Zeitschrift: Eclogae Geologicae Helvetiae

Herausgeber: Schweizerische Geologische Gesellschaft

Band: 45 (1952)

Heft: 2

Artikel: Geologie des Wistenlacherberges (Mont Vully) und der Umgebung von

Murten (Kt. Freiburg)

Autor: Ramseyer, Rudolf Kapitel: II: Stratigraphie

DOI: https://doi.org/10.5169/seals-161576

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

In der geographischen Arbeit Etude monographique du Vully fribourgeois von P. Zimmermann (1932) finden wir einige neue Beobachtungen: An der Strasse Sugiez-Plan-Châtel entdeckte er auf 604 m eine Mergelschicht mit Heliciden und Planorben und zieht an dieser Stelle die Grenze zwischen Süsswassermolasse und mariner Molasse. In dem darüber liegenden Sandsteinkomplex fand er in Mergelnestern und im Sandstein selbst guterhaltene Pflanzenreste. In Anlehnung an die Untersuchungen von ARN. HEIM (1919) glaubt ZIMMERMANN, am Wistenlacherberg W-E streichende Antiklinalen und Synklinalen zu erkennen. Dagegen wies J. Kopp (1935) eine parallel dem Jura verlaufende Synklinale mit einer axialen Depression nach; der Wistenlacherberg würde also eine Synklinalwanne darstellen. Im Muschelsandstein von Sur-le-Mont im Westen und Plan-Châtel im Osten sieht Kopp zwei verschiedene Vorkommen und nimmt ein Auskeilen der westlichen Platte gegen Osten an, da im Gelände keine Anhaltspunkte für eine Flexur oder Verwerfung zu finden seien. Aus lithologischen Erwägungen lässt er das Burdigalien bei Sur-le-Mont einige Meter, bei Plan-Châtel dagegen 40-50 m unter dem Muschelsandstein beginnen.

In einer Mitteilung über eine fossilführende Schicht am Wistenlacherberg versucht P. Zimmermann (1935), entgegen seiner früheren Auffassung, nachzu-

weisen, dass das Burdigalien erst mit dem Muschelsandstein beginne.

Die Koppsche Auffassung der tektonischen Verhältnisse im Seeland wird von W. Staub (1938) in seiner Arbeit über die Molasse des Berner Seelandes geteilt. Zwischen Vallamand und Guévaux stellt er ein axiales Einfallen von 1–2° fest und nimmt an, der Wistenlacherberg liege in einer Axialdepression, während das Grosse Moos eine Axialkulmination darstelle.

In einer Arbeit über die Abgrenzung und Unterteilung des Aquitanien erwähnt J. Hürzeler (1946) eine kleine Fauna mit Cricetodon infralactorensis, Prolagus vasconiensis und Lagopsis Cadeoti, die er gemeinsam mit R. Rutsch an der Strasse Sugiez-Plan-Châtel auf 627 m entdeckt hatte. Nach Hürzeler ist

diese Fauna wahrscheinlich bereits zum Burdigalien zu rechnen.

Als neueste Publikation über unser Gebiet können wir die Ölgeologischen Untersuchungen im Schweizer Mittelland zwischen Solothurn und Moudon von H. M. Schuppli (1950) erwähnen. In dieser Arbeit sind die Aufnahmen verarbeitet, die in den Jahren 1934 bis 1937 im Auftrag der Eidgenössischen Zentralstelle für Arbeitsbeschaffung unter Leitung der 1935 gegründeten Petroleumexpertenkommission ausgeführt wurden. Aus unserem Gebiete liegen geologische Originalaufnahmen im Maßstab 1:25 000 und Berichte von J. Kopp und W. Staub vor, die in den Archiven der Geotechnischen Kommission der Schweizerischen Naturforschenden Gesellschaft in Zürich aufbewahrt werden.

II. Stratigraphie

A. LITHOLOGIE DER SEDIMENTE

1. Einleitung

Bei der Aufnahme der stratigraphischen Detailprofile zeigte sich einmal mehr, dass mit Hilfe der üblichen, qualitativ definierten Bezeichnungen die lithologische Charakterisierung der Sedimente oft recht willkürlich und subjektiv ausfällt. Schon V. Gillieron (1885) bemerkt in seiner Beschreibung der "Unteren Süsswassermolasse": «Entre la marne et la molasse il y a tous les passages possibles,

et, pour désigner ces variétés intermédiaires, on hésite souvent entre le nom de molasse marneuse et celui de marne sableuse.»

In der Tat werden für ein und dasselbe Sediment verschiedene Bezeichnungen verwendet, und umgekehrt findet man unter dem gleichen Namen oft die verschiedensten Sedimente vereinigt. So umfangreich und detailliert die Profilbeschreibungen erscheinen mögen, ist ihr objektiver Gehalt doch meist recht gering. Nun entscheidet aber gerade die Objektivität der verwendeten Begriffe über die Eignung und den Wert solcher Beschreibungen für die Mitteilung, Vergleiche und das Erkennen eventuell vorhandener Beziehungen im Hinblick auf Fragen der Sedimentgenese und indirekt auch des Alters.

Die für unser Gebiet in Frage kommenden lithologischen Bezeichnungen lassen sich auf die drei Grundkomponenten Kalk, Sand und Ton zurückführen. Begriffe wie sandige Mergel oder mergelige Sandsteine, Kalkmergel, kalkarme Sandmergel, Mergelsandsteine, mergeliger Silt, siltiger Mergel, mergeliger Ton, Tonmergel, siltiger Mergelton, siltig-mergeliger Sand usw. bedeuten im Grunde nichts anderes als verschiedene, nicht näher definierte Verhältnisse der erwähnten Komponenten. Mit diesen "Begriffen", die sich überschneiden und überlagern und je nach der subjektiven Beurteilung verschieden angewendet werden, ist der Molassestratigraphie wenig gedient.

E. Geiger (1943) hat die Sedimente der thurgauischen Oberen Süsswassermolasse (Tortonien) nach den Komponenten Kalk, Sand (Körner > 0,05 mm) und Ton (Fraktion < 0,05 mm) mit Hilfe der Dreieckdarstellung charakterisiert. Diese Darstellung ermöglicht eine rasche und zuverlässige Orientierung über die Mannigfaltigkeit der Sedimente und eignet sich sehr gut für Vergleiche mit Sedimenten aus andern Molassegebieten und -Stufen. Dagegen sind die von E. Geiger im Felde verwendeten Namen für die einzelnen Sedimenttypen für diese Zwecke wenig geeignet, da die Projektionspunkte dieser Typen in der Dreieckdarstellung zum Teil ganz beträchtlich streuen und sich überlagern.

Dieses Beispiel ist typisch für die heutige Situation: Auf der einen Seite die systematischen, an Laboratoriumsuntersuchungen gebundenen Bezeichnungssysteme und Darstellungsmethoden (vgl. zum Beispiel P. Niggli, 1935; J. M. Trefethen, 1950), auf der andern Seite aber eine grosse Zahl mangelhaft definierter Namen, aus welchen der Feldgeologe bei den Profilbeschreibungen nach individuellem Gutdünken seine Auswahl trifft.

Wir haben deshalb versucht, auf Grund definierter Mengenverhältnisse von Karbonat, Sand und Silt-Ton eine einheitliche, objektive Feldnomenklatur für die vorkommenden Sedimente zu erhalten.

2. Sedimentpetrographische Untersuchungen

a) Probeentnahme

Aus einem lückenlosen, 140 m mächtigen Profil der "Unteren Süsswassermolasse" (106 m) und der "Oberen Meeresmolasse" (34 m), welches auf der Nordseite des Wistenlacherberges östlich Bois-du-Mont (vgl. Tafel VIII) in einem tiefen Bacheinschnitt aufgeschlossen ist, wurde von jeder makroskopisch verschieden erscheinenden Schicht je nach der Mächtigkeit eine oder mehrere Proben geschlagen, im Gesamten über 250 Proben. Bei Schichten von grösserer Mächtigkeit haben wir in der Regel eine Probe von der Basis, eine oder mehrere Proben aus den mittleren Partien und eine Probe vom Dach der Schicht entnommen. Dabei wurde darauf geachtet, möglichst frisches Material in genügender Menge (300 bis 400 g) einzusammeln.

b) Vorbehandlung der Proben

Die Proben wurden nach einem von N. M. Layne, Jr. (1950, S. 21) angegebenen Verfahren aufbereitet. Danach wird das bei 110° C getrocknete Sediment mit Benzin (oder Gasolin) übergossen, welches nach 10 bis 15 Minuten wieder abgeschüttet wird. Gewöhnliches Leitungswasser wird nachgefüllt, und sofort tritt bei den Proben mit vorwiegend tonigem Bindemittel oder einem grossen Silt-Ton-Gehalt (100 bis ca. 80%) ein rascher und vollständiger Zerfall ein, wobei die ursprüngliche Form der Mineralkörner erhalten bleibt. Bei den übrigen Proben ist der Zerfall umso unvollständiger, je grösser der Karbonatgehalt (als Bindemittel) und je kleiner der Silt-Ton-Anteil ist. Diese Proben mussten ein zweites Mal behandelt, eventuell vorsichtig zerdrückt werden.

Das Wasser wird dann eingedampft und die Probe bei 110° C bis zur Gewichtskonstanz getrocknet. Da das Material bei diesem Prozess oft wieder zusammenbackt, wird die Probe nach dem Trocknen mit Vorteil gesiebt.

c) Bestimmung des Karbonatgehaltes

25 g des vorbehandelten Materials werden etappenweise mit 1:5 verdünnter Salzsäure versetzt und während 10 Minuten unter kräftigem Umrühren auf ca. 70° C erhitzt. Nachdem man durch Zugabe von wenig Säure die Vollständigkeit des Auflösungsprozesses geprüft hat, wird die Lösung abfiltriert, der Rückstand getrocknet und aus der Differenz Einwaage minus Rückstand der Karbonatgehalt berechnet.

Wie die quantitativen Analysen der Filtrate von 25 Proben ergaben, handelt es sich bei diesem Karbonatgehalt im Durchschnitt um 95% CaCO₃. Der Rest

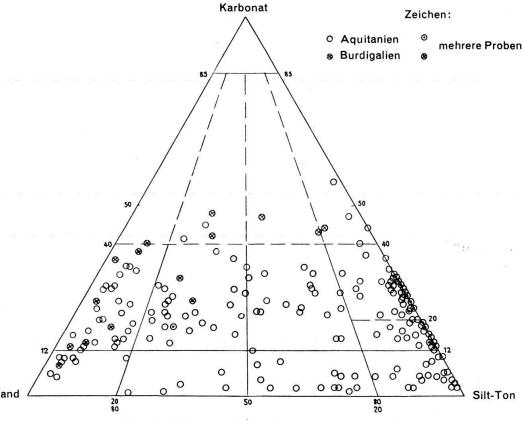


Fig. 2. Karbonat-Sand-Silt-Ton-Dreieck.

von 5% besteht zur Hauptsache aus Eisen und Magnesium (zum Beispiel in karbonatischer, silikatischer oder sulfidischer Bindung).

d) Bestimmung des Sand- (Grobsand und Feinsand) und des Silt-Ton-Gehaltes

Der getrocknete und gewogene Rückstand der Karbonatbestimmung wird auf ein Sieb von θ , θ 6 mm Maschenweite gespült und so lange mit fliessendem Wasser behandelt, bis alle Partikel < 0.06 mm durchgespült sind. Wenn man das Sieb in eine Porzellanschale stellt, kann leicht kontrolliert werden, ob dies tatsächlich der Fall ist. Die auf dem Sieb zurückgebliebene Fraktion wird bei 110° C getrocknet und gewogen. Damit ist der Sandgehalt der Probe bestimmt. Die Differenz Einwaage minus Karbonatgehalt minus Sandgehalt ergibt den Silt-Ton-Anteil.

Ist das Verhältnis Sand zu Silt-Ton grösser als 80:20, bestimmen wir mit dem 0,2-mm-Sieb noch den Grobsand- (Fraktion > 0,2 mm) und den Feinsand-Anteil (Fraktion < 0,2 mm) der Probe.

Die Grenze Sand/Silt-Ton wird je nach Korngrössenskala verschieden festgelegt. Nach P. Niggli (1935) bedeutet die Bezeichnung Silt einen Sammelbegriff für die Feinsand- (0,2–0,02 mm) und die Grobschluff-Fraktion (0,02 bis 0,002 mm). In der Skala von C. K. Wentworth (1922) liegt die Grenze bei 0,062 mm. Wir haben aus Zweckmässigkeitsgründen und in Anlehnung an bestimmte, in Amerika im praktischen Gebrauch stehende Klassifikationsschemata die Grenze bei 0,06 mm gewählt.

Die Ergebnisse der unter den Abschnitten c und d beschriebenen Bestimmungen sind in den Figuren 2 und 3 in gleichseitige Dreiecke projiziert, und in Tafel IX haben wir das ganze Profil dargestellt.

