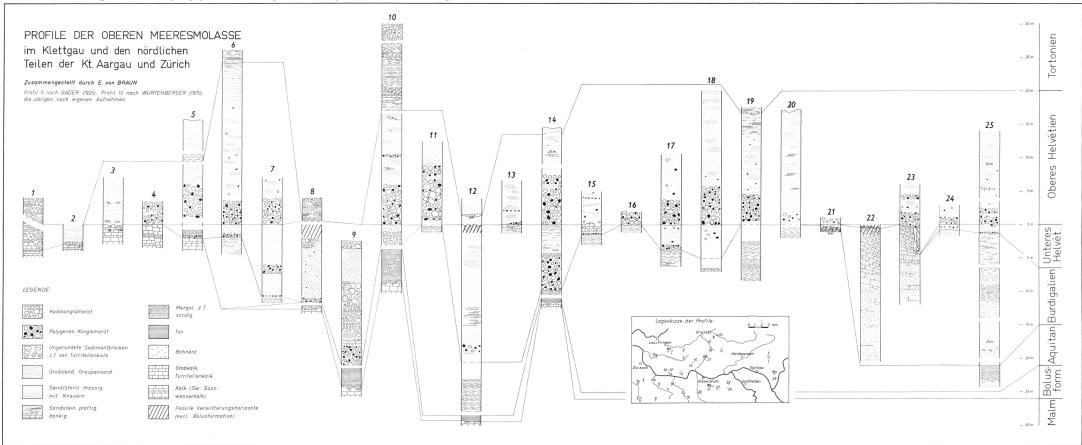
	Aargau			Klettgau – Schwaben
			ma 6	Plattenkalke, hangende Bankkalke
andier	ζ		ma 5	Obere Malmmergel, Zementmergel
Portk	Schaffhauserschichten γ Schaffhauserschichten		ma 4 o²	Ulmensisschichten (wohlgebankte Kalke mit Mergelzwischenlagen), Eichbohl- breccie
ne- en	ε	Westingson highton	ma 4 o ¹	Massenkalke mit Kieselknauern
Kimme- ridgien	δ	Wettingerschichten	ma 4 u	Quaderkalke
, J	γ	Badenerschichten	ma 3	Mittlere Malmmergel
		Letzischichten	-	
Séquanien	β	Wangenerschichten	ma 2	Wahlacahishtata Kalla
Séq	ρ	Crenularisschichten	ma z	Wohlgeschichtete Kalke
		Geisbergschichten		
Argovien		Effingerschichten	ma 1	Impressamergel
Argo	α	Birmensdorferschichten	b	Transversariusschichten

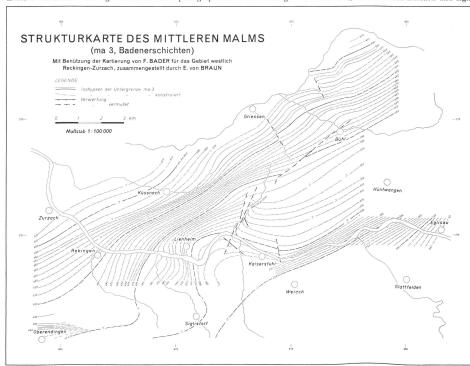
Tabelle 8:

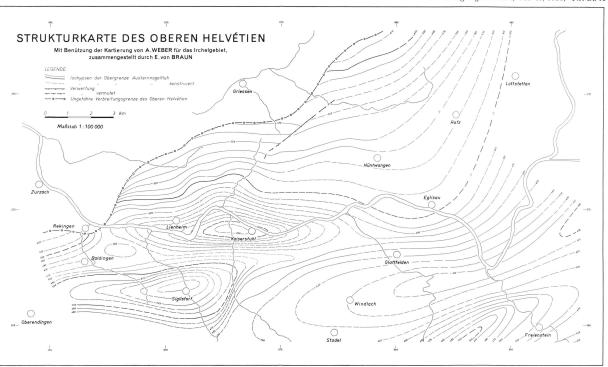
Die Stratigraphie der Oberen Meeresmolasse am Hochrhein und in den benachbarten Gebieten