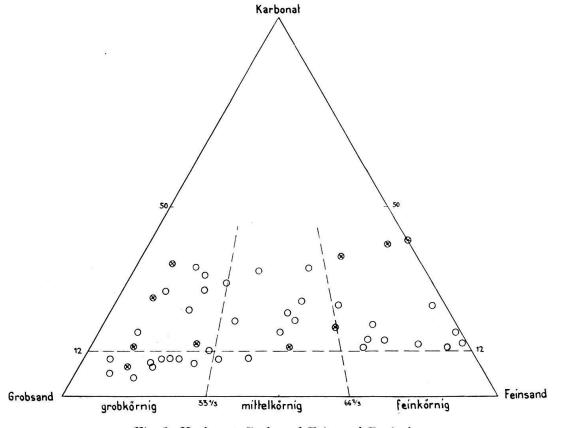


Fig. 3. Karbonat-Grobsand-Feinsand-Dreieck. Zeichen: Siehe Figur 2.

e) Einteilung und Benennung der Sedimente

Der Name eines Sedimentes kann durch bestimmte Mengenverhältnisse von Sand zu Silt-Ton bzw. Grobsand zu Feinsand (+ Silt-Ton) und den Karbonatgehalt festgelegt werden (vgl. Tabelle 1 und Figur 4).

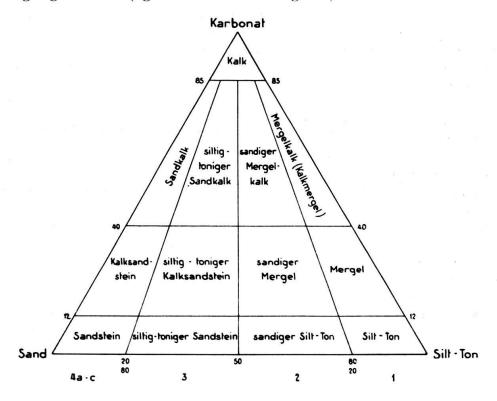


Fig. 4. Einteilung und Benennung der Sedimente.

Das Mengenverhältnis Sand zu Silt-Ton bestimmt die Struktur des Sedimentes. Durch das Festlegen der aus Tabelle 1 und Figur 4 ersichtlichen Grenzverhältnisse erhalten wir vier Strukturklassen, wobei die 4. Klasse noch in die drei Unterklassen 4a-c aufgeteilt wird. Dies ergibt uns eine erste Einteilung der Sedimente von "Fein" zu "Grob". In die Klasse 1 wären also die feinsten, in die Klasse 4c die gröbsten Sedimente einzuordnen.

Dazu kommt noch die Einteilung nach dem Karbonatgehalt in die drei Gruppen: 0–12, 12–40 und 40–85% Karbonat. Es wird sich noch zeigen, warum wir die Grenzen bei diesen Werten gewählt haben.

Die Namen sind den bisher üblichen weitgehend angepasst. Die verwendeten Bezeichnungen sind aber, im Gegensatz zu den bisher für Molassesedimente gebräuchlichen, durch Zahlenwerte für definierte Komponenten genau präzisiert. Es wird zum Beispiel nicht mehr möglich sein, den Begriff Mergel für alle feineren Varietäten mit oder ohne Kalkgehalt zu verwenden. Viele nichtssagende Kombinationen konnten weggelassen werden.

Bestimmte Beimengungen von Sand zu den Silt-Tonen, Mergeln und Mergelkalken werden durch das Adjektiv sandig, bestimmte Beimengungen von Silt-Ton zu den Sandsteinen, Kalksandsteinen und Sandkalken durch das Adjektiv siltig-tonig ausgedrückt.

Die konsequente Anwendung dieser Begriffe gewährleistet eine genügende Differenzierung und, in Verbindung mit den übrigen lithologischen Charakteristika, eine objektive Beschreibung unserer Molasseprofile. Tabelle 1

Einteilung und Benennung der Molassesedimente

(Die fetten Zahlen geben die Grenzverhältnisse von Sand zu Silt-Ton resp. Grobsand zu Feinsand [+ Silt-Ton] für die einzelnen Strukturklassen, bezogen auf 100)

	GEHALT			40-55%			Sandkalk	(Kalksand)			Siltig-toniger	Sandkalk	Sandiger	Mergelkalk	Mergelkalk	(Kalkmergel)	
Einteilung nach dem KARBONATGEHALT			ach dem KARBONAT			grobkörnig mittelkörnig Kalksandstrinig feinkörnig		Siltig-toniger Kalksandstein		Sandiger Mergel		,	Mergel				
Einteilung nac		7001	0-12%		grobkörnig	tein mittelkämie	apur	Š feinkörni <i>a</i>	9	Siltig-toniger	Sandstein	Sandiger	Silt-Ton	E i.	Silt-1on		
		Struk			o p 4					•	7						
SILT.	TON		9	 	1	ro	õ	10	10	50	20	20	50	08	80	100	100
	Feinsand	limeter	1 0,06	!	1	28	8	2	17		25		45		20	10	1
	Fein	nen in Mil	.2 0,1 	.	1 1	. 61	20	57	40		50		5		1	21	1 1
SAND		Korngrössenfraktionen in Millimeter	0,5 0,2		100		67		33	80	5	20	1 1 1	50	1 1	1	1 1
	Grobsand	Korngrö	0	100	1	29	1	88	1 1 1		1 1 1			(5)	1 1		1 1 1
			81		1		1		1		1	2	1				1

f) Anwendung des Nomenklaturschemas bei der Arbeit im Felde

Durch den direkten Vergleich des zu bestimmenden Sedimentes mit Testproben, die nach ihrer Zusammensetzung auf den Grenzlinien der Strukturklassen liegen, erhalten wir die Strukturklasse des Sedimentes. Die Korngrössenanalysen von allen untersuchten Proben, die auf oder in unmittelbarer Nachbarschaft der Grenzlinien liegen (vgl. Figur 2 und 3, S. 172), gaben uns Aufschluss über die durchschnittliche Zusammensetzung der Testproben. Die kleinen Zahlen in den Kolonnen der Tabelle 1 geben die Mittelwerte für die einzelnen Fraktionen. Nach diesen Angaben können die Testproben künstlich hergestellt werden, indem man die durch Sieben von geeignetem Material erhaltenen Fraktionen nach den angegebenen Mengenverhältnissen mischt. Aus den Testmischungen wird eine Vergleichsskala zusammengestellt, die bei der Arbeit im Felde in Zweifelsfällen gute Dienste leistet. Zum Vergleich gelangen dann zerriebene Proben des zu definierenden Sedimentes.

In Figur 5 sind die besprochenen Testmischungen mit Hilfe von Histogrammen dargestellt. Die Photographien zeigen in 10facher Vergrösserung die Strukturen natürlicher Sedimente des Untersuchungsgebietes, welche die entsprechenden Zusammensetzungen aufweisen. Die Unterschiede in den Strukturen sind so deutlich erkennbar, dass die Einordnung des zu bestimmenden Sedimentes in eine der Strukturklassen meist eindeutig erfolgen kann. Die Histogramme rechts zeigen Korngrössenanalysen der einzelnen Sedimenttypen.

Auf den Karbonatgehalt wird mit verdünnter Salzsäure (1:5) geprüft:

Die Sedimente mit einem Karbonatgehalt von 0–12% zeigen (mit Ausnahme der Sandsteine, die von den Kalksandsteinen durch ihre leichte Zerreibbarkeit unterschieden werden) keine Reaktion. Sie unterscheiden sich ferner von den übrigen Sedimenten durch ihre Färbung, worauf wir noch zu sprechen kommen.

Die nächste Gruppe mit 12-40% Karbonat reagiert auf Salzsäure mit kräftigem Aufbrausen. In diese Gruppe fällt die grösste Zahl der untersuchten Sedimente (vgl. Figur 2).

Nur wenige Vertreter aus unserem Gebiet weisen einen Karbonatgehalt zwischen 40 und 85% auf (vgl. Figur 2, S. 172). Sie unterscheiden sich von den Sedimenten der vorhergehenden Gruppe durch den in der Farbe und der Härte deutlich in Erscheinung tretenden Kalk. Mit einiger Übung wird man auch auf Grund der Salzsäurereaktion auf diesen hohen Karbonatgehalt schliessen können. In Zweifelsfällen werden quantitative Analysen notwendig sein.

3. Die Farben der Sedimente

Ein auffallendes und charakteristisches Merkmal, vor allem der aquitanen Sedimente, ist die Färbung. Die grosse Mannigfaltigkeit der auftretenden Farben gab Anlass zu den Bezeichnungen wie bunte Molasse, bunte Mergel usw. Allerdings sind nun bunte Farben (Vollfarben oder reine Farben) im Sinne der Farbenlehre überhaupt nicht vorhanden. Vielmehr handelt es sich durchwegs um trübe Farben (Mischungen zwischen Vollfarbe und Grau).

Einer objektiven Charakterisierung der auftretenden Farben bei den Profilbeschreibungen im Felde stehen vorderhand noch grosse Schwierigkeiten entgegen. Vor allem fehlen für diesen Zweck geeignete Farbteste. Immerhin könnten durch die Angabe der Helligkeit einer Farbe mit Hilfe einer Grauskala schon wesentliche Präzisierungen erreicht werden.

Mit Hilfe des ausgezeichneten Schweizer Farbenatlasses von Aem. Müller (1945) haben wir die Farben der untersuchten Sedimente (in lufttrockenem Zustand) bestimmt.

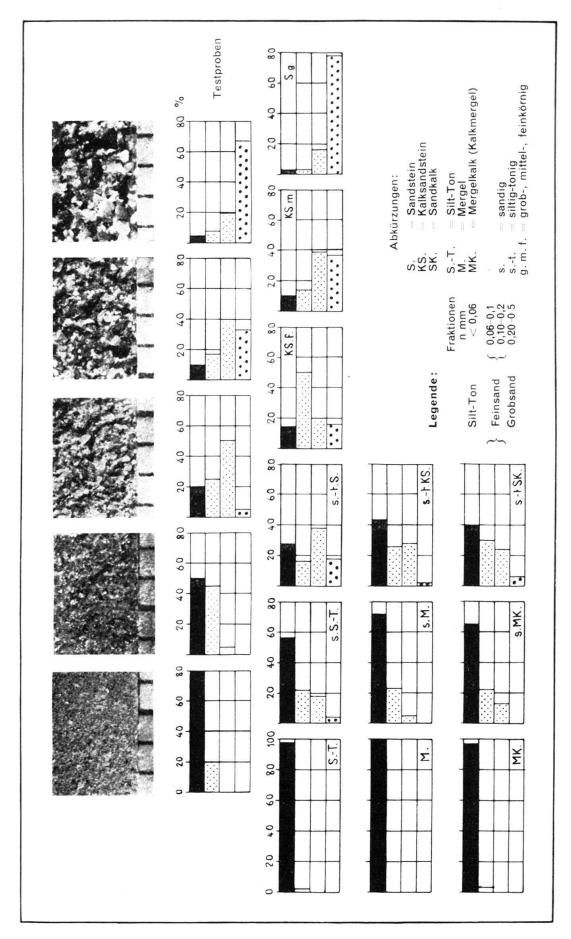


Fig. 5. Korngemisch-Histogramme der Testproben und der einzelnen Sedimenttypen.

Bei den Mergeln können wir meist zwei oder drei Farben unterscheiden:

- 1. Ein helles bis mittelhelles Bräunlichgelb.
- 2. Ein sehr helles Grau mit einem Stich ins Bläuliche.
- 3. Ein helles bis mittelhelles Rotviolett.

Die Farben treten in unregelmässigen Flecken auf, wobei im allgemeinen die unter 1 aufgeführte Farbe vorherrscht und den Mergeln das bräunlichgelbe Aussehen verleiht. Ausnahmsweise, vor allem bei den feingeschichteten Mergeln, kann auch die zweite Farbe dominieren. Hin und wieder tritt sie innerhalb einer Mergelschicht in schmalen Bändern auf. Die dritte Farbe fehlt oft. In der Regel beobachtet man sie in den direkt unter den Sandsteinbänken liegenden Mergelschichten.

Über die sandigen Mergel und siltig-tonigen Kalksandsteine zu den Kalksandsteinen konstatiert man eine zunehmende Aufhellung der Farben und eine deutliche Verschiebung gegen die hellen Graustufen.

Eine ähnliche Veränderung der Farben ergibt sich auch mit zunehmendem Karbonatgehalt, wobei allerdings durch Inhomogenitäten in der Korngrösse und der Art der Beimengungen starke Abweichungen von dieser Regel möglich sind.

Auffallend ist der Kontrast der eben besprochenen Farben mit denjenigen der karbonatarmen oder karbonatfreien Sedimente. Ganz allgemein kann gesagt werden, dass die Farben intensiver und dunkler werden. Rotbraune, braunrote, graubraune, braungelbe und grauschwarze Farben sind vorherrschend. Untergeordnet sind hell- und dunkelgrüne Farben. Da aber die Sedimente mit diesen grünen Farben an bestimmte stratigraphische Niveaux gebunden sind und zudem oft durch ihren Fossilreichtum auffallen, erhalten sie eine besondere Bedeutung.

Die Farbbestimmungen haben gezeigt, dass die grosse Mannigfaltigkeit der Farben durch alle möglichen Mischungen weniger Pigmente mit dem neutralen (meist hellgrauen) Untergrund bedingt ist. Die zwischen Gelb und Rot liegenden Pigmente können vermutlich auf bestimmte Eisenverbindungen zurückgeführt werden, während die schwarzen Pigmente wohl organischen Ursprungs sind.

4. Beschreibung der einzelnen Sedimenttypen

a) Sandsteine

Ca. 25% von der Gesamtmächtigkeit der am Wistenlacherberg aufgeschlossenen aquitanen Sedimente entfallen auf Sandsteine, welche in Bänken von 1 bis 10 m Mächtigkeit auftreten. Zum grössten Teil (ca. 20%) handelt es sich um grobkörnige Sandsteine mit vorherrschenden Korngrössendurchmessern zwischen 0,2 und 0,5 mm. Bänke von mittelkörnigen Sandsteinen sind untergeordnet. Sehr selten sind feinkörnige Sandsteine, da mit abnehmender Korngrösse der Karbonatgehalt in der Regel etwas zunimmt, was aus Figur 3, S. 173, deutlich ersichtlich ist.

Im Burdigalien beschränken sich die Sandsteinvorkommen auf einige wenig mächtige Schichten. Am Wistenlacherberg beträgt ihr Anteil an der Gesamtmächtigkeit der burdigalen Schichtfolge 5-10%.

mächtigkeit der burdigalen Schichtfolge 5–10%.

Die obere Grenze für den Karbonatgehalt haben wir bei den Sandsteinen bei 12% festgelegt. Dieser geringe Karbonatgehalt wird durch den als Bindemittel auftretenden Kalk bedingt, der aber bei weitem nicht genügt, um den Sandkörnern eine feste Bindung zu geben. Ein charakteristisches Merkmal der Sandsteine ist daher ihre leichte Zerreibbarkeit.

Der wichtigste klastische Bestandteil der Sandsteine ist der Quarz, welcher in einheitlichen oder zerbrochenen angularen bis subangularen Körnern auftritt.

Undulöse Auslöschung ist häufig zu beobachten. Nicht selten sind gerundete Quarzaggregatkörner mit Pflasterstruktur (Quarzite) und Glimmerquarzitkörner vorhanden. Hin und wieder treten Körner aus einem Quarz-Epidot-Gemenge auf.

Mancherlei Feldspäte in den verschiedensten Erhaltungszuständen bilden den zweiten Hauptgemengteil der Sandsteine. Auffallend sind die in jedem Schliff vorhandenen frischen Mikrokline, Orthoklase und Plagioklase. Bei den Mikroklinen und Orthoklasen handelt es sich meist um grössere, oft zerbrochene Individuen, während die frischen Plagioklase in der Regel nur als kleinere Zwickelfüllungen auftreten, so dass man unter Umständen an Neubildungen denken könnte. Alle die genannten Feldspäte, insbesondere die Plagioklase, sind ausserdem in allen möglichen Umwandlungsstadien anzutreffen. Neben Sericit und Calcit ist auch Chlorit als Umwandlungsprodukt hin und wieder zu beobachten. Das Nebeneinandervorkommen der verschiedenen Erhaltungszustände der Feldspäte macht die Annahme wahrscheinlich, dass diese zur Hauptsache schon primär vorhanden waren, wobei natürlich während und nach der Ablagerung und eventuellen Umlagerungen gewisse Verwitterungsvorgänge, insbesondere bei den schon zum Teil umgewandelten Feldspäten, noch weiter fortschreiten konnten.

Der Glimmer erscheint in Form von strahligen Sericitaggregaten. Die vorkommenden Biotite sind meist stark zersetzt, gebleicht oder in Chlorit umgewandelt. Die Chlorite sind weitaus vorherrschend und in den meisten Fällen auch verantwortlich für die oft zu beobachtende grünliche Farbe der Sandsteine.

Glaukonit konnte nur in den burdigalen Sandsteinen nachgewiesen werden. An häufigen Nebengemengteilen sind Rutil, Zirkon, Leukoxen, Hornblende, Epidot, Magnetit, Pyrit vorhanden.

b) Kalksandsteine

Von den Sandsteinen unterscheiden sich die Kalksandsteine durch ihre grössere Härte, welche durch den als Bindemittel auftretenden höheren Kalkgehalt bedingt ist. Damit parallel geht auch eine Aufhellung der Farben.

Im Aquitanien sind grössere Bänke von Kalksandsteinen selten. Die Mächtigkeiten der vorkommenden Schichten liegen mit wenigen Ausnahmen unter einem Meter. Grobkörnige Kalksandsteine treten im Aquitanien in der Regel an der Basis der Sandsteinbänke als schmale Zonen auf; innerhalb der Sandsteinbänke erscheinen sie in wechselnder Grösse und unregelmässigen Formen als sogenannte Knauer, welche bei der Verwitterung aus den weichen Sandsteinen herauspräpariert werden und für sie ein typisches Merkmal bilden (Knauersandsteine). Mittel- und feinkörnige Kalksandsteinbänke von meist geringer Mächtigkeit treten in den Ablagerungen zwischen den grösseren Sandsteinbänken auf. Der Anteil der Kalksandsteine an der Gesamtmächtigkeit des Aquitanien beträgt am Wistenlacherberg 15–20%.

Ganz anders sind die Verhältnisse im Burdigalien. Die Kalksandsteine nehmen fast 90% der Gesamtmächtigkeit ein. Davon entfallen auf die grobkörnigen 65–70, auf die mittelkörnigen 15–20 und auf die feinkörnigen Kalksandsteine 5 bis 10%. Die feinkörnigen Kalksandsteine zeigen oft eine ausgesprochen plattige Ausbildung.

Im wesentlichen weisen die Kalksandsteine den gleichen Mineralbestand wie die Sandsteine auf. Die klastischen Körner liegen in einem calcitischen Bindemittel, welches meist sämtliche Hohlräume ausfüllt und unter dem Mikroskop als unregelmässiges Gewebe von kristallinischen Kalkspatkörnern mit oft zahlreichen und scharfen Spaltrissen erscheint. Oft sind auch Aggregate von feinkörnigem Calcit zu beobachten.

Die Feldspäte scheinen in den burdigalen Kalksandsteinen etwas zurückzutreten und sind meist frischer als in denjenigen des Aquitanien. Auch die Glimmer sind weniger umgewandelt und auf den Schichtflächen der feinkörnigen, plattigen Kalksandsteine als grössere Schuppen gut sichtbar. Glaukonit tritt in gut gerundeten Körnern oft recht zahlreich auf (nur in den burdigalen Kalksandsteinen). Hin und wieder erscheint er auch als Hohlraumfüllungen von Foraminiferen.

Einer besonderen Erwähnung bedürfen die geröllführenden, grobkörnigen Kalksandsteine des Burdigalien, welche in Bänken von mehreren Metern Mächtigkeit auftreten (Muschelsandsteine).

Auf stark mit Geröllen durchsetzten Schichtflächen haben wir an drei verschiedenen Stellen von je ca. 1 m² alle Gerölle herausgelesen. Die Siebanalysen der drei verschiedenen Proben ergaben folgende durchschnittliche Grösse der Gerölle:

> 20 mm	 ca. 20 Gewichtsprozent
10-20 mm	 55-60 Gewichtsprozent
5-10 mm	 15-20 Gewichtsprozent
$2-5~\mathrm{mm}$	 ca. 5 Gewichtsprozent

Ausnahmsweise kommen Gerölle bis zu 20 cm Durchmesser vor.

Über die Verteilung auf die verschiedenen Geröllarten orientiert Tabelle 2. Ausgezählt wurde die Fraktion 10-20 mm.

Tabelle 2

Geröllzählung aus dem Muschelsandstein bei Sur-le-Mont
(Koord. 572, 750/200, 700)

Geröllarten	Anzahl	Prozente
1. Granitische Gesteine	$ \begin{array}{c} 77 \\ 17 \end{array} $ $ \begin{array}{c} 4 \\ 43 \end{array} $	$ \begin{array}{c c} 22 \\ 5 \end{array} $ $ \begin{array}{c} 27 \\ 1 \\ 12 \end{array} $
Varietäten)	18	5
5. Hornfelsartige Quarzite (inklusive Radiolarite)	$\begin{array}{c} 21 \\ 117 \end{array}$	6 34
Kalke (graue und gelbliche Varietäten) 7. Sandsteine, z. T. grobkörnig und eisenschüssig	53	15
20 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350	100

Nach dem Vergleichsschema von W. C. Krumbein (1941) gehören die Gerölle zur Hauptsache in die 7. Rundungsklasse.

Die grobklastischen Körner der Muschelsandsteine spiegeln im Kleinen den Geröllbestand wieder. Daneben treten grosse Quarze und Feldspäte auf. Die Feldspäte sind im allgemeinen sehr frisch. Hin und wieder erscheint ein gerundetes Glaukonitkorn. Durch einen Zement aus kristallinischen Calcitkörnern werden alle Komponenten fest verkittet, so dass das Gestein eine genügende Härte erhält und an mehreren Stellen für verschiedene bautechnische Zwecke abgebaut wird. Die Steinbrüche sollen zum Teil bis in die Römerzeit zurückreichen.

Zahlreiche Abdrücke im Kalksandstein und Formen aus rekristallisiertem Calcit lassen die einst vorhandenen Muschelschalen erkennen. Die Querschnitte zeigen im Dünnschliff ein immer wieder zu beobachtendes, charakteristisches Bild: Die Ränder der ehemaligen Muschelschalen sind als dunkle, scharfe Linien deutlich erkennbar. Die Linien werden von kleinen Calcitkriställchen begleitet, die senkrecht zur ehemaligen Schalenfläche palisadenartig nach innen und aussen gewachsen sind. Das Innere des Schalenquerschnittes besteht aus relativ grobkörnigen Kalkspatkörnern mit Pflasterstruktur. Der Abstand der Linien beträgt im Durchschnitt 0,7 mm.

Hin und wieder treten wenig mächtige Bänke auf, in welchen der Kalk durch das massenhafte Vorhandensein rekristallisierter Muschelschalen zum wichtigsten Gemengteil der Sedimente wird. In diesen Fällen könnte der Name Muschelsandkalk verwendet werden.

c) Siltig-tonige Sandsteine, sandige Silt-Tone und Silt-Tone

Das Vorkommen dieser Sedimentgruppe beschränkt sich auf das Aquitanien. Trotz der geringen Mächtigkeit der einzelnen Schichten von 10 cm bis maximal 1 m und dem kleinen Anteil an der Gesamtmächtigkeit des am Wistenlacherberg aufgeschlossenen Aquitanien (ca. 10%) sind sie in den stratigraphischen Profilen infolge ihrer Färbung und Fossilführung die auffallendsten Sedimente. Die Farben erscheinen ganz allgemein intensiver und dunkler als diejenigen der übrigen Sedimente, worauf wir schon im Kapitel über die Farben der Sedimente hingewiesen haben (siehe S. 178). Wir können hier noch hinzufügen, dass die Pigmente durchwegs an das siltig-tonige Bindemittel gebunden sind. Der Bruch der Sedimente ist meist krümelig, erdig. Eine interne Schichtung ist nicht vorhanden.

Über den Mineralbestand und die Form der Körner orientiert das Schliffbild eines siltig-tonigen Sandsteines (Figur 6). In der Grundmasse mit der gleichen Farbe wie das Sediment stecken die meist klaren, auffallend kantigen Komponenten. Das

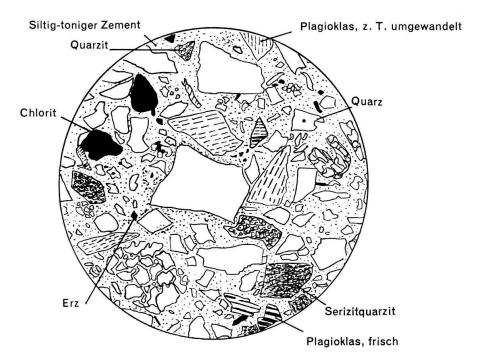


Fig. 6. Schliffbild eines siltig-tonigen Sandsteins. Vergrösserung ca. $80 \times$.

Bindemittel besteht aus einem Gemenge von sehr feinem Quarz und Glimmer und allerfeinsten, unter dem Mikroskop nicht erfassbaren Mineralpartikeln.

Charakteristisch für die Sedimenttypen dieser Gruppe ist die schlechte Aufbereitung des Materials gegenüber den entsprechenden kalkreichen Sedimenten (siehe Figur 5, S. 177).