Tortonien			Helvétien			⊢ ⊶ Burdig.		Aquit.	Malm
Bodensee und Schwaben	 	MSO	Kirchberger Schichten Grimmelfinger Schichten	Albstein K	Deckschichten Baltringer Schichten, Bodmansande	Sandschiefer und Leistensande M 2	Heidenlöcherschichten M 1	USM	Malm
Randen	Schalch, Schaad, K	Juranagelfluh	Kirchberger Schichten	Knollenmergel	Polygener Geröllhorizont			Malm	
Klettgau und	Hochrheingebiet von Braun	Juranagelfluh, OSM	Oberes Helvétien: Austernnagelfluh	gshorizonte	Unteres Helvétien: Kalknagelfluh, Graupensande, Turritellenkalk, tieferer polyge- ner Geröllhorizont	Microcodienkalk und Grobkalk der Küssaburg	Glaukonitsandsteine, Grobsandsteine von Zweidlen und Weiach	USM	Malm
Aargau	Brandenberger, Niggli	Juranagelfluh, OSM	Austernnagelfluh, Polygene Nagelfluh	Verwitterungshorizonte	"Transgressives Vindobonien"	"Belpbergschichten?"	Cardienschichten Muschelsandstein	USM	Malm


Literaturverzeichnis


- Amsler, A. (1915): Tektonik des Staffelegg-Gebietes und Betrachtungen über Bau und Entstehung des Jura-Ostendes. Eclogae Geol. Helv., 13.
- ARKELL, W. J. (1946): Standard of the European Jurassic. Bull. Geol. Soc. America. 57.
- Bader, F. (1925): Beiträge zur Geologie des nordöstlichen Tafeljuras zwischen Aare und Rhein. Diss. Zürich.
- Bendel, L. (1923): Geologie und Hydrologie des Irchels. Diss. Zürich.
- Bentz, A. (1949): Bau und Erdölhöffigkeit des Molassetroges von Oberbayern und Oberschwaben. Erdöl und Kohle 2.
- Bersier, A., & Badoux, H. (1937): Une formation subdésertique dans le Sidérolithique du Mormont (Vaud). Eclogae Geol. Helv. 30.
- Bersier, A. (1938): Traces écliennes du continent antémolassique dans les premiers sédiments de la molasse suisse. Acad. Sc. C. R. 207.
- Brandenberger, E. (1923): Bemerkungen zur Stratigraphie der Molasse des unteren Limmat-Tales. Mitt. Aargauische naturf. Ges. 16.
- (1926): Zur Stratigraphie und Tektonik der Molasse des östlichen Aargaues. Eclogae Geol. Helv. 9.
- (1929): Über die Zweiteilung der marinen Molasse des zentralen schweizerischen Molasselandes.
 Eclogae Geol. Helv. 22.
- Braun, E. v. (1953): Geologische und sedimentpetrographische Untersuchungen im Hochrheingebiet zwischen Zurzach und Eglisau. Diss. (Manuskript) Basel.