In den stratigraphischen Profilen treten die besprochenen Sedimente in der Regel als Abschluss der sandigen Komplexe auf, erscheinen aber auch innerhalb der Mergelserien.

d) Mergel, sandige Mergel und siltig-tonige Kalksandsteine

Die Mergel nehmen von der Gesamtmächtigkeit des am Wistenlacherberg aufgeschlossenen Aquitanien ca. 30%, die Übergangstypen zwischen Mergeln und Kalksandsteinen 15–20% ein, wobei auf die siltig-tonigen Kalksandsteine ca. 12% und auf die sandigen Mergel 5–8% entfallen.

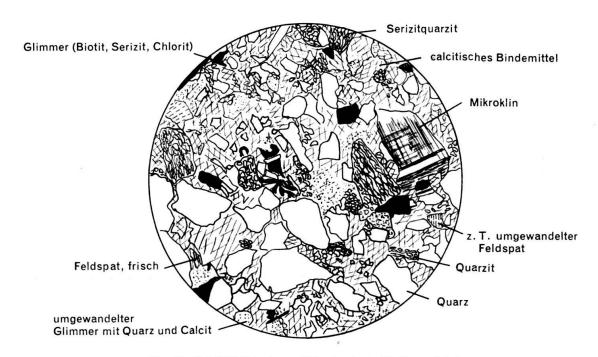


Fig. 7. Schliffbild eines siltig-tonigen Kalksandsteins. Vergrösserung ca. $80 \times$.

In den Aquitanienprofilen treten die Mergel in Schichten von 10 cm bis maximal 4 m Mächtigkeit auf. Ferner erscheinen sie als aufgearbeitete Gerölle in den unteren Partien der Sandsteinbänke. Die auftretenden Farben sind S. 178 besprochen. Die Mergel mit einem Karbonatgehalt von über 20% weisen meist keine oder nur eine sehr unregelmässige Schichtung auf. Dagegen beobachtet man bei den Mergeln mit einem Karbonatgehalt zwischen 12 und 20% oft eine ausgeprägte Feinschichtung. Auf den hellen, blaugrauen bis bräunlichgelben Schichtflächen erscheinen oft zahlreiche dunkelgelbe oder rotbraune, konzentrische Ringe von wechselnder Grösse und schmale Streifen mit oft erkennbaren feinen Rippen. Zum Teil handelt es sich wahrscheinlich um Pflanzenreste. Häufig weisen die Schichtflächen einen matten Seidenglanz auf, welcher durch feinste Glimmerschüppchen in den Schichtebenen verursacht wird. Unter dem Mikroskop sind die zahlreichen Glimmer

deutlich zu erkennen. Es handelt sich um Biotit- und Sericitschüppchen. Der Biotit ist zum Teil umgewandelt und verursacht in seiner Umgebung eine grüngelbe Verfärbung. Hin und wieder taucht ein grösseres Quarz- oder Feldspatkorn auf. Die Hauptmasse besteht aus einem Gemenge von feinstem, mit dem Mikroskop nicht mehr identifizierbarem Material.

Die sandigen Mergelschichten sind meist wenig mächtig (maximal 1 m) und erscheinen in den Profilen innerhalb der Mergelschichten, ferner zwischen den Mergeln und den karbonatarmen Sedimenten, hin und wieder auch als Übergangsschichten von den sandigen Komplexen zu den Mergeln und umgekehrt. Von den Mergeln unterscheiden sie sich ausser dem deutlich erkennbaren Sandgehalt durch ihre grössere Härte.

Ein ähnliches Auftreten zeigen die siltig-tonigen Kalksandsteine. Im obersten Aquitanien sind sie oft plattig ausgebildet und sehr glimmerreich. In einem Schliff eines solchen plattigen siltig-tonigen Kalksandsteines aus dem obersten Aquitanien konnte Glaukonit nachgewiesen werden.

Figur 7 zeigt das Schliffbild eines siltig-tonigen Kalksandsteines aus dem Aquitanien. Man beachte den auffallend grossen und frischen Mikroklin.

e) Mergelkalke (Kalkmergel), sandige Mergelkalke und siltig-tonige Sandkalke

Quantitativ spielen die Sedimente dieser Gruppe weder im Aquitanien noch im Burdigalien eine grosse Rolle. Ihr Anteil an der Gesamtmächtigkeit beträgt im Aquitanien ca. 2%, im Burdigalien 4-5%.

Im obersten Aquitanien erscheinen hellgraue Kalkmergel mit feingeschichteter Textur, welche durch einen raschen Wechsel in der Korngrösse bedingt ist. Die Schichtung äussert sich auch im Wechsel der Farben, indem die feineren Schichten immer dunkler erscheinen. Am Kontakt der einzelnen, oft nur wenige Millimeter mächtigen Schichtchen sind hin und wieder schöne Drucksuturen zu beobachten. Hauptgemengteil ist feinkörniger Calcit, in welchem die Glimmer und Quarze eingebettet sind.

Sehr selten treten im Aquitanien buntgefärbte Mergelkalke auf, die sich durch grosse Härte auszeichnen.

Relativ häufig, wenn auch stets wenig mächtig, trifft man im Burdigalien ziemlich harte, feinplattige und glimmerreiche siltig-tonige Sandkalke und sandige Mergelkalke. Neben den glatten Schichtflächen sind auch gewellte häufig (zum Teil Rippelmarken). Die Schichtung wird durch einen intensiven Wechsel von feinerem und gröberem Material verursacht.

5. Lithologie und regionale Verbreitung des Aquitanien

Die oft tief in den Wistenlacherberg eingeschnittenen Gräben ermöglichen einen guten Einblick in den vertikalen und zum Teil auch horizontalen lithologischen Wechsel innerhalb der obersten 100 m des Aquitanien. Das beste Profil ist auf der Nordseite des Wistenlacherberges im Graben östlich Bois du Mont (vgl. Tafel VIII) aufgeschlossen. Wir haben dieses Profil als Ausgangspunkt für die sedimentpetrographischen Untersuchungen gewählt. Die Figuren 2 und 3 geben die Ergebnisse in der Dreieckdarstellung, und Tafel IX zeigt das Profil mit den dazugehörigen Kurven für den Karbonat- und Sandgehalt. Die Werte für den Karbonatgehalt sind von links nach rechts, für den Sandgehalt von rechts nach links abgetragen. Die zwischen den beiden Kurven liegende Fläche ergibt als Ergänzung zu 100 den Silt-Ton-Gehalt der Sedimente. Über die Verteilung der Gesamtmächtigkeit des aquitanen Profils auf die einzelnen Sedimenttypen gibt Tabelle 3 Auskunft.

Aus Tabelle 3 geht hervor, dass die sandigen Ablagerungen (Sandsteine, Kalksandsteine und Übergangstypen zu den Mergeln bzw. Silt-Tonen) ungefähr zwei Drittel der Gesamtmächtigkeit einnehmen.

Tabelle 3

Die aquitanen Sedimenttypen und ihre Anteile an der Gesamtmächtigkeit des auf Tafel IX
dargestellten Profils

Sedimenttypen	Mächtigkeiten in Meter	Anteile in Prozent		
Sandsteine: grobkörnig	$\left. egin{array}{c} 20,60 \\ 5,80 \\ 0,25 \end{array} \right\} \;\; 26,65 \;\; \Big)$	$\left. egin{array}{c} 19,4 \\ 5,4 \\ 0,2 \end{array} \right\} = 25,0$		
Kalksandsteine: grobkörnig	$ \begin{array}{c} 6,15 \\ 4,90 \\ 6,15 \end{array} \right\} 17,20 $ $ 43,85$	$ \begin{bmatrix} 5,8 \\ 4,6 \\ 5,8 \end{bmatrix} $ $ \begin{bmatrix} 41,2 \\ 16,2 \end{bmatrix} $		
Siltig-tonige Sandsteine Sandige Silt-Tone	3,30 4,25 3,10	3,1 4,0 2,9		
Mergel	31,10 6,10 12,75	29,1 5,7 12,0		
Mergelkalke (Kalkmergel) Sandige Mergelkalke Siltig-tonige Sandkalke	1,05 1,10	1,0		
Gesamtmächtigkeit	106,60	100,0		

Bei dem auf Tafel IX schematisch dargestellten Profil lassen sich von unten nach oben folgende Zyklen unterscheiden:

Zyklen	Mächtig- keiten in Meter	Höhen über Meer	Probe- Nummern	Anzahl der karbonatarmen oder karbonatfreien Hori- zonte
I	16	465-481	3-22 $23-74$ $75-115$ $116-138$ $139-174$ $175-210$	6
III	25	481-506		4
III	23	506-529		7
V	9	529-538		3
V	13	538-551		3
VI	21	551-572		1

Jeder Zyklus beginnt mit einer mehr oder weniger mächtigen Sandsteinbank, welche meist auf einer unregelmässigen Oberfläche der vorhergehenden Serie liegt, an der Basis kalkreich ist und in den unteren Teilen aufgearbeitetes, mergeliges oder toniges Material aufweist. Gegen oben werden die sandigen Sedimente feiner, und schliesslich leiten mannigfache Übergangsbildungen zu dem abschliessenden Mergelkomplex über. Die gesetzmässige Abfolge von Grob zu Fein, welche die einzelnen Zyklen im Grossen zeigt, ist innerhalb der Zyklen, vor allem in den Übergangsbildungen von den Sandsteinen zu den Mergeln, in vielfachen Repetitionen im Kleinen zu beobachten.

Eine eigentümliche und charakteristische Rolle spielen innerhalb dieser im Grossen und Kleinen rhythmisch gegliederten Serien die karbonatarmen Sedimente. In manchen Fällen erscheinen sie als Abschluss sandiger Komplexe, aus welchen sie ohne scharfe Grenze hervorgehen. Gegen oben ist dagegen die Abgrenzung immer scharf. Häufig treten sie als wohlabgegrenzte, wenig mächtige Schichten innerhalb der Mergelkomplexe auf. Sehr selten sind sie in Sandsteinbänke eingelagert. Die im Liegenden der karbonatarmen Schichten auftretenden Sedimente weisen oft zahlreiche Konkretionen auf.

Auffallend sind die intensiv rotbraun gefärbten Horizonte, welche Mächtigkeiten von über 1 m erreichen können. Hin und wieder sind die obersten Schichten solcher Horizonte entfärbt. Die Eisenbestimmung¹) der entfärbten Zone einer karbonatfreien Schicht des Zyklus II ergab folgende Werte:

> $Fe_2O_3 = 2,90$ Gewichtsprozent FeO = 0,17 Gewichtsprozent Total = 3,07 Gewichtsprozent

Eisenbestimmung für die intensiv rotbraune Zone der Schicht:

 $Fe_2O_3 = 5.75$ Gewichtsprozent FeO = 0.65 Gewichtsprozent Total = 6.40 Gewichtsprozent

In der rotbraunen Zone haben wir also eine deutliche Anreicherung von Eisen festzustellen.

Einen besonderen, für das Aquitanien sonst fremden lithologischen Charakter erhält der sandige Teil des Zyklus oder der Serie VI durch das Auftreten von plattig ausgebildeten, feineren Kalksandsteinvarietäten, welche auf den Schichtflächen zahlreiche, wenn auch zum grössten Teil zerstörte Pflanzenreste aufweisen. In einem Schliff konnte ferner Glaukonit nachgewiesen werden.

Der über dem sandigen Teil der Serie VI folgende, ca. 6 m mächtige Mergelkomplex ist die Grenzzone Aquitanien/Burdigalien. Auffallend ist in dieser Zone das Auftreten von feingeschichteten, hellen Kalkmergeln und grünlichen, karbonatarmen Schichten, welche in den stratigraphisch tieferen Teilen des Aquitanien nicht angetroffen werden.

Die Verfolgung der einzelnen Zyklen in horizontaler Richtung ist wegen der meist geringen Ausdehnung der Aufschlüsse und vor allem infolge der oft raschen seitlichen Wechsel der lithologischen Ausbildung in manchen Fällen unmöglich. Relativ günstig sind die Verhältnisse für die Serie VI. Die plattigen harten Kalksandsteine sowie die Grenzzone Aquitanien/Burdigalien mit den feingeschichteten Kalkmergeln und den grünen, karbonatarmen Horizonten lassen sich rings um den Wistenlacherberg in verschiedenen Aufschlüssen nachweisen (En Volliveron 570 bis 575 m, En Plan 585 m, La Fin des Fourches 570 m, bei Sur-le-Mont [ganze Serie], Sur le Mont de Praz an der Militärstrasse auf 630 m, Sur-le-Mont de Nant 600 bis 625 m). Durch die Abrissnische der Vaillet-Sackung nördlich des Signals Plan-Châtel zieht eine durch üppigere Vegetation weithin sichtbare schmale Zone in ca. 625 m. Es ist die Mergelgrenzzone Aquitanien/Burdigalien. Wie ein Vergleich der verschiedenen Profile aus dieser Grenzzone deutlich zeigt, müssen aber auch hier seitliche Wechsel angenommen werden.

Dagegen ist es unmöglich, die im Liegenden der Serie VI folgenden verschiedenen Profile am Wistenlacherberg miteinander zu parallelisieren. Die Detailprofile

¹) Die Bestimmungen wurden von Herrn Dr. W. HUBER, Oberassistent am Mineralogischen Institut der Universität Bern, ausgeführt, wofür ich ihm meinen besten Dank ausspreche.

haben deshalb immer nur eine ganz lokale Bedeutung. Allerdings bleibt das Prinzip der rhythmischen oder zyklischen Sedimentation sowie der gesamte lithologische Charakter in den einzelnen Profilen immer gleich, so dass das auf Tafel IX dargestellte Profil in dieser Beziehung doch eine allgemeinere Bedeutung erhält.

Das Auskeilen der Schichten sowie seitliche lithologische Wechsel mit Übergängen sind an verschiedenen Stellen zu beobachten, besonders schön in den Aufschlüssen oberhalb Praz (Vaux de Praz). Oft sind innerhalb einer mächtigen Sandsteinbank unregelmässige Mergelschnüre und -nester eingelagert. Diese Einlagerungen können sich seitlich rasch zu bedeutenden Mergelkomplexen entwickeln, welche die Sandsteinbank aufspalten. Seitliche Variationen ergeben sich ferner aus den unregelmässigen Mergeloberflächen, auf welchen die Sandsteinbänke liegen.

Mit Ausnahme von einigen Schichtkomplexen aus der Serie VI sind also im Aquitanien des Wistenlacherberges keine stratigraphischen Leithorizonte vorhanden.

Das gleiche gilt für das Aquitanien der Umgebung von Murten. Grössere zusammenhängende Profile sind (schon ausserhalb unseres Gebietes) im Burggraben oberhalb Löwenberg und im Graben westlich Coussiberlé aufgeschlossen.

Im Burggraben finden wir auf 490–520 m eine der Serie VI des Wistenlacherberges entsprechende Schichtfolge. Ein ca. 5 m mächtiger Mergelkomplex bildet den Abschluss des sandigen Teils dieser Serie und gleichzeitig die Grenze Aquitanien/Burdigalien. Auffallend ist in diesem Komplex eine grüne Silt-Ton-Schicht voller dunkelroter Punkte. Fossilien konnten hier nicht gefunden werden.

Vom Burggraben gegen SW lässt sich die Serie VI in verschiedenen Aufschlüssen nachweisen. Im Forêt du Craux, nördlich Münchenwiler (Koord. 576, 500/196, 225, Blatt Ulmiz) sind auf 520 m die im oberen Teil der Serie VI auftretenden, feinkörnigen, plattigen Kalksandsteine und Mergelkalke aufgeschlossen. Die im Dorf Münchenwiler selbst zwischen 500 und 510 m auftretenden Sandsteine entsprechen dem unteren Teil der Serie.

Die übrigen, meist kleinen Aufschlüsse des Gebietes zeigen die für das Aquitanien charakteristischen lithologischen Merkmale. Im Tälchen südlich Courgevaux sind aquitane Sedimente bis auf 560 m aufgeschlossen.

6. Lithologie und regionale Verbreitung des Burdigalien

Die Verbreitung und Mächtigkeit des Burdigalien am Wistenlacherberg zeigt Tafel VIII. Durch die Verwerfung von Sur-le-Mont ergeben sich zwei voneinander isolierte Vorkommen. Im Ostflügel der Verwerfung sind nur die untersten 30–35 m erhalten. Im Westflügel dagegen erreicht die Mächtigkeit 60–65 m. In lückenlosen Profilen sind die untersten 30–35 m aufgeschlossen.

Für die sedimentpetrographischen Untersuchungen haben wir ein Profil auf der Nordseite des Wistenlacherberges (ca. 20 m westlich der Verwerfung von Surle-Mont, Koord. 573, 175/201, 600) von 565–600 m gewählt. Die Ergebnisse dieser Untersuchungen sind in den Figuren 2 und 3 (S. 172/173) und Tafel IX zusammengestellt. Das Profil umfasst die Probenummern 211–250.

Tabelle 4 gibt eine Übersicht der vorkommenden Sedimenttypen sowie ihre Anteile an der Gesamtmächtigkeit des Profils.

Ein Vergleich dieser Zusammenstellung mit Tabelle 3, S. 184, ergibt folgende Abweichungen von der lithologischen Ausbildung der aquitanen Schichtfolge:

- 1. Die Mergel und die ganze Gruppe der karbonatarmen oder karbonatfreien Sedimente sind nicht mehr vorhanden.
- 2. Die Kalksandsteine nehmen fast 90% der Gesamtmächtigkeit ein (Aquitanien 17%), die Sandsteine dagegen nur 6% (Aquitanien 25%).

Im Detail zeigt die zur Hauptsache aus Kalksandsteinen bestehende burdigale Schichtfolge eine sehr wechselvolle und unruhige Sedimentation. Auffallend sind die in verschiedenen vertikalen Abständen auftretenden harten, plattigen, feinkörnigen Kalksandsteine und Sandkalke, welche durch die Verwitterung oft als mehr oder weniger ausgedehnte Platten aus den grobkörnigen Kalksandsteinen herauspräpariert werden. Sie unterscheiden sich sowohl durch ihre petrographische Beschaffenheit wie durch ihre Begrenzungen deutlich von den Knauern der aquitanen Sandsteine. Am eindrücklichsten ist diese für das Burdigalien typische Erscheinungsform an der Militärstrasse Sugiez-Plan-Châtel von 630-650 m zu beobachten. In relativ frischen, der Verwitterung weniger zugänglichen Aufschlüssen erscheinen diese wenig mächtigen Einschaltungen deutlich als dunklere Bänder.

Ebenso charakteristisch sind für die unterste Serie des Burdigalien Schwemmholzeinlagerungen, wobei allerdings in den meisten Fällen das Holz nur noch als rostige Nester im Kalksandstein zu erkennen ist. Die Strukturen des Holzes (zum Beispiel Jahresringe) sind oft noch deutlich erhalten. Stämme bis zu 30 cm Durchmesser konnten beobachtet werden.

Tabelle 4

Die burdigalen Sedimenttypen und ihre Anteile an der Gesamtmächtigkeit des auf Tafel IX dargestellten Profils

Sedimenttypen	Mächtigkeiten in Meter	Anteile in Prozent		
Grobkörnige Sandsteine Kalksandsteine: grobkörnig mittelkörnig feinkörnig Siltig-tonige Kalksandsteine Mergelkalke (Kalkmergel) Sandige Mergelkalke Siltig-tonige Sandkalke	$ \begin{array}{c c} 2,00 \\ 23,00 \\ 5,80 \\ 2,15 \end{array} \begin{array}{c} 32,95 \\ 30,95 \end{array} $ $ \begin{array}{c c} 1,45 \\ 0,15 \\ 0,30 \\ 0,15 \end{array} $	$ \begin{array}{c c} & 5,7 \\ & 65,7 \\ & 16,6 \\ & 6,1 \end{array} \begin{array}{c} & 88,4 \end{array} \begin{array}{c} & 94,1 \\ & 4,1 \\ & 0,4 \\ & 0,9 \\ & 0,5 \end{array} $		
Ge	esamtmächtigkeit 35,00	100,0		

Hin und wieder erscheinen in der burdigalen Schichtfolge sehr unregelmässig verlaufende Mergelzüge und Mergelnester. Dieser Mergel besteht, entgegen der Auffassung von P. Zimmermann (1935), sicher aus aufgearbeitetem Material. Die Schichtung innerhalb der Mergelnester verläuft ganz willkürlich zur Schichtung der Sandsteine. Meist handelt es sich um hellgraue oder schwärzliche, feingeschichtete Mergel und Silt-Tone, welche auf den Schichtflächen zahlreiche und oft sehr gut erhaltene Pflanzenreste aufweisen. P. Zimmermann (1935) hat solche aufgearbeitete Mergelnester an der Militärstrasse Sugiez-Plan-Châtel (630 m) beobachtet und beschrieben. Der gleiche Aufschluss zeigt eine ca. 30 cm mächtige Zone von grobkörnigem Sand mit zahlreichen Kalkkonkretionen und Geröllen. Die Zone verläuft ganz unregelmässig, keilt aus, setzt wieder ein und kann sich in mehrere Züge spalten.

Ein wichtiges Merkmal der unteren burdigalen Serie ist die meist vorhandene Schichtung der Kalksandsteine. Besonders typisch sind die im obern Teil der Serie zu beobachtenden, ausgesprochenen Schräg- und Kreuzschichtungen. Unmittelbar im Hangenden dieser durch sehr unruhige Sedimentation auffallenden Zone treten dann normalerweise die ersten Muschelsandsteinbänke auf. Diese bilden das kleine

Plateau beim Signal Plan-Châtel (655 m), stellenweise die Oberkante des steilen Nordhanges des Wistenlacherberges (Koord. 573, 150/201, 550 und 572, 625/201, 300) auf 600 m und bei Sur-le-Mont ebenfalls die Oberkante eines Steilhanges auf 600 bis 610 m. Die Aufschlüsse zeigen, dass die eigentlichen Muschelsandstein- und Muschelsandkalkbänke meist nur eine geringe Mächtigkeit aufweisen und seitlich oft auskeilen. Geröllführende, grobkörnige Sande und plattige, harte, feinkörnige Kalksandsteine sowie weiche, feingeschichtete Sande sind zwischengelagert. Als Beispiel geben wir ein Profil beim Signal Plan-Châtel:

Von oben nach unten:

 $\begin{array}{lll} 15~\mathrm{cm} & \mathrm{harte,\ plattige,\ feink\"{o}rnige}\ Kalksandsteine;} \\ 30~\mathrm{cm} & \mathrm{Muschelsandstein\ mit\ Ger\"{o}llen;} \\ 50~\mathrm{cm} & \mathrm{grobk\"{o}rniger}\ Sandstein\ mit\ harten,\ plattigen\ Kalksandsteinzwischenlagen;} \\ 20-30~\mathrm{cm} & \mathrm{feinplattige,\ harte,\ siltig-tonige}\ Sandkalke\ mit\ gewellten\ Schichtfl\"{a}chen\ und\ erdigen,\ weichen,\ feingeschichteten\ Zwischenlagen\ von\ siltig-tonigem\ Sand;} \\ 40~\mathrm{cm} & \mathrm{Muschelsandstein, welcher\ seitlich\ in\ ger\"{o}llf\"{u}hrende,\ grobk\"{o}rnige\ Sandsteine\ \ddot{u}bergeht;} \\ 2+x~\mathrm{m} & \mathrm{kreuzgeschichteter,\ grobk\"{o}rniger}\ Kalksandstein\ mit\ unregelm\"{a}ssig\ eingelagerten,\ harten\ Zwischenlagen.} \\ \end{array}$

Die über der untersten Muschelsandsteinzone folgenden Ablagerungen sind zum grössten Teil mit Verwitterungs- und Gletscherschutt bedeckt. Bei Pt. 615 (Koord. 572, 700/201, 100) ist ein kleiner, heute nicht mehr benützter Muschelsandsteinbruch vorhanden. Grössere ehemalige Muschelsandsteinbrüche finden wir bei Sur-le-Mont (Pt. 618.3) und 150 m südwestlich von Pt. 626 auf 625 m. Die Schichten in den beiden Brüchen weisen alle möglichen Lagen auf. Häufig ist ein Einfallen gegen NE mit 10–25° zu beobachten (Schrägschichtung). Bei Pt. 625.6 wurde in einem 6 m tiefen Stollen kein Muschelsandstein angetroffen.

Auf der Murtenseite ist das Burdigalien sehr schlecht aufgeschlossen. Ausserhalb unseres Gebietes beobachtet man im Burggraben oberhalb Löwenberg zwischen 520 und 540 m eine burdigale Serie mit den gleichen lithologischen Merkmalen wie am Wistenlacherberg. Das Vorwiegen der ziemlich harten Kalksandsteine in der burdigalen Serie zwischen der Grenzzone Aquitanien/Burdigalien und den ersten Muschelsandsteinbänken ermöglichte die Anlage von verschiedenen Steinbrüchen (Murtenwald auf 510 m, Münchenwiler auf 530–535 m, beide auf Siegfriedblatt Ulmiz [315], nördlich Aux-Roches, Blatt Avenches, auf 590–600 m).

Die unterste Muschelsandsteinzone lässt sich vom Murtenwald auf 520 m über den Burggraben (537 m) und Ermelsburg bis Münchenwiler (535 m) verfolgen.

In unserem Untersuchungsgebiet finden wir auf der Nordseite des Bois-de-Bouley zwischen 540 und 600 m einige Aufschlüsse des Burdigalien, welche stratigraphisch höher als die unterste Muschelsandsteinzone liegen müssen.