- Buxtorf, A. (1916): Prognosen und Befunde beim Hauensteinbasis- und Grenchenbergtunnel und die Bedeutung der letzteren für die Geologie des Juragebirges. Verhall. Naturf. Ges. Basel 27.
- Buxtorf, A., & Vonderschmitt, L. (1938): Bericht über die geologischen Verhältnisse der schweizerischen Rheinuferstrecke oberhalb Rümikon. Unveröffentlichtes Gutachten.
- Cailleux, A. (1942): Les actions éoliennes périglaciaires en Europe. Mém. Soc. Géol. France 21, mém. no. 46.
- (1952): Morphoskopische Analyse der Geschiebe und Sandkörner und ihre Bedeutung für die Paläoklimatologie. Geol. Rdsch. 40.
- Denzler, H. (1847): Über die örtlichen Erdbeben zu Eglisau. Mitt. Naturf. Ges. Zürich 1, No. 2.
- Erb, L., & Spitz, W. (1931): Geologische Spezialkarte von Baden. Blatt Hilzingen (Nr. 146) und Erläuterungen.
- ESCHER V. D. LINTH, A. (1847): Bemerkungen über das Molassegebilde in der östlichen Schweiz. Mitt. Naturf. Ges. Zürich, No. 3.
- Gerber, E. (1928): Der Muschelsandstein des Biembachgrabens im Unteremmental und dessen stratigraphische Bedeutung. Mitt. Naturf. Ges. Bern.
- GÖHRINGER, A. (1915): Geologische Spezialkarte des Grossherzogtums Baden. Blatt Lienheim (Nr. 169) und Erläuterungen.
- HARRASSOWITZ, H. (1930): Fossile Verwitterungsdecken. In: Handbuch der Bodenlehre (herausgegeben von E. Blanck). 4.
- Haus, H. A. (1950): Zur paläogeographischen Entwicklung des Molassetroges im Bodenseegebiet während des mittleren Miozäns. Mittbl. Bad. Geol. L.A.
- Hug, J. (1907): Geologie der nördlichen Teile des Kantons Zürich und der angrenzenden Landschaften. Beitr. Geol. Karte Schweiz [N. F.], 15. Dazu: Geologische Spezialkarte der Schweiz Nr. 36, Kaiserstuhl.
- HÜRZELER, J. (1932): Die Helvétien-Tortonien-Grenze im aargauischen Mittelland. Eclogae Geol. Helv. 25.
 - (1946): Säugetierpaläontologische Bemerkungen zur Abgrenzung und Unterteilung des Aquitanien. Eclogae Geol. Helv. 38.
- Jahresberichte des Erdbebendienstes der Schweizerischen meteorologischen Zentralanstalt.
- Kiderlen, H. (1931): Beiträge zur Stratigraphie und Paläogeographie des Süddeutschen Tertiärs. N. Jb., Min. etc. Abt. B, Beil., 66.