Im anschliessenden Blatt Avenches treffen wir den untersten Muschelsandstein als Dach des Sandsteinbruches nördlich Aux-Roches auf 600 m. Die Schichten des Sandsteinbruches fallen mit 11° gegen NE.

B. FOSSILFÜHRUNG UND ALTER DER SEDIMENTE, GRENZE AQUITANIEN/BURDIGALIEN

1. Einleitung

In Tabelle 5 haben wir die verschiedenen Auffassungen über die Unterteilung und zeitliche Einordnung der Sedimente unseres Gebietes zusammengestellt. Danach können wir zwei, in den Abschnitten 5 und 6 beschriebene, lithologische Einheiten unterscheiden, nämlich die sogenannte "Untere Süsswassermolasse" im Lie-

Die verschiedenen Auffassungen über die Unterteilung und zeitliche Einordnung der Sedimente des Wistenlacherberges Tabelle 5

R. Ramseyer 1951	Burdigalien: Muschelsandsteinfazies der marinen Molasse	Marine Molasse mit einer wahrscheinlich burdi- galen Foraminiferenfauna: Cibicides lobatulus (W. & J.), zahl- reiche Elphidien in Verbindung mit Nonion commune (D'ORB.) u. a.	Grenzzone Aquitanien/Burdigalien (Serie VI) mit Säugetierfauna: Cricetodon infralactorensis, Prolagus vasconiensis, Lagopsis Cadeoti u. a. Cepaea subglobosa (Grateloup) Aquitanien: Verschiedene Helicidenfundstellen		
J. HÜRZELER 1946			Säugetierfauna mit Cricetodon infra- lactorensis, Prolagus vasconiensis und Lagopsis Cadeoti, sehr wahrscheinlich bereitszum Burdie		
J. Корр 1935	Burdi- galien: Muschel- sandstein	bei Sur-le-Mont let Blan-Châtel	nəinwiinpk.		
P. Zimmermann 1932 1935	stein elvetica, ıspidata	Marine Mergel- Molasse nester mit Arundo Goepperti (Heer)	Heliciden und Planorben "Untere Süsswasser- molasse" (Aquitanien)		
Е. Секвек	Burdigalien: Burdigalien: Marine Mo- Muschelsand lasse und mit Tapes h ,,Unterer Odontaspis cu Muschel- sandstein"		ntəsskwəsüZ ərətnU., binwinpk)		
Н. SCHARDT 1907	100	əsəssloM nəninsın nuz b nuəinəqus tə nuəinətni nəitəv			
V. Gilliéron 1885	Grès coquillier Fossilliste siehe S. 194	Molasse marine (lithologische Paralleli- sation mit der fossilführen- den, marinen Molasse der Westschweiz)	Molasse d'eau douce inférieure sans lignite (am Wistenlacherberg bis ca. 600 m ü. M.) ohne Fossilien		

genden und die marine Molasse mit der Muschelsandsteinfazies im Hangenden. In diesem Kapitel wollen wir nun beweisen, dass der Kontakt dieser lithologischen Einheiten recht genau mit der Grenze Aquitanien/Burdigalien zusammenfällt.

2. Fossilführung der "Unteren Süsswassermolasse"

Fossilien sind in der "Unteren Süsswassermolasse" selten. V. Gilliéron (1885) schreibt in seinem Text zu Blatt XII der geologischen Karte der Schweiz 1:100000 unter dem Abschnitt "Fossiles":

«Malgré le grand espace qu'occupe la zone subjurassique [der ,, Unteren Süsswassermolasse"], j'ai le regret de devoir dire, que je n'y ai rien trouvé en fait de restes d'animaux et de plantes, et que ce n'est que pour mémoire que je mets le mot de fossiles au commencement de cet alinéa.»

Die wichtigsten Fossilhorizonte befinden sich in der Grenzzone marine Molasse/, "Untere Süsswassermolasse". P. Zimmermann (1932) beschreibt einen Aufschluss an der Strasse Sugiez-Plan-Châtel auf 604 m, welcher den Übergang der Süsswassermolasse zur marinen Molasse zeigen soll und eine blaue Mergelschicht mit Helix und Planorbis aufweise. Leider ist dieser Aufschluss heute von Vegetation bedeckt.

Wichtig sind die Säugetierreste und helicidenführenden Horizonte der Grenzzone. Am Wistenlacherberg haben wir solche Horizonte an folgenden Stellen gefunden (vgl. Tafel VIII):

1. Auf 625 m an der Strasse Sugiez-Plan-Châtel (Koord. 574, 225/201, 500).

Profil von oben nach unten:

50 + x cm gefleckte Mergel;

15 cm grünlicher, sandiger Silt-Ton mit zahlreichen Heliciden und Säugetierresten;

20 cm hellgrüner Mergel mit Heliciden und Säugetierresten;

110 cm sandiger Mergel – siltig-toniger Kalksandstein, zum Teil fein geschichtet;

2 + x m Knauersandstein.

Eine kurze Notiz über die Fauna dieser Fundstelle hat J. HÜRZELER (1946) publiziert. Es wurde allerdings übersehen, dass die Fundstelle unmittelbar im Liegenden der marinen Molasse liegt und die Grenze Aquitanien/Burdigalien somit auch aus lithologischen Gründen an dieser Stelle gezogen werden kann (vgl. V. GILLIÉRON, 1885; P. ZIMMERMANN, 1932; J. KOPP, 1935).

2. Auf 625 m, ca. 100 m nordwestlich Signal Plan-Châtel, unterhalb der Militärstrasse.

Profil von oben nach unten:

30 cm grüner, sandiger Silt-Ton;

4 m gefleckte Mergel;

20 cm dunkelgraugrüner, sandiger Silt-Ton mit Säugetierresten;

4 m Knauersandstein;

45 cm gefleckte Mergel;

1,5 m dunkelbrauner, sandiger Silt-Ton (ca. 40 cm), welcher gegen unten in bräunlichen, sandigen Mergel voller Heliciden (*Cepaea subglobosa* Grateloup) und schliesslich in siltigtonigen Kalksandstein übergeht;

4 m gefleckte Mergel;

3 + x m plattige, sandige Mergel und Kalkmergel.

Ca. 6 m über diesem Profil (unmittelbar unter der Strasse) ist auf 635 m als Abschluss einer Knauersandsteinbank noch eine grünlich-gelb gefleckte, sandige Silt-Ton- und Mergelschicht mit Heliciden aufgeschlossen. Darüber folgt die marine Molasse.

- 3. Auf 560 m in einem Wasserstollen der Wasserversorgung Bellechasse (Captage "F") unmittelbar westlich der Verwerfung von Sur-le-Mont (Koord. 573, 200/201, 625). Das Profil ist in Figur 8, S. 212, dargestellt. Die Säugetierreste finden sich in der unteren grünlichen Silt-Ton-Schicht.
- 4. Auf 570 m an einem kleinen Fussweg auf der rechten Seite des Grabens von Creux-Pissiaux (Koord. 572, 975/201, 425).

Profil von oben nach unten:

4 + x m marine Molasse; 40 cm gefleckte Mergel;

30 cm hell graugrüner Silt-Ton, gegen unten in Mergel mit zahlreichen Heliciden übergehend.

- 5. Auf 580 m in einem Wasserstollen der Wasserversorgung Lugnorre bei Surle-Mont (Koord. 572, 900/200, 450).
- 6. Auf der Murtenseite befindet sich an der Basis der marinen Molasse eine Fossilfundstelle zwischen Wallenried und Courlevon (Blatt Avenches), am Fussweg von Wallenried nach dem Weiler Cornatzy auf 525 m (rechte Seite des R. des Echelles, Koord. 574, 950/192, 375).

Profil von oben nach unten:

40 - x cm gefleckte Mergel;

30 cm dunkel graugrüner, sandiger Silt-Ton bis siltig-toniger Sandstein mit Heliciden und Säugetierresten;

3 + x m Knauersandstein, zum Teil geschichtet.

Die Säugetierreste der beschriebenen Fundstellen wurden durch J. Hürzeler (Basel) bearbeitet. In einem Schreiben vom 27. Oktober 1951 fasst Hürzeler die Resultate dieser Untersuchungen folgendermassen zusammen:

"Durch Aufsammlung im Felde und Schlämmen grosser Quantitäten fossilführenden Gesteins wurde in den Jahren 1934 bis 1937 durch R. Rutsch und J. Hürzeler sowie in den Jahren 1949 bis 1951 durch R. Ramseyer aus der Mergelzone im Liegenden der marinen Molasse des Wistenlacherberges und nordwestlich von Wallenried eine kleine Säugetierfauna gewonnen, die für die Bestimmung der Grenze zwischen Aquitanien und Burdigalien von einiger Bedeutung ist. Es wurden bisher folgende acht Säugetiere festgestellt:

Soricide
Talpide
Chiropter
Peridyromys murinus (Pomel)
Pseudotheridomys parvulus Schlosser
Cricetodon infralactorensis Viret
Prolagus vasconiensis Viret
Lagopsis Cadeoti Viret

Es handelt sich durchwegs um Kleinformen, die fast ausschliesslich durch isolierte Einzelzähne belegt sind. Die Zähne sind zum grössten Teil sehr frisch, einige wenige sind leicht gerollt. Es liegen jedoch keine positiven Anhaltspunkte vor, dass Fossilien aus älteren Schichten aufgearbeitet wären. Die kleine Fauna ist im Gegenteil in ihrer Zusammensetzung und in der Entwicklungshöhe der einzelnen Komponenten sehr einheitlich.

Von den acht Arten sind Cricetodon infralactorensis und Prolagus vasconiensis charakteristisch für das ausgehende Aquitanien und das unterste Burdigalien (vgl. J. HÜRZELER, 1946). Die übrigen Arten, mit Ausnahme von Lagopsis Cadeoti, sind für chronologische Zwecke vorderhand nicht brauchbar. Ob der Fundkomplex zum Aquitanien oder Burdigalien gehört, lässt sich an Hand der vorliegenden Säugetierreste nicht entscheiden. Wohl scheint die Anwesenheit von Lagopsis Cadeoti dafür zu sprechen, dass die Schwelle zum Miocaen bereits überschritten ist, da wir diese Form bisher nur aus dem untersten Burdigalien kennen. Allein die Fauna des obersten Aquitanien ist erst sehr unvollständig bekannt, und es ist zu erwarten, dass – wie bei Cricetodon infralactorensis und Prolagus vasconiensis – auch der oberaquitane Vorläufer des burdigalen Lagopsis Cadeoti nur

unwesentlich von diesem abweichen wird. Diese Auskunft mag auf den ersten Blick unbequem sein. Es liegt jedoch in der Natur der Sache, dass bei geschlossener Dokumentation und lückenloser Sedimentation die konventionellen Grenzen sich verwisehen.

Auf alle Fälle lässt sich jedoch aussagen, dass auch in der Schweiz der Wechsel vom limnischen Regime der sogenannten "Unteren Süsswassermolasse" zur marinen Molasse ziemlich genau mit der konventionellen Grenze Aquitanien/Burdigalien, wie sie im klassischen Gebiet der Aquitane gezogen wird, zusammenfällt."

In dem unter 2 aufgeführten Profil (nordwestlich Signal Plan-Châtel) haben wir eine braune, sandige Mergelschicht voller Heliciden zitiert. Die von R. Rutsch 1935 ausgebeuteten Fossilien wurden von W. Wenz bearbeitet. Nach einer schriftlichen Mitteilung von W. Wenz an R. Rutsch (28. Februar 1936) gehören die vorkommenden Schnecken alle zu ein und derselben Art, und zwar zu:

Cepaea subglobosa (Grateloup) = girondica (Noulet)

1827: Helix subglobosa, Grateloup, Bull. Hist. nat. Soc. linnéenne Bordeaux II, p. 95, Nº 47.
1923: W. Wenz, Fossilium Catalogus, Pars 18: Gastropoda extramarina tertiaria, II, p. 680 (W. Junk, Berlin 1923).

W. Wenz schreibt:

"Die Form kommt sowohl im Aquitanien als auch im Burdigalien vor. In der Gehäuseform variiert sie nicht unbeträchtlich. Neben solchen mit gerundeten Umgängen kommen auch mehr oder weniger kantige vor. Auch die Grössenschwankungen sind ziemlich bedeutend. Vielfach liegen in dem Material ziemlich grosse Stücke vor, wie sie auch bei Cepaea subglobosa subsoluta in unseren Hydrobienschichten anzutreffen sind. Für das Alter lassen sich daraus aber kaum irgendwelche Schlüsse ziehen.

Erschwerend für die Bestimmung ist die Art der Deformation. Sie scheint so langsam und unter Umständen erfolgt zu sein, dass die Schale weitgehend umgeformt wurde, ohne dass ein Bruch eintrat, mindestens in manchen Fällen. Über die wahre Form des Gehäuses ist daher kaum ein Urteil zu gewinnen.

Eigenartig ist das alleinige Vorkommen dieser Art. Man trifft das sonst selten. Ich kenne eigentlich und aus eigener Anschauung nur eine Parallele. In den tiefsten Schichten des Nördlinger Rieskessels kommen auch solche etwa 10 bis 20 cm mächtige Lagen vor, die ganz aus Cepaea sylvestrina bestehen. Wie man sich dieses Verhalten erklären kann? Es sind wohl die Vertreter der Gattung Buschschnecken, die in nächster Nähe des Ufers gelebt haben. Vielleicht war es auch gar kein See oder Tümpel, in den sie eingeschwemmt wurden, sondern eine zeitweise ausgetrocknete kleine Einsenkung, in die die leeren Schalen nach stärkeren Regenfluten mit dem Schlamm eingespült wurden, was sich natürlich mehrere Male wiederholen konnte. Ich habe in Südfrankreich bisweilen am Fusse von Hängen solche oft mehrere cm dicke Lagen von herabgeschwemmten Schneckenschalen gesehen, bei denen zum mindesten eine dort häufige Art stark vorherrschte. Das würde auch das Fehlen von Süsswassermollusken und Charaoogonien erklären.»

In den stratigraphisch tieferen Schichten des Aquitanien haben wir an folgenden Stellen Fossilien angetroffen:

7. Im Gebiet des Wistenlacherberges südwestlich Pégran auf 485 m (Koord. 570, 825/200, 450).

Profil von oben nach unten:

1,7 m unregelmässig geschichteter, siltig-toniger Kalksandstein, nach oben in dunkelgrauen, sandigen Silt-Ton übergehend (20 cm);

20 cm grauer Silt-Ton mit Heliciden, welcher nach unten in gefleckten, sandigen Mergel übergeht;

50 cm sandiger Mergel bis siltig-toniger Kalksandstein;

70 cm blätterig abwitternder, siltig-toniger Kalksandstein.

Drei Fundstellen befinden sich auf der Murtenseite:

8. Im Tal südlich Courgevaux auf 510 m (Koord. 575, 125/194, 25).

Profil von oben nach unten:

3 + x m Knauersandstein mit aufgearbeiteten Mergelgeröllen;

40 cm gefleckte Mergel;

20 cm grauschwarzer, sandiger Silt-Ton mit Heliciden;

50 cm harter, siltig-toniger Kalksandstein.

9. Im Graben westlich Coussiberlé auf 540 m (Blatt Avenches, Koord. 575, 375/193, 850).

Die Helicidenschalentrümmer befinden sich in einer ca. 20 cm mächtigen, grauschwarzen, sandigen Silt-Ton-Schicht.

10. Burggraben oberhalb Löwenberg auf 505 m (Blatt Ulmiz, Koord. 577, 600/197, 650).

Guterhaltene Heliciden finden sich in der Übergangszone eines dunkelbraunen, siltig-tonigen Sandsteines in Kalksandstein.

Nach der stratigraphischen Stellung, dem Auftreten und Erhaltungszustand der Heliciden ist diese Fundstelle derjenigen NW Signal Plan-Châtel auf 620 m (Fundstelle 2) sehr ähnlich.

Wie die aufgeführten Profile der Fossilfundstellen 1 bis 10 zeigen, treten die Heliciden immer in den karbonatarmen, dunkelgrauen, braunen und grünen, wenig mächtigen Sedimentschichten auf oder in den Übergangszonen dieser Schichten zu den kalkreichen Sedimenten im Liegenden. In den auffallend rostroten Horizonten konnten nirgends Fossilien gefunden werden.

Fundstellen mit überwiegend guterhaltenen Heliciden sind recht selten. Meist sind die ursprünglichen Schalen entweder mehr oder weniger stark deformiert oder zerbrochen.

3. Fossilführung der marinen Molasse

Bei der Durchsicht der Dünnschliffe aus der über der Grenzzone Aquitanien/Burdigalien folgenden Serie (vgl. Tafel IX) zeigte sich, dass diese Sedimente neben Glaukonitkörnern oft zahlreiche Foraminiferen enthalten. Durch die freundliche Vermittlung von Herrn Dr. H. A. Haus (Frickingen) wurde eine reichlich Foraminiferen führende Probe von Herrn Dr. H. Hagn (München) untersucht. Im folgenden geben wir das Ergebnis dieser Untersuchungen aus einem Brief von H. Hagn an H. A. Haus vom 4. August 1951 wieder:

"Die Probe vom Mt. Vully (Wistenlacherberg) enthielt nicht selten normalwüchsige Foraminiferen, die aber leider ziemlich schlecht erhalten waren. Dennoch liessen sich einige davon bestimmen. Ziemlich häufig waren folgende:

Rotalia beccarii (L.) Elphidium crispum (L.) Nonion commune (D'ORB.) Cibicides lobatulus (W. & J.) Spiroplectammina sp.

Letztere war ziemlich selten. Einzelne Bruchstücke von Globigerinenkammern lassen sich wohl auf Globigerina bulloides D'ORB. beziehen. Daneben fanden sich noch eine Menge Bruchstücke, die wohl weiteren Arten angehören, sich aber in der vorliegenden Erhaltung nicht näher bestimmen lassen.

Ich habe zunächst die in Ihrem Brief angegebene Literatur über den Mt. Vully nicht durchgesehen, um ohne Vorbehalt an die Sande gehen zu können. Wenn es sich um eine bayerische Probe handeln würde, möchte ich sie ohne weiteres als Burdigalien bestimmen. Helvétien-Faunenelemente fanden sich in der Probe nicht. Faziell wie faunistisch liegen gewisse Ähnlichkeiten mit dem burdigalen Horizont von Ortenburg in Niederbayern vor. Auch dort finden sich die oben angegebenen Fos ilien in ähnlicher Tracht und Häufigkeit.

Für bezeichnend halte ich das häufige und typische Vorkommen von Cibicides lobatulus (W. & J.), die ziemlich grosswüchsig ist, sowie der zahlreichen Elphidien in Verbindung mit Nonion commune (D'ORB.). Zweifellos liesse sich bei Vorlage günstiger Proben noch mehr an faunistischen Angaben herausholen.

Nachdem ich die Molassefazies der Westschweiz bislang noch nicht kenne, kann ich natürlich nicht ohne weiteres meinen Befund auf diese Gebiete übertragen. Wenn aber geologische und auch sonstige Umstände für ein Burdigalalter sprechen, wie es zum Beispiel die Notiz über den Mt. Vully von J. HÜRZELER (1946) besagt, so stehen einer Einstufung dieser Probe als Burdigalien von mikropaläontologischer Seite keine Schwierigkeiten entgegen."

Aus einem Mergelnest in der marinen Molasse an der Strasse Sugiez-Plan-Châtel erwähnt P. Zimmermann (1935) schöne Blätter von Arundo Goepperti (Heer) und "Tannensamen". Die von uns an der gleichen Stelle aufgesammelten Pflanzenreste lassen sich nur sehr schwer bestimmen. Nach einer mündlichen Mitteilung von Herrn Prof. Dr. W. Rytz (Botanisches Institut der Universität Bern) sind Ähnlichkeiten mit den Gattungen Celtis, Myrica, Vaccinium und Caesalpina vorhanden.

Aus der Muschelsandsteinfazies der marinen Molasse zitieren wir folgende Fossillisten:

Nach Angaben von V. GILLIÉRON (1885):

Tapes suevica Quenst.
Lamna cuspidata Ag.
Lamna elegans Ag.
Oxyrhina hastalis Ag.
Oxyrhina leptodon Ag.
Lamna contortidens Ag.
Trionyx

Rhinoceroszähne von der Gruppe incisivus-minutus

M. Leriche (1927) zitiert folgende Selachier:

Odontaspis acutissima Ag. Odontaspis cuspidata Ag. Odontaspis crassidens Ag. Lamna cattica Philippi Oxyrhina hastalis Ag. Alopecias exigua Probst

P. ZIMMERMANN (1932) erwähnt:

Tapes helvetica Zwei Zähne von Odontaspis cuspidata Fragment eines Unterkiefers von Aetobatis arcuatus

Aus eigenen Aufsammlungen:

Chione? sp. indet. Veneridae indet. Tellinidae? indet.

Zusammenfassend können wir über das Alter der Sedimente unseres Gebietes (insbesondere des Wistenlacherberges) folgendes aussagen:

1. Die Sedimente der "Unteren Süsswassermolasse" können auf Grund der Säugetierfunde aus der Grenzzone gegen die marine Molasse mit ziemlicher Sicherheit ins Aquitanien gestellt werden. Möglicherweise gehört die Grenzzone selber (Serie VI) bereits zum Burdigalien. Aus praktischen Gründen haben wir die Grenze an der Basis der sicher marinen Molasse gezogen.

- 2. Die marine Molasse ist auf Grund der Foraminiferenfauna ins Burdigalien zu stellen.
- 3. Die Grenze Aquitanien/Burdigalien fällt mit dem Fazieswechsel der beiden lithologischen Einheiten ungefähr zusammen.

4. Anschluss an die Nachbargebiete

Der auffallende lithologische Wechsel zwischen Aquitanien und Burdigalien ist schon von V. Gillieron (1885) beobachtet und beschrieben worden. Besonders

Tabelle 6
Schematische Übersicht der Grenze Aquitanien/Burdigalien in bezug auf die Muschelsandsteinhorizonte im Gebiet zwischen Dotzigen-Jensberg (bernisches Seeland) und Mt. Jorat sur Lausanne

		NE	Dotzigen- Jensberg	Jolimont	Mt. Vully- Gebiet von Murten	Estavayer– Yverdon	SW Mt. Jorat	
Miocaen	Burdigalien	"Obere Meeresmolasse"	Graue, marine Molasse	${\bf Erodiert}$	Ecodicr Marine Molasse	Molasse grise (nach E. MEYER)	Molasse marine	
Oligocaen	Aquitanien	"Untere Süsswassermolasse"	Bunte	Grenzzone Molasse	e Aquitanien/I	Burdigalien 	Molasse grise de Lausanne	

Muschelsandsteinbänke

markant ist dieser Wechsel im nordwestlich an unser Gebiet anschliessenden bernischen Seeland. Die marine Molasse beginnt hier mit einer Muschelsandsteinbank, welche seit Ed. Gerber (1913) als unterer Muschelsandstein (= Muschelnagelfluh nach B. Studer, 1825) bezeichnet wird. Den gleichen unteren Muschelsandstein glaubte Ed. Gerber am Wistenlacherberg bei Sur-le-Mont wieder feststellen zu können. Nun werden allerdings gerade an dieser Stelle auf den ersten Blick ähnliche Verhältnisse wie im bernischen Seeland vorgetäuscht, da durch die Verwerfung von Sur-le-Mont (vgl. S. 200) die bunten Mergel der "Unteren Süsswassermolasse" unmittelbar neben den Muschelsandstein und die marine Molasse zu liegen kommen (vgl. Tafel VIII). Dies veranlasste Ed. Gerber zu der in Tabelle 5, S. 189, dargestellten Grenzziehung.

Der untere Muschelsandstein hat nur im bernischen Seeland als Beginn der marinen Molasse eine lokale, stratigraphische Bedeutung.

Bereits am Jolimont tritt die erste Muschelsandsteinbank ca. 6 m über der Faziesgrenze "Untere Süsswassermolasse"/marine Molasse auf, am Wistenlacherberg sogar erst 20–30 m höher.

Noch weiter gegen Südwesten treten einzelne Muschelsandsteinbänke von wechselnder Mächtigkeit in den verschiedensten Niveaux der mächtigen marinen Molasse auf.

Bei der in der Arbeit von H. M. Schuppli (1950) besprochenen, über 100 m mächtigen "grauen Molasse" im Gebiet von Estavayer-Moudon-Yverdon handelt es sich ohne Zweifel um marine Molasse des Burdigalien, die sicher nicht der "molasse grise de Lausanne" (oberes Aquitanien) entspricht. Der marine Charakter dieser sogenannten grauen Molasse ist durch eingeschaltete Muschelsandsteinbänke und Foraminiferen genügend belegt. Schon V. Gilliéron (1885) erwähnt von der Basis dieses Komplexes bei Moudon marine Fossilien.

D. FAZIES UND ENTSTEHUNG DER SEDIMENTE

1. Die "Untere Süsswassermolasse" (Aquitanien)

Die Ausführungen in den vorhergehenden Kapiteln haben gezeigt, dass die als "Süsswassermolasse" bezeichneten Ablagerungen weder typische Süsswassersedimente (wie Süsswasserkalke, Seekreide, Kohleflöze usw.) aufweisen, noch Süsswasserfossilien führen.

Alle petrographischen Merkmale wie die Fossilführung sprechen im Gegenteil für eine vorwiegend terrestre Bildungsweise der aquitanen Schichtfolge.