- Kraftwerk Eglisau der nordostschweizerischen Kraftwerke, Das: Schweiz. Bauzeitung 90, Juli-August 1927. Erweiterter Sonderdruck.
- Letsch, E. (1899): Die schweizerischen Molassekohlen östlich der Reuss. Beitr. Geol. Schweiz, [Geotechn. Serie 1].
- Montandon, F. (1943): Les séismes de forte intensité en Suisse. Revue pour l'étude des calamités. Bull. Union Intern. Secours.
- Moos, A. v. (1932): Beiträge zur Stratigraphie und Lithologie der marinen Molasse zwischen der Limmat und der Thur. Diplomarbeit E.T.H. Zürich.
 - (1935): Sedimentpetrographische Untersuchungen an Molassegesteinen. Schweiz. Min. Petr. Mitt. 15.
 - (1936): Zur Petrographie der Quarzsande und mageren Huppererden der Bohnerzformation im schweizerischen Juragebirge. Schweiz. Min. Petr. Mitt. 16.
- Mösch, C. (1856): Das Flözgebirge im Kanton Aargau. I. Theil.
 - (1867): Geologische Beschreibung des Aargauer-Jura und der nördlichen Gebiete des Kantons Zürich. Beitr. Geol. Karte Schweiz 4.
- MÜHLBERG, F. (1902): Erläuterungen zur geologischen Karte der Lägernkette (Spezialkarte 25). Eclogae Geol. Helv. 7.
- (1905): Erläuterungen zur geologischen Karte des unteren Aare-, Reuss- und Limmat-Tales (Spezialkarte 31). Eclogae Geol. Helv. 8.
- (1908): Erläuterungen zur geologischen Karte der Umgebung von Aarau (Spezialkarte 45 Geol. Karte Schweiz).
- Niggli, P. (1912): Erläuterungen zur geologischen Karte von Zofingen (Spezialkarte 65 Geol. Karte Schweiz).
- Notz, R. (1924): Beiträge zur Geologie der Ost-Lägern. Diss. Zürich.
- PENCK, A., & BRÜCKNER, E. (1909): Die Alpen im Eiszeitalter.
- PFANNENSTIEL, M. (1931): Die Fauna der Kirchberger Schichten von Lohn am Randen. Sitzgsber. Heidelbg. Akad. Wiss., math.-natw. Kl.
- Ries, H., & Conant, G. D. (1931): The character of sand grains. Transact. Amer. Foundrymens Assoc. 39.
- Rutsch, R. (1933): Beiträge zur Geologie der Umgebung von Bern. Beitr. Geol. Karte Schweiz [N. F.], 66.
- Rutte, E. (1952): Grobsand und Muschelsandstein in der miozänen Meeresmolasse des nordwestlichen Bodenseegebietes. N. Jb. etc. Abt. B.
- Schaad, E. (1908): Die Juranagelfluh. Beitr. Geol. Karte Schweiz [N. F.], 22.
- Schalch, F. (1916): Geologische Spezialkarte des Grossherzogtums Baden. Blatt Wiechs-Schaffhausen (Nr. 145) und Erläuterungen.
- (1921): Geologische Spezialkarte von Baden. Blatt Jestetten-Schaffhausen (Nr. 158) und Erläuterungen.
- (1922): Geologische Spezialkarte von Baden. Blatt Griessen (Nr. 157) und Erläuterungen.
- Scheid, W. (1929): Über die Tertiärpflanzen von Baltersweil, Dettighofen und Bühl im Klettgau. Mitt. Bad. Geol. L. A. 10.
- Schill, J. (1867): Geologische Beschreibung der Umgebung von Waldshut. Beitr. z. Statistik d. inn. Verwaltg. d. Grhzgtm. Baden 23.
- Schuppli, H. M., & Hofmann, F. (1952): Erdölgeologische Untersuchungen in der Schweiz. Ölgeologische Probleme des Mittellandes östlich der Linie Solothurn-Thun. Beitr. Geol. d. Schweiz, Geotechn. Serie 26.
- Stehlin, H. G. (1914): Übersicht über die Säugetiere der schweizerischen Molasseformation, ihre Fundorte und ihre stratigraphische Verbreitung. Verh. Naturf. Ges. Basel 25.
- THIEL, G. A. (1940): The relative resistance to abrasion of mineral grains of sand size. Journ. Sedim. Petr. 10, 3.
- Tobien, H. (1947): Die Gliederung des oberen Malms im nördlichen Hegau. Mittbl. Bad. Geol.
- TWENHOFEL, W. H. (1945): The rounding of sand grains. Journ. Sedim. Petr. 15, 2.


- Weber, A. (1928): Die Glazialgeologie des Tösstales und ihre Beziehungen zur Diluvialgeschichte der Nordostschweiz. Mitt. Naturw. Ges. Winterthur.
- Weiger, K. (1908): Beiträge zur Kenntnis der Spaltenausfüllungen im Weissen Jura auf der Tübinger, Uracher und Kirchheimer Alb. Jahresber. Ver. vaterl. Naturkd. Württ.
- Würtenberger, F. J., & T. (1862): Verzeichnis von fossilen Pflanzenresten aus den Tertiärgebilden des Klettgaus. N. Jb. Min. etc.
 - , F. J., & L. (1865): Der weisse Jura im Klettgau und angrenzenden Randengebirge. Verh. naturw. Ver. Karlsruhe 2.
 - , F. J. (1870): Die Tertiärformation im Klettgau. Ztsch. Dtsch. Geol. Ges. 22.

Ein erweitertes Literaturverzeichnis findet sich bei E. v. Braun: Geologische und sedimentpetrographische Untersuchungen im Hochrheingebiet zwischen Zurzach und Eglisau, Diss. Basel, 1953 (Manuskript).