Bei den vorkommenden Fossilien handelt es sich ausschliesslich um Überreste von Landtieren und Landpflanzen. Ihr Auftreten beschränkt sich auf die für die aquitanen Profile charakteristischen, S. 181 ausführlich besprochenen, karbonatarmen Sedimente.

Nach R. Rutsch (1945) kommt – in gewissen Fällen wenigstens – für diese Fossilien ein langer Transport durch Flüsse von einem südlich gelegenen Festland in das Molassebecken nicht in Frage. Als Argument wird unter anderen der oft sehr gute Erhaltungszustand der Fossilien angeführt, eine Tatsache, die auch in unserem Gebiet an verschiedenen Fundstellen beobachtet werden konnte. R. Rutsch kommt zur Auffassung, die Landtiere und Landpflanzen hätten zum Teil auf Festlandsebenen innerhalb des Molassebeckens selbst gelebt. Durch Absenkung des Molassetroges seien dann diese Gebiete überflutet und die verwitterten Sedimente der Festlandsebenen zusammen mit den Tier- und Pflanzenresten einsedimentiert worden.

Es ist nun naheliegend, in den erwähnten karbonatarmen, oft Landfossilien führenden Sedimenten die durch Verwitterung umgewandelten Ablagerungen solcher Festlandsebenen innerhalb des Molassebeckens zu sehen. Auf bestimmte Verwitterungsvorgänge könnten jedenfalls die Abwesenheit von Kalk, Anreicherungen von Eisen und zum Teil auch die auffallenden Färbungen dieser Sedimente zurückgeführt werden.

Auf das verschiedene Auftreten der karbonatarmen Sedimente haben wir bereits S. 181 und 182 hingewiesen.

Wo diese Sedimente als Abschluss von sandigen Komplexen, aus welchen sie ohne scharfe Grenzen hervorgehen, auftreten, ist die Möglichkeit nicht von der Hand zu weisen, dass die Verwitterungsschichten noch an Ort und Stelle ihrer Entstehung vorhanden sind. Gegen eine Einschwemmung in einen Tümpel oder in ein grösseres Wasserbecken spricht in diesen Fällen die Abwesenheit einer Schichtung und die schlechte Aufbereitung des Materials (vgl. Figur 5, S. 177). Es erscheint plausibel, dass auf diesen, der Verwitterung ausgesetzten Festlandsebenen die Erhaltungsbedingungen für die abgestorbenen Organismen und Pflanzen sehr schlecht waren. Fossilien findet man deshalb in diesen Schichten äusserst selten.

Dagegen bestehen die wenig mächtigen, scharf abgegrenzten karbonatarmen Schichten innerhalb der Mergelkomplexe zum Teil sicher aus eingeschwemmtem, feinerem Material eines benachbarten Festlandgebietes. Fossilien sind in diesen Schichten etwas häufiger vorhanden, was durch eine raschere Einbettung der Organismen in das vorwiegend tonige Material erklärt werden kann.

In den ausserordentlich raschen vertikalen und vor allem horizontalen Wechseln der Fazies kommt die Vielfalt der bei terrestrischen Sedimentationsbedingungen möglichen Vorgänge deutlich zum Ausdruck. Trotz dieser Vielfalt lassen sich aber gerade in der vertikalen Richtung stets wiederkehrende Gesetzmässigkeiten erkennen, die zur Bildung der auf S. 184ff. beschriebenen Sedimentationszyklen führten. Die Entstehung dieser Zyklen dürfte durch folgende Phasen bedingt sein:

- 1. Intensive Sedimentation, möglicherweise bedingt durch eine Absenkung des Molassetroges, welche lokal zur Bildung mächtiger Sandsteinbänke aus relativ grobem Material führt. Die Abwesenheit einer Schichtung spricht gegen eine Ablagerung dieser Sandmassen in einem grösseren Wasserbecken. Nur an einer Stelle (Vaux de Praz) war innerhalb einer solchen Sandsteinbank eine deutliche Schrägschichtung zu beobachten, welche durch eine fluviatile Aufschüttung des Materials bedingt sein könnte. Vielleicht sind ursprünglich vorhandene Schichtungen durch nachträgliche Umlagerungen wieder zerstört worden.
- 2. In einer Übergangsphase wird die Sedimentation zeitweise und lokal unterbrochen. Stellenweise liegen die in der ersten Phase aufgeschütteten Sandmassen trocken und sind der Verwitterung ausgesetzt, was die Bildung der karbonatarmen Sedimente zur Folge hat. Es ist sehr wohl möglich, dass in dieser Phase durch Umsetzungen zirkulierender Bodenwässer die "Knauer" der Sandsteinbänke entstanden sind.

Kleinere Überschwemmungen können den Verwitterungsvorgang unterbrechen und zur Aufschüttung mehr oder weniger mächtiger, feinkörniger Sandmassen führen, worauf bei erneuter Trockenlegung der Verwitterungsprozess wieder einsetzt. Die Wiederholung dieses Vorganges ergibt die im Kapitel über die Lithologie des Aquitanien geschilderte, rhythmische Gliederung des sandigen Teils der einzelnen Zyklen.

3. In einer letzten Phase kommen dann hauptsächlich Mergel zum Absatz. Die hin und wieder vorhandene Feinschichtung dieser Mergel spricht für einen Absatz in einem Tümpel oder Süsswasserbecken. Karbonatarme Schichten und wenig

mächtige, sandige Horizonte werden eingeschwemmt. Offensichtlich wird in dieser Schlussphase der Beginn eines neuen Sedimentationszyklus durch beginnende Absenkung und dadurch zunehmende Überschwemmungen vorbereitet.

Der neue Zyklus beginnt dann wiederum mit einer starken Grobsandschüttung, wobei die in der letzten Phase des vorhergehenden Zyklus abgelagerten Mergel oft stark erodiert und zum Teil aufgearbeitet werden.

Da nun die einzelnen Phasen des schematisch skizzierten Sedimentationsprozesses bis zu einem gewissen Grade nebeneinander verlaufen können, ergibt sich die für das Aquitanien typische, grosse, laterale Variabilität der Sedimente.

Etwas anders sind die Verhältnisse im obersten Teil der "unteren Süsswassermolasse" (Serie VI, siehe S. 185). In dieser Serie scheint sich bereits die marine, burdigale Transgression anzukündigen. Die lithologische Ausbildung des mächtigen sandigen Teils dieser Zone zeigt gewisse Ähnlichkeiten mit derjenigen der marinen Molasse. Möglicherweise machen sich auch bereits marine Einflüsse geltend, da in einem Schliff aus dieser Serie Glaukonitkörner angetroffen wurden.

Offenbar wurde die Entstehung dieser Schichtserie durch eine stärkere Absenkung des Molassetroges eingeleitet. Es bildete sich ein grösseres, zusammenhängendes Wasserbecken, in welchem sich die Sandmassen oft in einer ausgesprochenen Feinschichtung ablagerten. Für diese Annahme sprechen auch die feingeschichteten Kalkmergel im obersten Teil des sandigen Komplexes und die auffallende Konstanz der lithologischen Ausbildung dieser Ablagerungen in horizontaler Richtung.

Durch Auffüllung dieses Beckens oder Rückzug des Wassers entstehen zum letztenmal Festlandgebiete, auf welchen zahlreiche Landtiere gelebt haben müssen. Offenbar waren die Bedingungen zur Erhaltung dieser Landtiere bedeutend günstiger als dies in den älteren "Festlandphasen" der Fall war. Auffallend ist jedenfalls der relative Reichtum an Landschnecken und Säugetierresten in den grünen, karbonatarmen Schichten dieser Zone. Die grüne Farbe dieser Sedimente gegenüber den roten und schwärzlichen Färbungen im tieferen Aquitanien gibt einen Hinweis auf etwas andere Entstehungsbedingungen, die wir im Einzelnen noch nicht deuten können. Möglicherweise konnte die Verwitterung weniger intensiv wirken.

2. Die burdigale Transgression

Nachdem sich wahrscheinlich schon in der Serie VI marine Einflüsse geltend gemacht haben, treten nun über dieser Serie ausschliesslich marine Sedimente auf. Die marine Fazies kann durch das Vorhandensein von Glaukonit, Foraminiferen und – in den stratigraphisch höheren Niveaux – durch die Muschelsandsteinbänke bewiesen werden. Die auf den Schichtflächen der feinplattigen Kalksandsteine zu beobachtenden Rippelmarken, Schwemmholznester und pflanzenführenden Mergelzüge und vor allem die, hauptsächlich in Verbindung mit den Muschelsandsteinbänken auftretenden, zahlreichen Gerölle wahrscheinlich alpiner Herkunft ergeben das Bild eines strandnahen, seichten Flachmeeres.

Die meisten Gerölle haben einen Durchmesser zwischen 1 und 2 cm. Auffallend und schwierig zu erklären ist das vereinzelte Auftreten von Geröllen bis zu 20 cm Durchmesser. Eine gleiche Transportart wie bei den übrigen Geröllen ist kaum wahrscheinlich. Vielmehr könnte man an eine Verfrachtung durch kleine, schwimmende Landinseln denken. Für diese Auffassung sprechen die zahlreichen Schwemmholzreste in diesen Schichten.

Die Frage nach der Herkunft des Meeres bleibt vorläufig problematisch. Wichtig wäre in diesem Zusammenhang zunächst die Entscheidung der Frage, ob die marine Transgression im Unteren oder Oberen Burdigalien erfolgte. Die Säugetier-

funde aus der Grenzzone Aquitanien/Burdigalien sind typisch für oberstes Aquitanien und unterstes Burdigalien. Die Foraminiferen in der darüber folgenden marinen Molasse sprechen für Burdigalien. Es wäre deshalb naheliegend, die Basis der marinen Molasse als Unteres Burdigalien zu betrachten, vorausgesetzt, dass zwischen der "Unteren Süsswassermolasse" und der marinen Molasse keine Sedimentationslücke vorhanden ist. Die spärlichen und meist wenig ausgedehnten Aufschlüsse geben keine positiven Anzeichen für einen Hiatus, sie sprechen eher für eine kontinuierliche Sedimentation. Zudem haben wir gesehen, dass sich möglicherweise bereits in der Serie VI (unter den Säugetierfundstellen) marine Einflüsse geltend machen. Der Beweis für das Aquitanienalter dieser Serie VI ist keineswegs erbracht, da ja die Säuger Unteres Burdigalien nicht ausschliessen, sondern sogar eher wahrscheinlicher machen.

Es sind somit verschiedene, wenn auch keineswegs genügend gesicherte Anhaltspunkte dafür vorhanden, dass das Meer unser Gebiet bereits im Unteren Burdigalien erreichte.

Nach den Darstellungen von M. Gignoux (1950) wird das Untere Burdigalien im Rhonebecken durch die marinen Sande mit *Scutella paulensis* repräsentiert, welche gegen Norden bis ins Becken von Crest (zwischen Marseille und Lyon) zu verfolgen sind. Erst im Oberen Burdigalien hätte dann das Meer die Schweiz erreicht und die Verbindung mit dem Wiener Becken hergestellt.

Im ausseralpinen Wiener Becken sind sowohl das Aquitanien (zum Teil) wie das Burdigalien in mariner Fazies vorhanden.

Nach M. Richter (1948) wird in Südbayern marines Aquitanien durch die oberen Cyrenen- und Promberger Schichten repräsentiert, welche allerdings gegen Südwesten auskeilen.

Aus all diesen Tatsachen geht hervor, dass man für unser Gebiet wohl an eine Herkunft der marinen Transgression von Nordosten, aus dem Wiener Becken, zur Zeit des Unteren Burdigalien denken könnte.

III. Tektonik

A. DER WISTENLACHERBERG

1. Einleitung

Die bisherigen Auffassungen über die Tektonik des Wistenlacherbergs weichen ziemlich stark voneinander ab. H. Schardt (1907) schreibt: «C'est en réalité une butte découpée par l'érosion dans des couches de molasse sensiblement horizontales.»

Nach P. Zimmermann (1932) bildet der Wistenlacherberg die Nordflanke einer W-E streichenden Antiklinale zwischen Cudrefin und Sur-le-Mont. Südlich an diese Antiklinale würde zwischen Champmartin und Guévaux eine Synklinale anschliessen.

Dagegen fasst J. Kopp (1935 und 1946) den Wistenlacherberg als eine parallel zum Jura streichende Synklinale auf. Ihre Achse verläuft von Pt. 464 an der Militärstrasse Sugiez-Plan-Châtel über den Muschelsandsteinbruch bei Pt. 626 gegen Sur-la-Ritaz und weist südlich Plan-Châtel eine axiale Depression auf. Auf seiner tektonischen Karte der Molasse der Westschweiz hat J. Kopp (1946) diese Mont-Vully-Synklinale mit einer Längserstreckung von über 15 km dargestellt, begleitet im SE von der Broye-Antiklinale, im NW von der Joressant-Antiklinale. Weiter gegen NW würde die Hagneck-Synklinale, Mörigen-Antiklinale und Jolimont-Synklinale anschliessen.